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Abstract

We consider the model where there exists a ground truth, and the average distance, according
to some metric, of votes from the ground truth is upper bounded. Under this setting, we derive
a way to aggregate votes to return an alternative that is ranked fairly high in the ground truth
in expectation: a rank that depends on the distribution of noise among the votes, with the worst
case being achieved when all the votes have the same amount of uniform noise. Further, we
explore how the model changes, when we introduce a bounded number of queries that allows
the algorithm to learn the true rank of a picked alternative in a single query.

1 Introduction and related work

In the standard setting for voting theory problems, we are given a set of voters and candidates,
and for each voter an ordering on the candidates representing their reported preferences. We are
tasked with picking a candidate that reflects in some way the will of the group, with possible ad-
ditional requirements on the selection mechanism so that it handles, for example, strategic voters.
Notice that we do not try to find truth in such a situation. We simply try to find a candidate that
satisfies everyone as much as possible.

Instead of finding a selection algorithm that is just to the voters, as in the above scenario, we find
an algorithm that does justice to the truth. That is, we are interested in the setting where there
is a ground truth, and every voter’s preference list is some approximation of that. Concretely,
this models situations such as that of a group of expert rocket scientists trying to reach consensus
on the best design for a rocket. There is an objective “best” design, but each expert may have a
subtly flawed perspective. Together, however, they may be able to discover the ground truth. This
setting has been studied by Procaccia et. al, who found fairly tight bounds on how closely the
ground truth can be approximated (in terms of some metric) if we know a bound on how well the
experts approximate the ground truth [PSZ15].

We consider the related problem of picking a candidate that has some guarantee of being close to
the best, in terms of the number of candidates, and the error of the experts. Formally, the problem
looks like ths: We are a given a set of candidates N with |N| = n, a set of voters V, and for
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each v ∈ V a ranking over N, rv ∈ SN (the symmetric group on N). We also know that there
is some true ranking r∗, part of which we are trying to recover. Further, we know that for some
metric d and constant t, 1

|V| ∑v∈V d(rv, r∗) ≤ t. That is, the average distance of the expert rankings
is bounded by t. The metric we consider is the Footrule distance, which is the sum of absolute
values of difference in positions between profiles taken over all players.

Our algorithm is successful in finding a candidate c ∈ N such that c is among the top k candidates
in r∗ in expectation, and k is always in O(

√
t).

Other related works include [PSZ15], which finds a ranking close to the ground truth. In [CPS13],
the setting of votes being an approximation of the ground truth was studied. It differs from this
work in that it assumes probabilistic noise, and looks at voting rules as Maximum Likelihood
Estimators. [BM10] studies the setting where messages are permutations that have some added
noise when sent, and one wants to recover a permutation close to the original.

2 Algorithms and Upper Bounds

2.1 Background and Motivation

Say there are m voters, whose preferences are the rankings r1, r2, . . . , rm, with average distance t
from the true ranking r∗. This tells us that

m

∑
i=1

d(ri, r∗) ≤ mt

Now, for some alternative j, denote by qij its position in the ranking given by the ith voter and
denote by r∗j it’s true rank according to r∗.

If we go by the Footrule distance metric, the total noise is

n

∑
j=1

m

∑
i=1
|r∗j − qij| ≤ mt

We know the value of m and t and hence know an upper bound on the total noise. Knowing
how the noise is distributed along with information about the structure of the noise can help
our algorithm pick a good alternative. Thus, as a starting point, we try to lower bound the total
noise in terms of parameters we know. Fix an alternative j and consider the median value of the
set {qij : i ∈ [m]}, denoted sj. By the definition of the median, the expression ∑m

i=1|x − qij| is
minimized when x = sj.

Therefore, we know that the following chain of inequalities is true:

n

∑
j=1

m

∑
i=1
|sj − qij| ≤

n

∑
j=1

m

∑
i=1
|r∗j − qij| ≤ mt
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The reason this inequality is useful is that each sj can be computed by us, which leads to the
following insight: If we consider a subset of alternatives, S, let F(S) be the total contribution of
the alternatives in S to the total noise, written as

F(S) = ∑
j∈S

m

∑
i=1
|r∗j − qij| ≥ ∑

j∈S

m

∑
i=1
|sj − qij|

In particular, for any S, we know that the total noise is equal to F(S) + F(Sc), which leads to
another chain of inequalities:

mt ≥ F(S) + F(Sc) ≥ ∑
j∈S

m

∑
i=1
|sj − qij|+ F(Sc)

And it follows that:

F(Sc) ≤ mt−∑
j∈S

m

∑
i=1
|sj − qij|

Further, the above inequality provides a bound on the average noise in Sc.

Average noise in Sc =
F(Sc)

m
≤ t−

∑j∈S ∑m
i=1|sj − qij|

m

The takeaway from the above inequality is that if we can find a set S of lower ranked alternatives
with a high amount of noise, we could restrict our attention to Sc, a set of mostly high ranked
players with noise less than t.

Before we describe our algorithm, we consider an algorithm in section 3 of [PSZ15] to obtain a
ranking σ satisfying

1. The Footrule distance between σ and the ground truth is ≤ 2t.

2. The average Footrule distance between the preference profiles of the voters and σ is ≤ t.

The algorithm isn’t specific for the Footrule distance but works for any metric.
Algorithm 1. Described in detail in [PSZ15]. At a high level, this algorithm considers the set of all
permutations that have average distance at most t from the votes – this set is nonempty because the
ground truth is in this set – and then picks a permutation that minimizes the maximum distance
to this set.

2.2 The algorithm and it’s analysis

The background we developed in the last section motivates the following algorithm:
Algorithm 2. Compute the corresponding median sj for each candidate and do the following.

1. Use Algorithm 1 to find a ranking σ, then sort the alternatives according to σ and place them
in a sorted sequence L.
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2. Calculate the lower bound on the noise of each suffix of L. That is, for suffix S, compute

γP = ∑
j∈S

m

∑
i=1
|sj − qij|

And also calculate an upper bound on the the noise of the corresponding prefix P with the
expression

αP = mt− γP

Note that γP also lower bounds ∑j∈S ∑m
i=1|Lj− qij|where Lj is the rank of person j according

to L.

3. Pick the shortest prefix P∗ for which the following inequality is satisfied:

|P∗| ≥
√

2αP∗

m

4. Pick a candidate from P∗ uniformly at random.

The following lemma motivates step 3 of the algorithm and will also be useful in the lower bound
analysis.
Lemma 2.1. The Maximum Footrule distance of a permutation of length n from the identity permutation
is d n2

2 e.

Proof. The main idea of this proof is from [SFD].

The Footrule distance of a permutation σ is given by

n

∑
i=1
|σ(i)− i|

Let S be the set on which σi > i. Then the above sum can be written as

∑
i∈S

(σ(i)− i) + ∑
i∈[n]\S

(i− σ(i))

Since there are exactly n positive terms and n negative terms in the sum and each integer between
1 and n occurs twice, the above quantity is maximized when the positive terms are all occurences
of numbers b n

2 c+ 1, . . . , n and negative numbers are all occurences of 1, . . . , b n
2 c, yielding a result

of d n2

2 e.

Since every permutation of numbers 1, 2, . . . , l has Footrule distance bounded by d l2

2 e, having d l2

2 e
amount of noise in l elements admits the players to rank any permutation of these l elements,
which is the rationale for the cutoff defined in step 3. We pick the shortest such prefix because
it narrows down the set with high ranked players. Also note that it is possible to perform step 3
since the full sequence is a prefix that satisfies the required inequality.
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Theorem 2.2. Algorithm 2 finds a candidate with expected rank 3
√

αP∗
m .

Proof. For simplicity of exposition, let β =
√

2αP∗
m . First, we argue that |P∗| = dβe.

Let β′ be the corresponding value for the prefix of length |P∗| − 1. By choice of P∗, it is true that
|P∗| − 1 < β′ and β ≤ |P∗|. Since the noise can only decrease on shortening the prefix, β′ ≤ β. It
follows that |P∗| − 1 < β ≤ |P∗|, which establishes our claim.

Thus, we have a prefix of dβe alternatives whose total noise is bounded by αP∗ . Note that αP∗ is an
upper bound to both

mt− ∑
j∈[n]\P∗

m

∑
i=1
|r∗j − qij| ≥ ∑

j∈P∗

m

∑
i=1
|r∗j − qij|

and

mt− ∑
j∈[n]\P∗

m

∑
i=1
|qij − Lj| ≥ ∑

j∈P∗

m

∑
i=1
|Lj − qij|

It follows from the triangle inequality that

2αP∗ ≥ ∑
j∈P∗

m

∑
i=1
|r∗j − qij|+ |Lj − qij| ≥

m

∑
i=1

∑
j∈P∗
|r∗j − Lj|

2αP∗

m
≥ ∑

j∈P∗
|r∗j − Lj|

In other words, we have just shown that the Footrule distance restricted to elements of P∗ between
the ranking returned by the [PSZ15] algorithm and the true ranking is upper bounded by 2αP∗

m .

Denote by T(i) the true rank of the alternative assigned in position i in L. Denote by a(i) the
value of |i − T(i)|, how much L differs on the alternative it ranks i from its true rank. Picking a
uniformly random alternative gives the expected rank as

dβe

∑
i=1

T(i)
dβe ≤

dβe

∑
i=1

i + a(i)
dβe =

dβe

∑
i=1

i
dβe +

dβe

∑
i=1

a(i)
dβe

≤ dβe+ 1
2

+
2αP∗

mdβe ≤
√

αP∗

2m
+

√
2αP∗

m
≤ 3

√
αP∗

m

Corollary 2.3. For any set of input votes, algorithm 2 finds a candidate with expected rank ≤ 3
√

t.

Proof. Since αP∗
m ≤ t, the result follows from theorem 2.2.
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3 Lower bounds and Tightness

First, note that our algorithm is asymptotically optimal in the worst case.
Theorem 3.1. For any randomized algorithm, there exists a profile of voters, p, such that the algorithm has
guarantee Ω(

√
t) in expectation on p, where t is the bound on the average footrule distance of the voters to

the ground truth.

Proof. Take any profile with a single voter. Let his ranking be r. Let r′ be a ranking with the first
b
√

2tc ranked candidates reversed. By lemma 2.1, this ranking is also a possible ground truth for
the profile. Let p1 . . . pn be the proabilities assigned to candidates 1 . . . n of the original ranking by
a randomized algorithm. Let R be the rank of the candidate output by the algorithm if the ground
truth were r, and R′ be the rank if the ground truth were r′. We have (considering just the first
b
√

2tc) the following:

E[R] + E[R′] ≥
b
√

2tc

∑
i=1

pii +
b
√

2tc

∑
i=1

pi(b
√

2tc − i)

≥
b
√

2tc

∑
i=1

pi(b
√

2tc) = b
√

2tc

max(E[R], E[R′]) ≥ b
√

2tc
2

So for any randomized algorithm, on one of these situations, it has at best a O(
√

t) guarantee in
expectation.

This is not entirely satisfying, however, since there may be profiles on which significantly better
guarantees are possible. So next we’ll try to develop a lower bound that applies generally to
any profile. Note that the bound we developed for our algorithm had a guarantee incorporating
characteristics of the noise of the profile. We’d like to be able do something similar on the lower
bound side.

Theorem 3.2. Let q be, as before, a vector encoding the rankings of each of the voters, let n be the number of
candidates, and m the number of voters. Then for any ranking σ consistent with the voters, and any suffix
S of the voters ordered by σ and corresponding prefix PS such that

|PS| ≤
t− 1

m ∑j∈S ∑m
i=1 |σ(j)− qij|
n

no randomized algorithm can do better than
√

2|PS|
2 in expectation.

Proof. Let γS = 1
m ∑j∈S ∑m

i=1 |σ(j)− qij|. This is the average footrule distance between the ranking
σ and the voters on S. If we create a new profile σ′ whose average footrule distance from the voters
on the corresponding prefix PS is up to t− γS, σ′ will also be a consistent ranking. In particular, if
we have that t− γS ≥ |PS|n, then both σ, and σ with the first |PS| elements moved anywhere are
both consistent rankings for the profile. Even more particularly, if we take σ′ to be σ with the first
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|PS| elements reversed, by reasoning analagous to that of Theorem 3.1, this would give us a lower

bound of
√

2|PS|
2 .

Pick σ to be the permutation consistent with the rankings that minimizes its distance to the me-
dians, ∑j ∑m

i=1 |σ(j) − sj|, where sj denotes the median of the rankings of candidate j across the
voters, as before. Heuristically, this is a good σ to choose since, by, the triangle inequality we get
something along the lines of

γS ≤
1
m ∑

j∈S

m

∑
i=1

(|σ(j)− sj|+ |sj − qij|) ≈ 2
1
m ∑

j∈S

m

∑
i=1
|sj − qij|

and then we have a way to relate the bound to the median ranking.

Also note that this result is not particularly interesting when t ∈ O(n), but could become interest-
ing if it is not (note that t could be up to n2

2 ). In general this is not at all a satisfying result and can
almost definitely be heavily improved.

4 Conclusion and further directions

Regardless of the voter’s profiles, our algorithm finds a candidate with expected rank ≤ 3
√

t and
performs better on distributions where more of the noise is concentrated among worse alterna-
tives. It is reasonable to assume that more of the noise is distributed among worse alternatives,
since in real life people judge more appealing alternatives more acutely and correctly than less
appealing ones.

The next natural step would be to find ways to close the gap between the upper and lower bound.

On the upper bounds side, a possible way to improve the algorithm would be to find an alternate
way to lower bound the suffix noise that performs better than the median method, especially
when the noise in a suffix is O(t). For example, consider the scenario when the suffix noise of the
permutation returned by [PSZ15] is actually lower bounded by t, that is for some set that isn’t the
full set of alternatives, S, any permutation π satisfies

∑
i∈[m]

∑
j∈S
|π(j)− qij| ≥ t

and some superior algorithm knows this, but the median method gives a lower bound of 0.99t.
The superior algorithm could then upper bound the noise of the corresponding prefix by 0 and
select the top person but our algorithm would only upper bound it by 0.01t, and give a much
worse guarantee.

On the lower bounds side, the aim would be to have an improved version of Theorem 3.2, in
particular, a version that improves the bound on |PS|. Additionally, it would help to come up with
a better or more easily analyzable choice of the ranking σ used in the lower bound, and to then
relate this directly to the upper bound we found for our algorithm.
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Another task would be to compare how well the algorithm we came up with performs in the
setting of probabilistic noise and draw a comparison to the methods in [CPS13].
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