
Relating decision tree complexity with AND and OR decision
tree complexity

Anil Ada, Yeongwoo Hwang, Kumail Jaffer, Sidhanth Mohanty, Ryan O’Donnell, Yu Zhao

December 13, 2017

1 Introduction

In the decision tree model, there is a total function f : {0, 1}n → {0, 1}, and an unknown string x and the
goal is compute f (x). Access to x is via an oracle where one asks queries of the form “what is in the ith bit of
x?”. The goal is to compute f (x) with as few oracle queries as possible. We define DT(f) as the minimum
number of oracle queries to an input x needed to determine f (x). The reason we call this model a ‘decision
tree’ is that any algorithm can be represented as a binary tree – the root vertex can be thought of as the
first query, and the left branch can be thought of as the remaining algorithm given the answer to the first
query was 1 and the right branch can be thought as the algorithm given the answer to the first query was
0. The leaves of a decision tree is either a 0 or a 1, indicating the output of the query algorithm. A single
lone vertex denotes an algorithm that always outputs one value. And DT(f) can also be thought of as the
minimum depth decision tree that computes f correctly.

The AND and OR decision tree models are variants of the decision tree model where queries are of the form
“what is the AND of all the bits in S” where S is a nonempty subset of indices, and the oracle returns ∧i∈Sxi
(the OR model is defined similarly).

A theorem from [BI87] gives the following relation between the CNF and DNF complexity of a total function
f to DT(f):

DT(f) ≤ CNF(f)DNF(f)

where CNF(f) and DNF(f) are the number of clauses in the longest CNF/DNF.

A natural result that one could hope for in the world of decision trees is the statement

DT(f) ≤ DTAND(f) ·DTOR(f)

Note that this conjecture would be implied by the stronger statement

DT(f) ≤ max{DTAND(f),DTOR(f)}

However this is false, although ruling it out is nontrivial. In this writeup, we exhibit a function f such that
both DTAND(f) and DTOR(f) are o(DT(f)) using the method of cheatsheets.

We emphasize that f is total.

Our construction is inspired and uses many ideas in a construction of [ABDK16] in showing other sepa-
rations in query complexity. This method, based on cheat sheets and pointer functions has been useful in
showing other separations in query complexity and communication complexity in recent past, for example
[ABBD+16, ABB+17].

2 AND and OR decision trees

2 The Construction

2.1 A Protofunction

We build up ingredients one by one for ease of exposition. Consider the following two functions ALLZEROSCOL
and ALLONESCOL from {0, 1}m×m to {0, 1}, which are 1 if the matrix has an all zeros column (or an all
ones column respectively) and 0 otherwise. We note that the AND decision tree can solve ALLONESCOL
in m queries and the OR decision tree can solve ALLZEROSCOL in m queries (simply query each column)
whereas the regular decision tree needs m2 queries.

Lemma 1. DT(ALLONESCOL) = m2

Proof sketch. Answer queries adversarially in the following way: if an index (i, j) is not the last index to
be queried in it’s column answer 1. If it is the last index to be queried but not the last bit to be queried
in the matrix, answer 0. Even after m2 − 1 queries are made, the adversary can still contrive the input for
ALLONESCOL to evaluate to 1 or 0.

A similar argument shows DT(ALLZEROSCOL) is also m2.

2.2 Cheatsheets and Gadgets

As the next ingredient, we introduce the notion of a cheat sheet. We showed that it takes m2 queries for a
regular decision tree to solve ALLZEROSCOL. For a given instance of ALLZEROSCOL called x, a cheatsheet
for the x specifies the value of ALLZEROSCOL(x) and a certificate to verify this value: given by a pointer to
a column of all 0’s (specified by an index i) or m pointers of the form (i, j) that point to a 1 in each column.

We call a cheatsheet valid for an instance x of ALLZEROSCOL if

1. It contains the correct answer for ALLZEROSCOL.

2. If the answer is 1, the pointer to the column of all zeros in x indeed has all zeros.

3. If the answer is 0, the m pointers to each column indeed point to 1s.

Given a cheatsheet for an instance x for ALLZEROSCOL, a standard decision tree can solve the problem in
m queries if the cheatsheet is valid, or detect that the cheatsheet is invalid.

A cheatsheet for ALLONESCOL is defined analogously.

As a remark of foresight, we note that the AND decision tree can solve ALLZEROSCOL in m queries using a
valid cheatsheet (same thing for OR and ALLONESCOL).

A gadget comprises of two m×m matrices x1 and x2, and we call a gadget valid if

ALLZEROSCOL(x1) = ALLONESCOL(x2)

For a valid gadget T = (x1, x2), define g(T) as ALLZEROSCOL(x1) (equal to ALLONESCOL(x2)).

2.3 The Function

The input to our function is 100 log m gadgets along with an array of length m100, with each entry of the
array being 200 log m cheatsheets, the (2i− 1)th and 2ith cheatsheet meant for the ith gadget (these could
be potentially invalid cheatsheets).

Our function is 1 if the following conditions on the input are satisfied.

1. All 100 log n gadgets T1, T2, . . . , T100 log m are valid.

3 AND and OR decision trees

2. Let x be the binary integer denoted by g(T1)g(T2) . . . g(T100 log m). The condition we want satisfied is
that the (2i− 1)th and 2ith cheatsheet in the xth entry in the array given to our function as input are
valid cheatsheets for gadget Ti.

We call this function SEPARATOR.

3 Separations

3.1 AND and OR decision tree protocols of complexity Õ(m)

We give a protocol for the OR decision tree. A protocol for the AND decision tree can be obtained analo-
gously.

Lemma 2.
DTOR(SEPARATOR) = Õ(m)

Proof. The OR decision tree can solve ALLZEROSCOL on the first matrix in each gadget of the input, a pro-
cedure that will take 100m log m queries. The solutions to ALLZEROSCOL on each gadget can be interpreted
as the binary representation of an integer x. The algorithm then queries all the 200 log m cheatsheets stored
in the xth entry of the array. Each cheatsheet takes at most Õ(m) bits to represent because it contains one
bit for the answer and at most m pointers. The OR decision tree verifies the validity of each cheatsheet,
and if there is even a single invalid cheatsheet, it returns 0. If each cheatsheet is valid, it can also solve
ALLONESCOL on the second matrix in each gadget, and if even one gadget is not valid, it returns 0. If
every gadget is valid, and every cheatsheet is valid too, the algorithm returns 1. Verifying each cheatsheet
and solving ALLONESCOL if the cheatsheets are valid also takes at most 200m log m queries. Overall, we
use only Õ(m) queries.

Lemma 3.
DTAND(SEPARATOR) = Õ(m)

Proof. Analogous to lemma 2.

3.2 An Ω(m2) lower bound for decision trees

Lemma 4.
DT(SEPARATOR) = Ω(m2)

Proof. Answer all queries made to the gadgets adversarially as per the proof of lemma 1 and while the
number of queries made to cheatsheets is less than m2, answer any query on the array of cheatsheets with
a 0. If an algorithm responds with 1 in strictly less than m2 queries, then if the unrevealed part of the array
of cheatsheets only has 0’s, the cheatsheets are not consistent with the gadgets and the correct answer is 0,
which means the algorithm’s answer was incorrect. On the other hand, say an algorithm responds with 0
by making strictly less than m2 queries. Then pick an index i such that no queries have been made to the ith
entry in the array of cheatsheets and consider the following possibility for unqueried bits. The unrevealed
bits of the gadgets are contrived so that the integer obtained from the 200 log m gadgets is equal to i. This is
possible from the proof of lemma 1 since the algorithm made strictly less than m2 queries and hence didn’t
fully query any of the gadget matrices. The ith entry of the cheatsheet array is set to a valid cheatsheet for
the corresponding gadgets. The algorithm would output 0 on this input when the correct output is 1.

4 AND and OR decision trees

4 DTAND(f) + 2DTOR(f) ≥ DT(f)

4.1 Algorithm from OR and AND decision trees

Here we prove a weaker version of the result we were aiming for.

For some function f , suppose we have an AND decision tree TAND that incurs cost c1 and an OR decision
tree TOR that incurs cost c2, then consider the following algorithm in the standard query model.

1. Let SAND be the current vertex, initialized to the root of TAND, and let SOR be a tree initialized to TOR.

2. If SAND or SOR is a lone vertex, then return the value at that vertex.

3. Pick a variable x from the root of SAND that also occurs at some vertex in SOR and query x.

4. If x is a 0, then update SAND to the right branch of SAND. Otherwise, delete all occurrences of x in
SAND, and for every vertex v in SOR where x occurs, replace the subtree rooted at v with the subtree
in the left branch of v.

5. If there is no variable at the root of SAND that also occurs somewhere in SOR, then update SAND to the
subtree in it’s left branch. Go back to step 2.

This algorithm simultaneously simulates the AND and OR decision tree and picks whichever tree reaches
the answer first and thus assuming correctness of the AND and OR decision tree in computing f , we know
our algorithm computes f correctly.

For each query, either the height of SAND decreases by 1, or the number of vertices in SOR decreases by 1.
c2 is the depth of TOR and hence there are at most 2c2 vertices in the tree. So after at most c1 + 2c2 queries,
one of the decision trees reaches a leaf. This establishes that DT(f) ≤ 2DTOR(f) +DTAND(f). Note that the
same argument can be used to show DT(f) ≤ 2DTAND(f) +DTOR(f).

4.2 A Quick Application

As a quick application, we show a lower bound of Ω(n) for the AND decision tree to compute the OR of
the n bits of x. It is easy to see a lower bound of Ω(n) on the standard decision tree complexity since an
adversary can answer 0’s to any query algorithm until the very last query. And there is a 1 query protocol
for computing the OR of x in the OR decision tree model, which means

n ≤ DT(OR) ≤ 2DTOR(OR) +DTAND(OR) ≤ 2 +DTAND(OR)

This immediately gives a lower bound of n− 2 queries on DTAND(OR).

5 Main result to aim for

Is the conjecture that DT(f) ≤ DTAND(f)DTOR(f) true or false? If it is true, then one can imagine that this
could be used as a tool to prove lower bounds for some problems in the AND and OR decision tree models,
in a style akin to section 4.2.

References

[ABB+17] Andris Ambainis, Kaspars Balodis, Aleksandrs Belovs, Troy Lee, Miklos Santha, and Juris
Smotrovs. Separations in query complexity based on pointer functions. Journal of the ACM
(JACM), 64(5):32, 2017.

5 AND and OR decision trees

[ABBD+16] Anurag Anshu, Aleksandrs Belovs, Shalev Ben-David, Mika Göös, Rahul Jain, Robin Kothari,
Troy Lee, and Miklos Santha. Separations in communication complexity using cheat sheets and
information complexity. In Foundations of Computer Science (FOCS), 2016 IEEE 57th Annual
Symposium on, pages 555–564. IEEE, 2016.

[ABDK16] Scott Aaronson, Shalev Ben-David, and Robin Kothari. Separations in query complexity us-
ing cheat sheets. In Proceedings of the forty-eighth annual ACM symposium on Theory of
Computing, pages 863–876. ACM, 2016.

[BI87] Manuel Blum and Russell Impagliazzo. Generic oracles and oracle classes. In Foundations of
Computer Science, 1987., 28th Annual Symposium on, pages 118–126. IEEE, 1987.

	Introduction
	The Construction
	A Protofunction
	Cheatsheets and Gadgets
	The Function

	Separations
	AND and OR decision tree protocols of complexity O"0365O(m)
	An (m2) lower bound for decision trees

	DT AND (f)+2DT OR (f)DT (f)
	Algorithm from OR and AND decision trees
	A Quick Application

	Main result to aim for

