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Abstract

Given a k-uniform hypergraphH on n vertices, an even cover inH is a collection of hyperedges that
touch each vertex an even number of times. Even covers are a generalization of cycles in graphs and are
equivalent to linearly dependent subsets of a system of linear equations modulo 2. As a result, they
arise naturally in the context of well-studied questions in coding theory and refuting unsatisfiable
k-SAT formulas. Analogous to the irregular Moore bound of Alon, Hoory and Linial [3], Feige
conjectured [8] an extremal trade-off between the number of hyperedges and the length of the smallest
even cover in a k-uniform hypergraph. This conjecture was recently settled up to a multiplicative
logarithmic factor in the number of hyperedges [12, 13]. These works introduce the new technique
that relates hypergraph even covers to cycles in the associated Kikuchi graphs. Their analysis of these
Kikuchi graphs, especially for odd k, is rather involved and relies on matrix concentration inequalities.

In this work, we give a simple and purely combinatorial argument which recovers the best known
bound for Feige’s conjecture for even k. We also introduce a novel variant of a Kikuchi graph which
together with this argument improves the logarithmic factor in the best known bounds for odd k. As
an application of our ideas, we also give a purely combinatorial proof of the improved lower bounds [4]
on 3-query binary linear locally decodable codes.

1 Introduction

A set S of edges in a hypergraph H is an even cover if

⊕

E∈S

E := {v ∈ v(H) : v belongs to an odd number of edges in S} = ∅.

Equivalently, S is an even cover if
∑

E∈S vE = 0 over F2, where vE denotes the characteristic vector
of E. In this work, we are interested in understanding the extremal trade-offs between the size of a
k-uniform hypergraph H and girth, i.e., the number of edges in the shortest even cover in it.

Even Covers and Linear Dependencies Even covers in k-uniform hypergraphs correspond to lin-
early dependent subsets of a system of k-sparse (i.e., each equation has exactly k non-zero coefficients)
linear equations over F2. To see why, let us associate a variable xv for each v ∈ H and the |E|-sparse
equation

∑

v∈E xv = bE for bE ∈ F2 with each edge E in H. Then, observe that for any even covers
S, the left hand sides of the equations corresponding to E ∈ S add up to 0 and are thus linearly de-
pendent. Thus, size vs girth trade-offs for k-uniform hypergraphs correspond to the largest possible size
ℓ of the minimum linear dependency in a system of linear equations with m equations in n variables.
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Such k-sparse linear equations arise naturally as the parity check equations for low-density parity check
error correcting codes. The size vs girth trade-offs for k-uniform hypergraphs thus correspond to rate
vs distance trade-offs for such codes.

By the equivalence between even covers and linear dependencies, it is clear that every hypergraph
with m ≥ n + 1 hyperedges must have an even cover of length at most n + 1 and this is clearly tight.
The natural question is then: How does the trade-off between m and the maximum possible girth look
as m increases beyond n+ 1?

Size vs Girth Trade-offs When H is a 2-uniform hypergraph, an even cover is simply an even
subgraph, i.e., a subgraph with all vertices of even degree. Such a subgraph is a union of edge-disjoint
cycles in H. An even cover with smallest number of edges must in fact be a simple cycle and thus, its
length must be the girth of the graph H. The extremal trade-off between the size of H (i.e., the number
of edges in the graph) and its girth was conjectured by Bollóbas and confirmed by Alon, Hoory and
Linial [3] who proved the irregular Moore bound — every graph on n vertices with average degree d has
girth at most 2⌈logd−1(n)⌉. It is an outstanding open problem whether the constant 2 in this bound can
be further improved (for the best known constant, see [17]).

For k-uniform hypergraphs with k > 2, the size vs girth trade-offs were first studied by Naor and
Verstraete [20] through applications to rate vs distance trade-offs for LDPC codes discussed above. They
showed that every H with m ≥ nk/2 logO(1)(n) hyperedges on n vertices must contain an even cover of
length O(log n). The logO(1)(n) factor was further improved to a O(log log n)-factor in a subsequent
work of Feige [8]. For k = 2, this recovers a coarse version of the irregular Moore bound. For k > 2,
however, there is an interesting regime between the two extreme thresholds of m = n+1 (with maximum
possible girth of n+ 1) and m ∼ nk/2 logO(1)(n) (with maximum possible girth of O(log n)).

Feige’s Conjecture In 2008, Feige [8] formulated a conjecture about this in-between regime that
suggests a smooth interpolation between the two extremes noted above.

Conjecture 1.1. Fix any k ∈ N. Then, there exists a sufficiently large C > 0 such that for sufficiently
large n ∈ N and every ℓ ∈ N, every k-uniform hypergraph H with m ≥ Cn(nℓ )

k/2−1 has an even cover of
length at most O(ℓ log2 n).

The quantitative behavior above can be verifed for random hypergraphs (up to a multiplicative factor
of log(n) in m). Indeed, Feige’s conjecture was based on the hypothesis that random hypergraphs are
approximately extremal for the purpose of avoiding short even covers. The motivation for this conjecture
comes from the question of showing existence of (and/or efficiently finding) polynomial size refutation
witnesses — easily verifiable witnesses of unsatisfiability of — randomly chosen k-SAT formulas param-
eterized by the number of clauses. Feige’s conjecture implies that the result of Feige, Kim and Ofek [9]
that showed that random 3-SAT formulas with m ≥ O(n1.4) clauses admit a polynomial size refutation
witness with high probability will extend to the significantly more general setting of smoothed 3-SAT
formulas also studied by Feige in addition to simplifying the construction and arguments based on the
second moment method in [9].

Until recently, not much was known about Feige’s conjecture except for the work of Alon and Feige [2]
that showed a suboptimal version for the case of k = 3 and that of Feige and Wagner [10] that built an
approach to the problem of even covers by viewing them as an instance of generalized girth problems
about hypergraphs. In 2022, Guruswami, Kothari and Manohar [12] proved Feige’s conjecture up to
an additional loss of log2k(n) multiplicative factor in m via a spectral argument applied to the Kikuchi
graph, a graph with an appropriate algebraic structure, built from the given hypergraph. Their argument
was simplified and tightened to reduce the loss down to a O(log n) multiplicative factor in m by Hsieh,
Kothari and Mohanty in [13]. In this work, as we will soon discuss, we give a substantially simpler, purely
combinatorial argument that recovers their result and improves the logarithmic factors for hypergraphs
of odd uniformity.
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Linear Locally Decodable Codes A binary error correcting code is a map C : {0, 1}m → {0, 1}n
where we view the input as a m-bit “message” and the output as an n-bit codeword. By a slight abuse
of notation, we use C to also denote the set of all codewords: {y | ∃x ∈ {0, 1}m, C(x) = y}. We say
that C is linear if, when viewing the input and output as Fm

2 and Fn
2 , respectively, C is a F2-linear map.

A code C is called (q, δ)-locally decodable (LDC) if, in addition, it admits a local decoding algorithm.
Such a local decoding algorithm takes as input any target message bit i for 1 ≤ i ≤ m and a corrupted
codeword y such that dist(y,C(x)) ≤ δ for some x ∈ {0, 1}m where dist counts the fraction of coordinates
that y and C(x) differ. The goal of the algorithm is to access at most q locations in y and output xi
correctly with high probability over the choice of the q locations. In other words, the local decoder can
decode any bit of the message by reading at most q locations of the received corrupted codeword.

Locally decodable codes are intensely investigated in computer science (see the survey [24] for back-
ground and applications) with applications to probabilistically checkable proofs, private information
retrieval [23], and worst-case to average-case reductions in computational complexity theory. They
also have deep connections with additive combinatorics and incidence geometry [5]. We are typi-
cally concerned with codes that are locally decodable with very few queries, such as q = 2 or 3, and
the fundamental question is the smallest possible n = n(m) such that there is a (q, δ)-binary LDC
C : {0, 1}m → {0, 1}n. Classical results have essentially completely resolved the case of q = 2 and we
know that a blocklength of n ≤ 2O(m) (for a constant δ) can be achieved by Hadamard codes with a
matching lower bound [11, 15]. The case of q = 3 already presents with wide gaps where until recently,
the best known lower bound [11, 15] was n ≥ Õ(m2) while the best known construction [7, 22] gives a
3-query binary linear code with n ≤ exp(exp(O(

√
logm log logm))). Recently, using spectral refutations

via Kikuchi matrices, Alrabiyah et. al. [4] improved the quadratic bound above to obtain a lower bound
of n ≥ m3/poly logm for 3-query binary, locally decodable codes.

1.1 Our Results

The arguments in the most recent works on Feige’s conjecture and locally decodable codes are involved
and in particular, require the use of matrix concentration inequalities. Our main contribution is a short,
purely self-contained combinatorial argument that recovers their result. This technique might be useful
for other similar questions and we illustrate it below, by an application to another well studied problem.
Our arguments for Feige’s conjecture also utilize Kikuchi graphs introduced in the above prior works. We
then introduce a new variant of a Kikuchi graph that, when combined with our combinatorial argument,
improves on their results for the case of odd k.

Theorem 1.2. For all k, there is a sufficiently large C such that the following holds for all sufficiently
large n.

(i) If k is even, then every k-uniform n-vertex hypergraph with at least Cn (n/l)k/2−1 · log n edges
contains an even cover of size O(l log n).

(ii) If k is odd and l ≤ n/ log2 n, then every k-uniform n-vertex hypergraph with at least Cn (n/l)k/2−1 ·
(log n)

1
k+1 edges contains an even cover of size O(l log n).

We remark that in the above theorem for odd k, we require only a very mild restriction on l that l ≤
n/ log2 n, which is purely a technical artefact of our proof. In fact, if l ≥ n/100 log n, Feige’s conjecture
holds trivially from a standard linear algebra argument (see Lemma 2.4). For n/ log2 n ≤ l ≤ n/100 log n,
then one can use the some arguments as in the proof of the above theorem (namely Section 4.4) to show
the same bound as in part (i) for this range.

The ideas we developed to prove the above theorem naturally extend to the setting of linear binary
locally decodable codes. We can use an altered version of these arguments to show the following result
previously obtained by Alrabiah et. al [4]. As in the above results, their proof involves spectral arguments
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on signed adjacency matrices of Kikuchi graphs based on matrix concentration inequalities. The proof
we give is simple and purely combinatorial. Although the work in [4] deals also with non-linear codes,
we remark that all known constructions of locally decodable codes including the ones discussed in the
previous section are linear.

Theorem 1.3. Let C : Fm
2 → F

n
2 be a linear map that gives a 3-query locally decodable code with distance

δ > 0. Then, m ≤ Kn1/3 log n for K = 107/δ2.

Finding structures in edge-colored graphs We finally remark that the results in this paper, which
we discussed above, are proven by reducing both our results to the one of finding a subgraph, satisfying
certain restrictions, in an edge-coloured graph. Recall that an edge-colored graph is a graph along with
a coloring of the edges so that no vertex has two or more edges of same color incident on it. Finding
structures in edge-colored subgraphs is a powerful method in Combinatorics and has been used to study
several well-known questions. For example, the famous conjecture of Ringel from 1963 says that the
edges of the complete graph K2n+1 can be decomposed into copies of any tree on n vertices. It was
observed by Kötzig that this problem can be reduced to showing that a certain edge-colouring of K2n+1

contains a rainbow copy of any tree on n vertices. The existence of such rainbow trees was recently
established in [19].

Another famous application is the resolution of the Ryser-Brualdi-Stein conjecture which was open
for more than 60 years until it was recently solved by Montgomery [18]. It states that every Latin
square n×n contains a transversal (i.e., a collection of cells which do not share the same row, column or
symbol) of size n− 1. This can be reduced to finding a rainbow matching missing only one colour in any
proper edge-colouring of the complete bipartite graph Kn,n. Finally, a well-studied problem in additive
combinatorics studies the additive dimension of sets with small doubling, in any group. This problem
had been solved for abelian groups by Sanders [21]. For general groups, this question was reduced by
Alon et. al [1] to a well-known problem (see [14]) of finding a rainbow cycle in a properly edge-coloured
graph with sufficiently many edges, for which Alon et. al provide an almost tight bound.

2 Preliminaries

2.1 Notation and definitions

Definition 2.1. All logarithms are taken base 2. Given a graph G, we let d(G) denote its average
degree. Let H be a hypergraph. We let V (H) denote its vertex set and E(H) its edge-set. Similarly, we
let v(H) denote the size of its vertex set and e(H) denote the number of edges. Given a hypergraph H,
a bucket is a pair (E ,X) where E is a set of edges in H which all contain the set of vertices X ⊆ V (H).
Given a hypergraph H, an (m, t)-bucket decomposition is a partition of the edges of H into buckets
(E1,X1), (E2,X2), . . . such that |Ei| = m and |Xi| = t.

2.2 Standard tools

In this section, we collect some lemmas which will be useful throughout the paper. The first is the
standard tool used for finding subhypergraphs with large minimum degree.

Lemma 2.2. Let H be a hypergraph on n vertices and nd edges. Then, there exists an induced sub-
hypergraph H′ ⊆ H with at least nd/2 edges and minimum degree at least d/2.

Proof. We perform the following process. Start with H′ := H and while it has a vertex v with degree
less than d/2 in H′, remove it from H′. Notice that at any point, H′ has at least e(H) − nd/2 ≥ nd/2
edges and thus, the process must stop. The final H′ is then a sub-hypergraph with at least nd/2 edges
and minimum degree at least d/2.
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The next lemma is simply an observation on finding trivial bucket decompositions in hypergraphs.

Lemma 2.3. Let H be a hypergraph on n vertices and nd edges. Then, there exists an induced sub-
hypergraph H′ ⊆ H with at least nd/2 edges and a (d/2, 1)-bucket decomposition.

Proof. We do the following process. First, set H′ := ∅. While e(H′) < nd/2, consider the hypergraph
H \ H′; it has at least nd/2 edges and thus there is a vertex v with degree at least d/2; then, take a
a collection E ⊆ H \ H′ of d/2 edges containing v and add them to H′. Note that at the end of the
process the hypergraph H′ is as desired since the collections E taken at each step give the (d/2, 1)-bucket
decomposition.

The next lemma is a simple application of linear algebra in order to show that hypergraphs with suffi-
ciently many edges contain even covers (with no size restriction).

Lemma 2.4. Let H be an n-vertex hypergraph with at least n + 1 edges. Then, H contains an even
cover.

Proof. For each edge E in the hypergraph consider its characteristic vector vE in Z
n
2 . Note that since we

have at least n+1 vectors, they must be linearly dependent, implying thus an even cover as desired.

The next lemma concerns finding coloured cycles in edge-coloured graphs. Although a variant of it
already appeared in [14], we include a the proof for sake of completeness.

Lemma 2.5. Let G be an n-vertex graph and C a set of colours so that each edge in G is assigned a set
of s colours in C. Suppose that for every vertex v ∈ G and colour c ∈ C, the number of edges incident
on v whose assigned set of colours contains c is at most d(G)/20s log n. Then, G contains a closed walk,
of size at most 2 log n, such that some colour appears exactly once.

Proof. Let l := log n and r := d(G)/20s log n. For sake of contradiction, suppose G contains no such
closed walk of size 2l. We will double-count the number of rainbow paths in G of size l - by rainbow
we mean that no colour is assigned to more than one edge of the path. In order to give a lower bound
on the number of rainbow paths, note first that Lemma 2.2 implies that G contains a subgraph G′ ⊆ G
with minimum degree at least d′ = d(G)/4. We can then take a vertex v ∈ G′ and greedily count the
number of rainbow paths in G′ of the form vv2v3 . . . vl+1. Indeed, we have at least d′ options for v2;
then, given the assumption on G that every colour is incident to a vertex in at most r edges and that G
has no rainbow cycle of size at most 2l, we have at least d′ − sr options for v3; with the same reasoning
we have at least d′ − 2sr options for v4 and so on. Concluding the number of such rainbow paths is at
least d′ · (d′ − sr) · . . . · (d′ − sr(l − 1)) > (0.8d′)l, since d′ − sr(l − 1) > d′ − d(G)/20 ≥ 0.8d′.

On the other hand, since there is no closed walk as described above, we can upper bound the number
of rainbow paths as follows. For each pair of vertices x, y (there are at most n2 of them), observe that
if there is a rainbow path between them using a set of colours S ⊂ C, then any other rainbow path
between x and y must use the same set of colours S. Now, the set S has size sl and thus, we can upper
bound the number of rainbow paths xz1z2 . . . zly of size l between x and y as follows. Choosing z1 can be
done by choosing a colour c1 ∈ S and then choosing an edge incident on v which contains the colour c1.
By assumption, there are at most slr such choices and the choice of the rest of the vertices z2, . . . , zl−1

can be done in the same way. Concluding, there are at most (slr)l such paths. Therefore, there are at
most n2 · (slr)l = (4slr)l = (0.8d′)l rainbow paths of size l, which is a contradiction given the previous
paragraph.

2.3 Combinatorial Characterization of Locally Decodable Codes

In this section, we recall standard results that reduce proving a lower bound on the blocklength of a
linear locally decodable code to establishing the existence of a special kind of even cover in a properly
edge colored hypergraph.
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We will use the following standard reduction to a locally decodable code in the normal form. We
direct the reader the monograph [24] for a more general result that holds even for non-linear codes. We
use ⊕ to denote addition modulo 2 (i.e., over Fn

2 ) in the following.

Proposition 2.6 (LDCs in normal form, see Theorem 8.1 in [6]). Let C : Fm
2 → F

n
2 be a binary, linear

3-query locally decodable code with distance δ > 0. Then, there is a collection of 3-uniform hypergraph
matchings H1,H2, . . . ,Hm of size ≥ δn/6 one for each message bit, such that for every x ∈ F

m
2 , for

every i ∈ [m] and every hyperedge e ∈ Hi, ⊕j∈eC(x)j = xi.

As an immediate corollary of the normal form of a locally decodable code, we obtain the following useful
combinatorial characterization:

Lemma 2.7. Let C : Fm
2 → F

n
2 be a binary, linear 3-query locally decodable code with distance δ > 0

and let H1,H2, . . . ,Hm be the associated matchings as in Proposition 2.6 of size ≥ δn. Then, for any
even cover {e1, e2, . . . , et} in the multi-hypergraph ∪i≤[m]Hi, each Hi contributes an even number of
hyperedges.

Proof. Suppose not and say {e1, e2, . . . , et} is an even cover that contains an odd number of hyperedges
from, say, H1. Then, choose x = (1, 0, . . . , 0) ∈ F

m
2 and observe that on the one hand, ⊕i≤t⊕j∈eiC(x)j = 0

because Cis form an even cover. But, on the other hand, ⊕i≤t ⊕j∈ei C(x)j = C(x)1 = 1 since H1

contributes an odd number of edges to {e1, e2, . . . , et} and for every edge e ∈ H1, ⊕j∈eC(x)j = x1. This
is a contradiction.

By thinking of each edge in Hi as having the color i, the hypergraph ∪i≤mHi is a properly edge colored
hypergraph. Thus, in light of Lemma 2.7, Theorem 1.3 is implied by the following theorem that we will
establish in this work.

Theorem 2.8. For all sufficiently small α > 0, there is K := 107/α2 > 0 such that the following holds
for all sufficiently large n. Let H be a 3-uniform n-vertex hypergraph which is properly edge-coloured
with Kn1/3 log n colours so that each colour has at least αn edges. Then, H contains an even cover such
that some colour appears exactly once.

3 Even k and some ideas of the proof

3.1 Feige’s problem for even k

To illustrate our main ideas, we start this section by giving a very short solution of Feige’s problem up
to a logarithmic factor for all even k. In the next section we will discuss how to use the methods inspired
by this proof for the odd values of k.

Proof of Theorem 1.2 (i). Let H be a hypergraph satisfying the assertion of the theorem. By choos-

ing constant C = 10kkk/2−1 we can assume that l ≥ k and that H has at least 10kn (n/l)k/2−1 log n
edges. We define an edge-coloured graph G, called the Kikuchi graph, as follows.

• The vertex set of G consists of all l-element subsets of the vertex of H, i.e., V (G) :=
([n]

l

)

.

• We define an edge S ←→ T for two S, T ∈ V if there exists an edge E ∈ H such that S ⊕ T = E
and |S ∩E| = |T ∩ E| = k/2. Moreover, we colour the edge S ←→ T in G with colour E.

Let us make some important remarks about G. First, note that the colouring of its edges is well-defined
and proper. Indeed, the first is the case since the colour of the edge S ←→ T is uniquely defined by S⊕T .
The latter also holds since given S ∈ V and E ∈ H, there exists at most one T ∈ V such that S⊕T = E.
We now show the following claim.

6



1

2 3

4

E

1

3 2

4

S ∩ T

S

T

Figure 1: An illustration of the Kikuchi graph defined above with an edge E =
{1, 2, 3, 4} of H and an edge S ←→ T of G coloured with E.

Claim 3.1. G contains a closed walk of length O(l log n) such that some colour appears only once.

Proof. To prove this we apply Lemma 2.5. Note that G has N :=
(

n
l

)

vertices and each edge E ∈ H
creates at least 1

2 ·
( k
k/2

)

·
( n−k
l−k/2

)

edges of G, since we need to choose the intersections S∩E,T ∩E (which

are disjoint and of size k/2) and then the set S \ E = T \ E. Therefore, the number of edges in G is
e(G) ≥ 1

2 · e(H)
(

k
k/2

)(

n−k
l−k/2

)

. Since N =
(

n
l

)

we have logN ≤ log nl = l log n and

N =

(

n

l

)

=

(

n− k

l − k/2

)

· (n − k + 1) · · · n
(l − k/2 + 1) · · · l · (n− l) · · · (n− l − k/2 + 1)

≤
(

n− k

l − k/2

)

· (4n/l)k/2,

where we used that l ≤ n/ log n by Lemma 2.4 and that l ≥ k. Therefore

e(G) ≥ 1

2
· e(H)

(

k

k/2

)(

n− k

l − k/2

)

≥ 1

2
· 10kn (n/l)k/2−1 log n ·

(

k

k/2

)

·
(

n− k

l − k/2

)

≥ 5k(4n/l)k/2
(

n− k

l − k/2

)

(

l log n
)

> 10N logN.

Therefore, since G is properly-coloured, Lemma 2.5 implies that it contains the desired type of closed
walk of size at most 2 logN ≤ 2l log n.

To finish, we can take the closed walk S1, S2, . . . , Sr in G given above and consider the collection C of
edges in H which appear an odd number of times as colours in this walk - that is, recalling the definition
of G, those edges E ∈ H such that E = Si⊕Si+1 (the indices being taken modulo r) for an odd number
of 1 ≤ i ≤ r. Since

⊕

1≤i≤r(Si ⊕ Si+1) = ∅, we have that
⊕

E∈C E = ∅ and so C is an even cover of size
at most r = O(l log n), as desired.

3.2 Feige’s problem for odd k and LDCs

We now briefly discuss the methods for proving Theorem 1.2 in full generality. In the previous section, in
order to solve Feige’s problem for even k, we defined an edge-coloured graph G based on the hypergraph
H. Crucially, the graph G had the following properties.

1. G has many edges and is properly edge-coloured.

2. A closed walk in G in which some colour appears once implies an even cover in H.

7



Then we just applied Lemma 2.5 to find a the desired even cover in H.
Even covers with odd k

In the case of odd k our general strategy will be similar. We will also want to define an edge-coloured
graph G based on our hypergraph H such that some appropriate versions of the properties above hold.
For this, we will define two different variants of the Kikuchi graph defined in the previous section. The
first version is given in Section 4.4 and has already appeared in previous works (see [12] and [13]) and can
alone, be used to show a bound as in part (i) of Theorem 1.2 for odd values of k. To get the improved
part (ii) of Theorem 1.2 for odd k, another variant is necessary. In Section 4.5, we introduce then the
flower Kikuchi graph.

Before using these Kikuchi graphs however, we will need to clean our hypergraph H using the tools
in Section 4. Specifically, we will be able to reduce our problem to considering a hypergraph H with a
nice bucket decomposition and co-degree assumptions (see Lemma 4.5). Then, based on the outcome of
this Lemma, we will either use the Kikuchi graph on H defined in Section 4.4 or the new flower Kikuchi
graph.

In the first case, the graph is edge-coloured, but each edge receives now a pair of colours (C,C ′),
where each colour C is an edge in H. Due to the additional assumptions we now have on the hypergraph
H we can show that the Kikuchi graph contains a subgraph G′ ⊆ G with the following properties similar
to the ones before.

1. G′ has many edges and is such that every vertex is incident to at most d(G′)/80 log |G′| edges
containing a given colour.

2. A closed walk in G′ in which some colour appears once implies an even cover in H.

Then, like before, applying Lemma 2.5 implies the desired even cover in H. As mentioned above, finding
G′ is only possible because of the additional assumptions on H. In Proposition 4.9 we state the crucial
hypergraph property which implies the existence of such a G′.

In the second case, the flower Kikuchi graph G is edge-coloured, with each edge receiving a colour C
which is an edge of H. Like in the previous case, we can also then perform a (simpler) cleaning procedure
to find a subgraph subgraph G′ ⊆ G with the same properties as those mentioned in the beginning of the
section: G′ has many edges and is properly coloured; a closed walk in G′ in which some colour appears
once implies an even cover in H. Then, applying Lemma 2.5 implies the desired even cover in H.
Locally decodable codes

The problem of LDCs is very similar. As discussed in the introduction, we can reformulate this problem
as finding a special even cover in an edge-coloured hypergraph (see Theorem 2.8). The only difference
here is that the edges of the hypergraph are properly colored and we want to find an even cover where
some color is unique. We again will first clean our hypergraph using Lemma 4.1. Then we will show
that the given Kikuchi graph defined in Section 4.4 will satisfy the property in Proposition 4.9 and thus
gives the desired even cover in H.

4 Cleaning tools, the Kikuchi graph and even covers

In this section we present two tools for cleaning hypergraphs. As we mentioned in the previous section,
the goal is to find hypergraphs with nice bucket decompositions and co-degree conditions. Here and
later in the paper we will always assume that k is odd.

4.1 Cleaning I: A general tool for hypergraphs

First, we need the following simple observation for general hypergraphs.
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Lemma 4.1. Let H be a k-uniform hypergraph and j ≤ k. Then, for all t and e ≤ e(H), there is a
H′ ⊆ H such that one of the following holds.

1. e(H′) ≥ e(H)− e and every set R of size t has degH′(R) < m.

2. H′ has a (m, t)-bucket decomposition and e(H′) ≥ e.

Proof. Starting with H0 := H, perform the following procedure. While H0 has a set R of size t with
degH0

(R) ≥ m, then select m such edges in H0 which contain R and remove them from H0. When this
process stops, if e(H0) ≥ e(H)− e, then by taking H′ = H0 we have the first case. Otherwise by taking
H′ = H−H0 we have the second case.

4.2 Cleaning II: Hypergraphs with high co-degrees have small even covers

Next, we will prove a particular statement concerning Feige’s problem. This will later allow us to reduce
the general problem to considering a hypergraph with some co-degree assumptions.

Lemma 4.2. Let H be an n-vertex k-uniform hypergraph which has a
(

2, k+1
2

)

-bucket decomposition.

Then, for sufficiently large cosntant C, if e(H) ≥ C · n (n/l)
k−3
2 · log n, it contains an even cover of size

O(l log n).

Proof. Let us denote the
(

2, k+1
2

)

-bucket decomposition by (E1,X1), (E2,X2), . . . and denote Ei as

{Yi, Zi}. By the pigeonhole principle we can find some j ≥ k+1
2 such that considering only the buckets

with |Yi ∩ Zi| = j, will reduce the size of the hypergraph by at most a 2/k factor. Now, we construct
a new 2(k − j)-uniform multihypergraph G on the same vertex set as H consisting of the edges Yi ⊕ Zi.
The key observation which is easy to check from this definition is the following.

Observation 4.3. An even cover in G implies an even cover of twice the same size in H.

The above implies that we need only to show that G contains an even cover of size O(l log n). For this,

note that since 2(k−j) is even and e(G) ≥ e(H)/k ≥ (C/k)·n (n/l)
k−3
2 ·log n ≥ (C/k)·n (n/l)(k−j)−1·log n.

Thus we can directly imply Theorem 1.2 (i).

The above discussion together with the proof of Lemma 4.1 (applied with j = k+1
2 ) immediately imply

the following corollary.

Corollary 4.4. For sufficiently large constant C, every n-vertex k-uniform hypergraph H without an
even cover of size O(l log n) has a subhypergraph H′ ⊆ H such that the following hold.

• e(H′) ≥ e(H)− C · n (n/l)
k−3
2 · log n.

• Every set S of size at least k+1
2 has degH′(S) ≤ 1.

4.3 Cleaning III: A general tool for hypergraphs

In this section we present a tool for finding a subhypergraph with both a nice bucket decomposition
and co-degree assumptions. Given the lemmas in the previous section, we will need only to apply it to
k-uniform hypergraphs with odd k in which no two edges share more than k/2 vertices.

Lemma 4.5. Let H be an n-vertex k-uniform hypergraph with nd edges and consider any function
m : [k]→ R>0 with m(1) = d/10k. Then, there exists a subhypergraph H0 ⊆ H with at least nd/2k edges
and a 1 ≤ t ≤ k/2 such that the following hold.

1) For all S ⊆ V (H0) with |S| > t, we have that degH0
(S) < m(|S|).

9



2) If t = 1, then H0 has minimum degree at least m(1). If t ≥ 2, then H0 has a (m(t), t)-bucket
decomposition.

Proof. Set H2, . . . ,Hk/2 := ∅ and H′ := H and repeat the following procedure as long as possible. Let
r ≥ 2 be maximal such that there exists some S ⊆ V (H′) with |S| = r with degH′(S) ≥ m(r). Take
exactly m(r) edges in H′ that contain S, remove them from H′ and add them to Hr. The process stops
when such an r does not exist.

Now, suppose first that this process goes until e(H′) < e(H)/2. Then, we can stop the process at the
first step in which that occurs. Note then that by pigenholing, one of the hypergraphs Hr will have at
least nd/2k edges. We then define H0 := Hr and observe that it satisfies the desired conditions.

Otherwise, the process stops while e(H′) ≥ e(H)/2 = nd/2. Note that since the process stopped, it
must be that such an r no longer exists and thus, degH′(S) < m(|S|) for all sets S with |S| ≥ 2. Now, by
Lemma 2.2, H′ has a subgraph, which we take to be H0, with at least nd/4 edges and minimum degree
at least d/4. Clearly, the conditions now are satisfied for t = 1.

4.4 The Kikuchi graph and even covers

We will now introduce the variant of the Kikuchi graph for an edge-coloured hypergraph with a given
(m, t)-bucket decomposition which we already mentioned in Section 3.2.

Definition 4.6. Let H be an n-vertex edge-coloured k-uniform hypergraph with an (m, t)-bucket de-
composition with buckets {(Ei,Xi)}1≤i≤p. Given an l, we define the l-Kikuchi graph of H and this bucket
decomposition to be an edge-coloured graph G = (V,E) as follows. Let [n] × [2] denote two disjoint
copies of [n], whose vertices are colored red and blue in order to distinguish between these sets. The
vertex set V (G) consists of all subsets of [n]× [2] of size l. Each such set S ∈ V is viewed as (S(1), S(2)),
where S(1), S(2) ⊆ [n] are red and blue respectively. For each i ∈ [p] and each ordered pair (C,C ′) of
edges C,C ′ ∈ Ei, let C̃(1) be C̃ := C \Xi colored red and C̃ ′(2) be C̃ ′ := C ′ \Xi colored blue. We add

an edge between S, T ∈ V , denoted S
(C,C′)←−−→ T , if S ⊕ T = C̃(1) ⊕ C̃ ′(2) and one of the following holds.

• |C̃(1) ∩ S(1)| = |C̃ ′(2) ∩ T (2)| =
⌈

k−t
2

⌉

and |C̃ ′(2) ∩ S(2)| = |C̃(1) ∩ T (1)| =
⌊

k−t
2

⌋

.

• |C̃(1) ∩ S(1)| = |C̃ ′(2) ∩ T (2)| =
⌊

k−t
2

⌋

and |C̃ ′(2) ∩ S(2)| = |C̃(1) ∩ T (1)| =
⌈

k−t
2

⌉

.

Further, the edge S ↔ T is said to be associated with the edges C,C ′ in H and is colored by the pair
(c, c′) where c is the colour of C in H and c′ is the colour of C ′.

Note that contrary to the Kikuchi graph introduced in Section 3.1, the construction here is more com-
plicated. We split the vertex set V into a red copy of [n] and a blue copy of [n]. This is needed
because the pairs C,C ′ in our definition of buckets may have intersection larger than t, meaning that
|C ⊕ C ′| = |C̃ ⊕ C̃ ′| < 2(k − t). Taking C̃, C̃ ′ to be subsets of two different copies of [n] automatically
makes C̃(1), C̃ ′(2) disjoint, so that |S ⊕ T | = |C̃(1) ⊕ C̃ ′(2)| = 2(k − t). Note also that we allow a vertex
of the Kikuchi graph S ⊆ [n]× [2] to contain two copies of some element in [n] with different colors.

Given the above Kikuchi graph, we also define associated hypergraphs Hc which will be crucial for
our proof. Indeed, in Proposition 4.9 we will show that if these hypergraphs have edges that are rather
uniformly distributed, that is, that there is no set of vertices with too large co-degree, then H must
contain an even cover of small size.

Definition 4.7. For each colour c of H, we define the (k − t)-uniform multihypergraph Hc with vertex
set [n]× [2] as follows: for each c-coloured edge C in H belonging to some bucket Ei and an edge C ′ 6= C
also in Ei, we put in Hc all edges F such that one of the following holds.

• {|C̃(1) ∩ F (1)|, |C̃ ′(2) ∩ F (2)|} = {
⌈

k−t
2

⌉

,
⌊

k−t
2

⌋

}.
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• {|C̃(2) ∩ F (2)|, |C̃ ′(1) ∩ F (1)|} = {
⌈

k−t
2

⌉

,
⌊

k−t
2

⌋

}.

Note that, if S
(C,C′)←−−→ T is an edge of the Kikuchi graph G and C,C ′ have colors c, c′ respectively, then

both S and T contain in addition to common part S ∩ T an edge from Hc ∩Hc′ .

2 1

3

5

4

C ′

C

2

3 5

4

S ∩ T

S

T

3 5 2 4

2 5 3 4

3 5 2 4

2 5 3 4

Edges in Hc

Figure 2: An illustration of Definitions 4.6 and 4.7. On the left, we have a pair of
edges C,C ′ which both belong to a bucket. Then, on its right is depicted an edge

S
(C,C′)←−−→ T created by this pair. Then, on the further right are illustrated all edges

of Hc (where c is the colour of the edge C) which are created in Definition 4.7 by
the pair (C,C ′).

Let us now note two important properties of the l-Kikuchi graph G.

Observation 4.8. If G contains a closed walk whose edges are overall associated to a multi-set H′ of
edges in H, then it is such that

⊕

C∈H′ C = ∅. In particular, if there is some colour which appears an
odd number of times in H′, then H contains an even cover of size at most e(H′) in which some colour
appears an odd number of times. Further, G has average degree at least

e(H)(m− 1) ·
( k−t
⌊k−t

2
⌋

)2 ·
(2n−2k+2t

l−k+t

)

(2n
l

) ≥ e(H)(m− 1) ·
(

l

2n

)k−t

.

Proof. We will briefly explain the average degree computation. Indeed, the number of ordered pairs
(C,C ′) of edges in the same bucket is e(H)(m − 1). Now, with the pair (C,C ′) fixed, choosing an edge

S
(C,C′)←−−→ T can be viewed as a two-step choice. First, we choose the intersections C̃1∩S(1), C̃1∩T (1), C̃2∩

S(2), C̃2 ∩ T (2) so that these intersections sizes are as required in Definition 4.6 - there are
( k−t
⌊k−t

2
⌋

)2
such

choices. Once those intersections are chosen, the next step is to choose a set S ∩ T = S \ F = T \ F ′

of size l − k + t out of 2n − 2k + 2t vertices. Combining all of these, we get that the number of edges

in G is e(H)(m − 1) ·
( k−t
⌊k−t

2
⌋

)2 ·
(2n−2k+2t

l−k+t

)(2n
l

)

. Since G has
(2n

l

)

vertices, we have the desired average

degree.

As anticipated by the above observations, we can use Kikuchi graphs to find even covers in hypergraphs.

Proposition 4.9. Let k be odd and H be an edge-coloured n-vertex k-uniform hypergraph with nd edges
and an (m, t)-bucket decomposition. Let G be the l-Kikuchi graph of H and suppose that the following
holds.
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• For all colours c, edges F ∈ Hc and 0 ≤ j ≤ k − t, the number of edges F ′ ∈ Hc with |F ′ ∩ F | = j
is at most (d(G)/2000 log v(G)) · (n/l)k−t−j.

Then, H contains an even cover of size at most 2 log v(G) in which some colour appears an odd number
of times.

Proof. Our aim is to use Lemma 2.5. However, we might not be able to apply it directly to the Kikuchi
graph G (which by Observation 4.8 would imply an even cover in H). This is because G might not have
a well-behaved colouring - it could well be that there are vertices and colours which do not satisfy the
condition of Lemma 2.5.

Instead, it turns out that we will be able to delete some edges from G and get a subgraph G′ ⊆ G
which does satisfy the necessary conditions. Let d(G) denote the average degree of G and for each

ordered pair (C,C ′) of edges in H with colours c, c′, we delete all edges S
C,C′

←−→ T such that one of S or
T is adjacent to more than d(G)/80 log v(G) edges with one of the colours c, c′. Let G′ be the resulting
graph. Note that if we can show that d(G′) ≥ d(G)/2, then Lemma 2.5 (with s = 2) implies that G
contains a closed walk of size at most 2 log v(G) in which some colour appears once. By Observation 4.8,
this implies an even cover in H of size at most 2 log v(G) as desired.

The following claim clearly implies that d(G′) ≥ d(G)/2. Let C1, C2 be any two edges of H (with
colours c1, c2 respectively) in the same bucket Ei.

Claim 4.10. At least half of the edges with colour-pair (C1, C2) are in G′.

Proof. To prove this claim it is enough to show that uniformly chosen edge with color pair (C1, C2) is
deleted with probability at most 1/2. Note that with C1, C2 fixed, choosing a uniformly random edge

S
(C1,C2)←−−−→ T can be viewed as a two-step uniform choice. First, we choose at random the intersections

C̃1 ∩S(1), C̃1 ∩ T (1), C̃2 ∩S(2), C̃2 ∩T (2) so that these intersections sizes are as required in Definition 4.6.
This will, for S (and T ), fix an edge F ∈ Hc1 ∩ Hc2 which is contained in S (and another edge F ′ in
Hc1 ∩ Hc2 contained in T ). Secondly, once those intersections are chosen, the next step is to choose a
uniformly random set S ∩ T = S \ F = T \ F ′ of size l − k + t out of 2n− 2k + 2t vertices.

Now, we will upper bound the probability that such a random edge is not in G′. We will deal first
with the case that S is incident to more than d(G)/80 log v(G) other edges with the colour c1 (and thus,
the edge S ↔ T will not be in G′) and will show that a random edge has this property with probability
at most 1/8. The other four cases (S incident to too many edges of colour c2, T incident to too many
edges of colour c1 and T incident to too many edges of colour c2) are analogous and so, we will in the
end have a total probability of deletion of at most 4/8 = 1/2. Suppose then that (C3, C4) are two other
edges both in the same bucket and one of them has colour c1 - without loss of generality, assume it is

C3. Suppose there exists an edge S
C3,C4←−−→ T ′ for some other T ′. Then, S must contain some additional

edge in Hc1 - let us denote this by E. For each such possible E, since S \ F is chosen uniformly, the
probability that S contains it is at most

(

2n−2k+2t
l−|E\F |−k+t

)

(2n−2k+2t
l−k+t

) ≤
(

l − k + t

2n− 2k + 2t− (l − k + t)

)|E\F |

≤ (0.51l/n)|E\F |,

using the fact that in all our proofs we can assume that l ≤ n/ log n. Furthermore, by assumption there
are at most (d(G)/2000 log v(G)) · (n/l)k−t−j edges of Hc1 with |E ∩ F | = j. Therefore, the expected

number of such edges S
C3,C4←−−→ T ′ is at most

(d(G)/2000 log v(G)) ·
∑

1≤j≤k−t

(n/l)k−t−j · (0.51l/n)k−t−j ≤ d(G)/800 log v(G).
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Concluding, by Markov’s inequality, that the probability that a random edge is deleted because of one
of its endpoints and one of its colors is at most 0.1 < 1/8, as desired.

4.5 The Flower Kikuchi graph and even covers

We will now introduce a new variant of the Kikuchi graph defined in the previous sections. Just as
before, we will always consider odd uniformity k. Let H be an n-vertex k-uniform hypergraph with nd
edges and minimum degree δ and such that every set of size k − 1 is contained in at most one edge.
Suppose that the edges of H are coloured in red and blue. Suppose also that for each vertex v in H, we
fix a collection Ev of precisely δ edges containing v.

Definition 4.11. A flower gadget F = (C,P1, . . . , Pk) in H is a collection of k+1 hyperedges in H with
a center edge C = {v1, . . . , vk} and k petal edges P1, . . . , Pk which are disjoint and such that each Pi is
contained in Evi with Pi ∩C = {vi}. F is a good flower gadget if C is blue and all edges Pi are red. See
Figure 3 for an illustration.

v2

.

v3

.
v1

. .
..

C

P1

P2 P3

Figure 3: An illustration of a good flower gadget with k = 3.

Definition 4.12. The flower l-Kikuchi graph G of H has vertex set V :=
([n]

l

)

and its edges are defined
and coloured as follows. For each good flower gadget F = (C,P1, . . . , Pk), define an edge between

S, T ∈ V , denoted by S
C←→ T and coloured with C, if S ⊕ T is equal to P1 ⊕ · · · ⊕ Pk ⊕ C, and

|S ∩ (Pi \ vi)| = |T ∩ (Pi \ vi)| = k−1
2 for all i.

Now, let us note some inconsistencies with this colouring.

Claim 4.13. An edge S ↔ T can possibly be created by at most 2k
3
good flower gadgets.

Proof. To prove this we only need to use the property that no set of size k−1 is contained in more than
one edge of the hypergraphH. Indeed, observe that for a good flower gadget {C,P1, . . . , Pk} to create this
edge, it must be that |(S\T )∩A| = |(T \S)∩A| = k−1

2 for all A ∈ {P1\{v1}, . . . , Pk\{vk}}. Since |S\T | =
|T \ S| = k(k−1)

2 , there are at most
(k(k−1)/2
(k−1)/2

)2k ≤ 2k
3
ways to define these sets (S \ T ) ∩A, (T \ S) ∩A,

giving us the sets P1 \ v1, . . . , Pk \ vk. Since the hypergraph is such that no set of size k− 1 is contained
in more than one edge, through each of these sets there is a unique edge, giving us P1, . . . , Pk (up to
permutation of names which does not matter). Then the vertex set (P1 ∪ . . .∪Pk) \ (S ∪T ) gives C.
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Given the above claim, we fix the colouring arbitrarily by colouring S
C←→ T with only one of the at most

2k
3
possible options. We make note of some other crucial (but simple to check) properties of G just as

we did previously in Section 4.4 with Observation 4.8.

Observation 4.14. If G contains a closed walk and we denote by {C(j), P
(j)
1 , . . . , P

(j)
k } the good flower

gadgets which create the edges of the walk, then
⊕

j

(

P
(j)
1 ⊕ · · · ⊕ P

(j)
k ⊕ C(j)

)

= ∅. In particular, if

there is some (blue) edge which appears an odd number of times among the C(j), then H contains an
even cover whose size is of the same order as the length of the walk. Also, G has N :=

(n
l

)

vertices and
letting m denote the number of good flower gadgets in H, then G has average degree

m ·
( n−k(k−1)
l−k(k−1)/2

)

2k3N
≥ m

10k3
·
(

l

n

)k(k−1)/2

.

Proof. We will briefly explain the average degree computation. Each good flower gadget creates at least
( n−k(k−1)
l−k(k−1)/2

)

edges since after choosing the intersections S ∩ (Pi \{vi}), T ∩ (Pi \{vi}) we are left choosing
S ∩ T which can be any set of size l − k(k−1)

2 from V (H) \⋃i(Pi \ {vi}), which has size n − k(k − 1).

Further, as discussed above, each edge is possibly created by at most 2k
3
good gadgets, and therefore, G

has at least
m·( n−k(k−1)

l−k(k−1)/2)
2k3

edges. The last estimate can be verified by considering separately cases when

l ≤ k2 or l > k2 and recalling that we can assume that l ≤ n/ log n.

Much like in the previous section, we can show an analogous of Proposition 4.9, that if the flower l-
Kikuchi graph has some ’nice’ properties, then the underlying hypergraph contains a small even cover.
Since we will not need the full power of such a statement, in the next section, we will only prove a
simpler version of it which we use to establish Theorem 1.2 (ii).

5 Even covers in hypergraphs

In this section, we will apply the previous tools to prove Theorems 1.2 (ii) and 2.8.

5.1 Proof of Theorem 2.8

Take K := 107/α2, let H be such a hypergraph and let l := n1/3. We can assume without loss of
generality that we have d := Kl log n colours, each with precisely αn edges, so that our hypergraph has
αnd edges. We will want to apply Proposition 4.9 in order to find such a special even cover. For this,
let us first note that one of the following holds.

1. There is a H′ ⊆ H with e(H′) ≥ e(H)/2 with a (K log n, 2)-bucket decomposition.

2. There is a hypergraph H′ ⊆ H with e(H′) ≥ e(H)/4 such that it has a (αd/4, 1)-bucket decompo-
sition and every set R of size two has degH′(R) ≤ K log n.

Indeed, this follows directly by applying first Lemma 4.1 with t = 2 and m = K log n. This gives that
the first item holds or there is a H′ ⊆ H with e(H′) ≥ e(H)/2 and such that every set R of size two has
degH′(R) ≤ K log n. For this second case, we can then apply Lemma 2.3 to find the (αd/4, 1)-bucket
decomposition in the second item. Now we will show that in both cases above, Proposition 4.9 holds
for the l-Kikuchi graph of the corresponding hypergraph H′ which for convenience we redenote as H.
Let us first suppose that (1.) holds and let us consider the l-Kikuchi graph G of H and the given
bucket decomposition. Using that K = 107/α2 and v(G) =

(

2n
l

)

≤ (2n)l, by Observation 4.8 (with
k = 3 and t = 2), the l-Kikuchi graph G has average degree at least (αnd/2) · (K log n − 1) · (l/2n) ≥
8000dl log(2n) ≥ 8000d · log v(G). Also note that for each colour c, the multihypergraph Hc is 1-uniform
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so, consists of single vertices in [n] × [2]. Thus, by Proposition 4.9 we need only to show that given
a colour c, an F ∈ Hc and a 0 ≤ j ≤ 1 the number of F ′ ∈ Hc with |F ′ ∩ F | = j is at most
4d · (n/l)1−j ≤ d(G)/(2000 log v(G)) · (n/l)1−j . For j = 0, the number of such F ′ is at most four times
the number of edges in Hc which is 4(K log n)n = 4d · (n/l). To see this, recall that the hypergraph H is
properly coloured and therefore at each of its vertices there is only one bucket of size K log n containing
an edge C of color c - every other edge C ′ in this bucket together with C gives then 4 edges of Hc -
indeed there are four edges of Hc satisfying one of the items in Definition 4.7; these consist of the red
and blue copies of the vertex in C \ C ′ and the vertex in C ′ \ C. For j = 1, let the edge C ∈ E(H) of
color c be the one in Definition 4.7 forming F . The edge F ′ ∈ Hc with F ′ = F can be obtained in two
ways: first from some edge C ′ of H incident to the same vertex as singleton the (uncolored) F ; this gives
at most the maximum degree of H, i.e., d edges; we can also obtain F ′ from any edge C ′ ∈ H from the
same bucket as C. This gives at most K log n additional edges. So in total d+K log n ≤ 2d.

Now assume that (2.) holds and recall that l = n1/3, d = Kl log n and v(G) ≤ (2n)l where G is the
l-Kikuchi graph of H and the given bucket decomposition. In this case Hc is a multigraph for every color
c. The Observation 4.8 (with k = 3 and t = 1) implies that the l-Kikuchi graph has average degree at
least

d(G) ≥ (αnd/4) · (αd/4 − 1) · (l/2n)2 ≥ (αK)2/100 · (l3/n) · l · (log n)2 ≥ 105K · log n · log v(G).

Hence d(G)/2000 log v(G) ≥ 50K log n. Take F = (u, v) ∈ Hc which corresponds (as in Definition 4.7)
to a pair of edges C,C ′ of H from some bucket such that C has color c and w.l.o.g contains u and C ′

contains v. We need to verify that for 0 ≤ j ≤ 2 the number of F ′ ∈ Hc with |F ′ ∩ F | = j is at most
50K log n(n/l)2−j , i.e., satisfies the condition in Proposition 4.9 (with k = 3 and t = 1). For j = 0,
this number is the number of edges in Hc, which is at most 8n times the size of each bucket, that is,
8n · (αd/4) = 2αKnl log n ≤ 2K log n(n/l)2. This is because each bucket has αd/4 and so if it contains
an edge of colour c then it produces αd/4 pairs of edges with one of colour c. Each such pair then
contributes 8 edges to Hc (see Figure 3). Furthermore, since the coloring of H is proper there are at
most n buckets containing an edge of color c.

For j = 1, note that the number of F ′ is at most 16 times the maximum degree of H plus 16 times
the size of each bucket which is at most 16d+16αd/4 ≤ n/l. To see this note that we can get F ′ in two
ways; one is by taking the unique edge in H of color c through either u or v and combining it with any
other edge from the same bucket (giving a pair of edges for Definition 4.7); the other is by considering
any edge of H containing either u or v and combining it with an edge of color c in the same bucket
(giving a pair of edges in H for Definition 4.7); like before, in each case, each pair produces 8 edges of H.
Finally, for j = 2, note that F ′ ∈ Hc with F ′ = F can be obtained by taking a unique edge C of color c
through u (or v) and combining it with any edge in the same bucket which contains v. This edge must
intersect the vertex of C −{u} which is incident to every other edge in the bucket containing C and so,
since the codegree of every pair of vertices is at most K log n this gives at most 2K log n options.

5.2 Proof of Theorem 1.2 (ii)

LetH be a k-uniform n-vertex hypergraph with nd where d ≥ C (n/l)k/2−1 (log n)
1

k+1 for some sufficiently
large constant C which depends on k. We take n large enough so that any fixed power of log n which
appears in the proof is bigger than any constant dependent on k appearing. Note first that using
Corollary 4.4 we can assume that H is such that every set of more than k−1

2 vertices (since k is odd)

has co-degree at most 1. Without loss of generality let us now assume that d = C (n/l)k/2−1 (log n)
1

k+1 .

We apply Lemma 4.5 with m defined as m(1) = d/10k and m(t) = (d/10k)
k/2−t
k/2−1 · (log n)1− 1

k+1 for t ≥ 2.
This gives us a sub-hypergraph H0 with at least nd/2k edges and a t ≤ k−1

2 with the given properties
in the lemma. Let us split the remainder of the proof into the cases that t > 1 and t = 1.
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Case 1: t > 1

In this case, we know that H0 has an (m(t), t)-bucket decomposition and degH0
(S) < m(|S|) for all

sets S with |S| > t. We will show that this hypergraph satisfies the conditions of Proposition 4.9,
which will immediately give an even cover as desired. Let then G be the l-Kikuchi graph for H0 and let
m := m(t). By Observation 4.8, it has average degree d(G) ≥ e(H0)(m− 1) (l/2n)k−t. Recalling that G
has v(G) ≤

(2n
l

)

≤ (2n)l vertices, we have that

d(G) ≥ nd

2k
·m · (l/2n)k−t ≥ nd

2k
· (d/10k)

k/2−t
k/2−1 · (log n)1− 1

k+1 · (l/2n)k−t (1)

≥ (log n)1/k
2 · (l log(2n)) ≥ (log n)

1
(k+1)2 · log v(G).

Now, let us redefine H as H0. View H as an edge-coloured hypergraph by colouring each edge with
its own unique colour and let us verify the conditions of Proposition 4.9. For each edge C ∈ H, the
hypergraph HC is then formed by taking every edge C ′ in the same bucket as C and putting all edges F
in HC which satisfy one of the items in Definition 4.7 - in particular, part of F (either ⌈k−t

2 ⌉ or ⌊k−t
2 ⌋)

will be contained in either C(1) or C(2) and the rest will be contained in either C ′(1) or C ′(2). Depending

on parity of k− t, each such edge C ′ contributes to at least 2
( k−t
⌊k−t

2
⌋

)2
and at most 4

( k−t
⌊k−t

2
⌋

)2 ≤ 22k edges

for HC .
Let us fix C an edge in H, F ∈ HC and 0 ≤ j ≤ k− t. Let us denote the bucket of H containing C by

(Xi, Ei). We bound the number of F ′ ∈ HC with |F ′ ∩ F | = j as follows. Since F ∈ HC , there is some
edge C ′ in the same bucket as C such that one of the items in Definition 4.7 applies. Let us assume
without loss of generality that {|C̃(1) ∩ F (1)|, |C̃ ′(2) ∩ F (2)|} = {

⌈

k−t
2

⌉

,
⌊

k−t
2

⌋

}. Fix a pair j1, j2 with

j = j1 + j2 and let us consider those F ′ with j1 = |F ′(1) ∩ F (1)| ≤ ⌈k−t
2 ⌉ and j2 = |F ′(2) ∩ F (2)| ≤ ⌈k−t

2 ⌉.
We first fix for F ′ one of the items in Definition 4.7 which applies. Let us first count those with
{|C̃(1) ∩ F ′(1)|, |C̃ ′′(2) ∩ F ′(2)|} = {

⌈

k−t
2

⌉

,
⌊

k−t
2

⌋

} for some edge C ′′ in the same bucket as C and C ′.

First, we have at most 2k options for the choice of F ′(1) since it must be a subset of C(1). For the
choice of F ′(2), note that after choosing an appropriate edge C ′′, we have again at most 2k options for
the choice of C̃ ′′(2) ∩ F ′(2). But now the choice of C ′′ is restricted to the fact that Xi ∪ (F ′(2) ∩ F (2))
(which is here considered naturally as a set of vertices in [n] and not in [n]× [2]) must be contained in
C ′′ and thus, since |Xi ∪ (F ′(2) ∩ F (2))| = t + j2, the conditions of Lemma 4.5 imply that there are at
most

2k · max
|R|=t+j2

degH′(R) ≤ 2k ·m(t+ j2) ≤ 2k · (d/10k)
k/2−t−j2

k/2−1 · (log n)1− 1
k+1

choices for such an edge C ′′, where the extra 2k factor serves as a gross upper bound for the number of
possible subsets Xi ∪ (F ′(2) ∩ F (2)) ⊆ F . Combining all these consideration, we have at most

23k · (d/10k)
k/2−t−j2

k/2−1 · (log n)1− 1
k+1 ≤ log n · (n/l)k/2−t−j2

≤ log n · (n/l)k−t−j− 1
2

options for such F ′. Notice that we used in the previous inequality that k/2− t−j2 ≤ (k/2+j1)− t−j ≤
(k/2 + ⌈k−t

2 ⌉)− t− j ≤ (k/2 + ⌈k−2
2 ⌉)− t− j ≤ (k/2 + k−1

2 )− t− j ≤ k − t− j − 1
2 , since t ≥ 2.

Now, the arguments and the upper bound are analogous in the other cases for F ′ (that is, for all
possible values of j1, j2 and whether {|C̃ ∩ F ′(1)|, |C̃ ′′ ∩ F ′(2)|} = {

⌈

k−t
2

⌉

,
⌊

k−t
2

⌋

} or {|C̃ ∩ F ′(2)|, |C̃ ′′ ∩
F ′(1)|} = {

⌈

k−t
2

⌉

,
⌊

k−t
2

⌋

}). Since there are at most 2k2 such cases, by using (1) and choosing C large
enough as a function of k, we conclude that the number of choices for F ′ is in total at most

2k2 · log n · (n/l)k−t−j− 1
2 ≤ (d(G)/2000 log v(G)) · (n/l)k−t−j,
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as desired, where we used that log n ≤
√

n/l. Hence, the property of Proposition 4.9 is satisfied and
therefore H contains an even cover of size at most 2 log v(G) = O(l log n), as desired.

Case 2: t = 1

In this case we know thatH0 has minimum degree at least d/10k and degH0
(S) < m(|S|) = (d/10k)

k/2−|S|
k/2−1 ·

(log n)1−
1

k+1 ≤ (n/l)k/2−|S| · (log n)1−1/k2 for all sets S with |S| > 1 and m(1) = d/10k. As before, let
us redefine H as H0. For each vertex v, let Ev denote a collection of precisely d/10k edges of H incident
on v. Now, let us independently and uniformly at random colour each edge of H as either red or blue.
We then have the following.

Claim 5.1. With positive probability, there are at least ndk+1/(100k)k good flower gadgets.

Proof. We show that the number of flower gadgets in H is at least ndk+1/(20k)k . Then, since each
flower gadget is also good with probability 1/2k+1 then the expected number of good flower gadgets is
at least ndk+1/(50k)k and further, with positive probability this holds.

Now, let us count the number of flower gadgets {C,P1, . . . , Pk}. We have e(H) ≥ nd/2k options for
the edge C = {v1, . . . , vk}. Then, since P1 ∈ Ev1 and it is disjoint to C \{v1}, there are |Ev1 |−|C| ·m(2) >
d/10k − km(2) options for the edge P1. Subsequently, P2 must be an edge belonging to Ev2 which is
disjoint to (C∪P1)\{v2} and therefore, we have at least |Ev2 |− |C∪P1| ·m(2) > d/10k−2km(2) options
for P2. Continuing in this manner, we have that the number of flower gadgets is at least

(nd/2k)
∏

1≤i≤k

(d/10k − ikm(2)).

Since m(2) = Ok(1) · (n/l)k/2−2 · (log n) < d/100k3, this product is at least ndk+1/(20k)k , as desired.

Now, consider the flower l-Kikuchi graph G of H. By the previous claim and Observation 4.14, it has

average degree at least ndk+1/(100k)k

10k3
·
(

l
n

)k(k−1)/2 ≥ ndk+1

100k3
·
(

l
n

)k(k−1)/2 ≥ Ck+1

100k3
· l log n ≥ C logN . Our

aim is now to apply Lemma 2.5 to the graph G. Indeed, by Observation 4.14, a closed walk in G such
that some colour appears only once implies an even cover in H of the same order. However, it might be
that the graph G does not satisfy the conditions of Lemma 2.5 and so, we need to first do a cleaning

procedure similar to what was done in the proof of Proposition 4.9. Indeed, we delete all edges S
C←→ T

of G such that one of S or T are incident to another edge of colour C. Let G′ denote the resulting graph
and note the following.

Lemma 5.2. G′ has average degree at least (C/2) logN .

Proof. Fix a good flower gadget F = (C,P1, . . . , Pk) and subsets L1, . . . , Lk and R1, . . . , Rk such that
each |Ri ∩ (Pi \ {vi})| and |Li ∩ (Pi \ {vi})| are equal to k−1

2 . Next, we choose a uniformly random edge

S
C←→ T of G such that S ∩ (Pi \ {vi}) = Li and T ∩ (Pi \ {vi}) = Ri for all i ∈ [k]. As in the definition,

we use vi to denote the vertex at which Pi intersects C. We will show that the probability that S
C←→ T

is deleted is at most 1/2, which gives the desired outcome.
In order for S to be incident to another edge of colour C, there must be i ∈ [k] and a hyperedge P 6= Pi

in Evi such that |(P \ {vi}) ∩ S| = k−1
2 . For each such P , since the intersection S ∩ (Pi \ {vi}) = Li is

already chosen, and further, the set S′ := S\((P1\{v1})∪. . . (Pk\{vk})) is a uniformly random set of size

l− k(k−1)
2 in V (H)\((P1 \{v1})∪ . . . (Pk \{vk})). Therefore, the probability that |(P \{vi})∩S| = k−1

2 is

equal to the probability that the set S′ intersects P \Pi in
k−1
2 −|(P \{vi})∩(Pi\{vi})| = k−1

2 −|P∩Pi|+1
vertices. Since S′ is chosen uniformly, this probability is at most

2k ·

(n−(k−1)(k+ 1
2
)+|P∩Pi|−1

l−
(k+1)(k−1)

2
+|P∩Pi|−1

)

(n−k(k−1)

l−
k(k−1)

2

)

≤ 2k · (l/10n)(k−1)/2−|P∩Pi|+1,
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where the 2k is an upper bound for the number of intersections between S′ and P \ Pi. Now we count
for each j ≥ 1, the number of such P with |P ∩Pi| = j. For j = 1, this is clearly at most |Evi | = d/10k =
m(1) ≤ (n/l)k/2−1 · (log n)1−1/k2 . Moreover, for j ≥ 2, this is at most max|X|=j degH(X) ≤ m(j) ≤
(n/l)k/2−j · (log n)1−1/k2 . Further, by the assumption that no two edge in H intersect in more than k/2
vertices, this number is 0 for j ≥ k+1

2 . Hence, combining these observations, the probability of S having
other C-colored incident edges is at most

2k
∑

1≤j≤ k−1
2

m(j) · (l/10n)(k−1)/2−j+1 ≤
∑

1≤j≤ k−1
2

(n/l)k/2−j · (log n)1−1/k2 · (l/n)(k−1)/2−j+1

≤ k

√

l

n
· (log n)1−1/k2 ≤ 1/4,

where we used that l ≤ n/(log n)2 and that n is sufficiently large. Applying the same argument to T
gives the desired outcome.

To finish, note that the edge-colouring in G′ is now a proper edge-colouring and further, it has average
degree at least 20 logN and thus, Lemma 2.5 implies that G contains a closed walk of size O(logN)
such that some colour appears exactly once. By Observation 4.14, this implies an even cover in H of
size O(l log n), as desired.

6 Concluding Remarks

In this work, we gave a simple proof without the use of matrix concentration inequalities that recovers and
improves on two recent developments on finding even covers in edge-colored hypergraphs. To conclude,
we would like to point out two natural directions for further progress:

• Even Covers in Hypergraphs: Theorem 1.2 is short of Feige’s original conjecture [8] that asks
to show that every k-uniform hypergraph with m ≥ Cn(n/ℓ)k/2−1 hyperedges for some absolute
constant C > 0 contains an even cover of size O(ℓ log n). We believe that a strengthening of
our techniques via some appropriate generalization of flower Kikuchi graphs might be enough to
resolve this remaining slack. On the flip side, finding explicit constructions of hypergraphs with
m = Cn(n/ℓ)k/2−1 hyperedges that avoid cℓ log n length even covers for some constant c > 0
remains a natural open question.

• Lower bounds on Locally Decodable Codes: Theorem 2.8 shows an almost cubic lower
bound on binary linear codes with constant distance and three query local decodability. This is
still significantly far from the best known construction of three query LDCs due to Yekhanin and
Efremenko that achieves a sub-exponential length. Finding methods that could prove a super-
polynomial (or at least super-cubic) lower bounds is an outstanding open question. We note that
in a recent work (also based on Kikuchi matrices) an exponential lower bound [16] (improving on
the prior best cubic lower bounds above) was in fact obtained for the stronger setting of three
query linear Locally Correctable Codes – a stricter variant of locally decodable codes where every
bit of the codeword can be decoded by reading only 3-bits of the received corrupted codeword.
Their methods, however, strongly exploit the additional structure offered by the local correction
property.
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