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Abstract

We study the problem of robust community recovery: efficiently recovering communities in
sparse stochastic block models in the presence of adversarial corruptions. In the absence of
adversarial corruptions, there are efficient algorithms when the signal-to-noise ratio exceeds
the Kesten–Stigum (KS) threshold, widely believed to be the computational threshold for this
problem. The question we study is: does the computational threshold for robust community recovery
also lie at the KS threshold? We answer this question affirmatively, providing an algorithm for
robust community recovery for arbitrary stochastic block models on any constant number of
communities, generalizing the work of Ding, d’Orsi, Nasser & Steurer [DdNS22] on an efficient
algorithm above the KS threshold in the case of 2-community block models.

There are three main ingredients to our work:

1. The Bethe Hessian of the graph is defined as 𝐻𝐺(𝑡) ≜ (𝐷𝐺 − 𝐼)𝑡2 −𝐴𝐺𝑡 + 𝐼 where 𝐷𝐺 is the
diagonal matrix of degrees and𝐴𝐺 is the adjacency matrix. Empirical work suggested that
the Bethe Hessian for the stochastic block model has outlier eigenvectors corresponding
to the communities right above the Kesten-Stigum threshold [KMM+13, SKZ14].
We formally confirm the existence of outlier eigenvalues for the Bethe Hessian, by explicitly
constructing outlier eigenvectors from the community vectors.

2. We develop an algorithm for a variant of robust PCA on sparse matrices. Specifically,
an algorithm to partially recover top eigenspaces from adversarially corrupted sparse
matrices under mild delocalization constraints.

3. A rounding algorithm to turn vector assignments of vertices into a community assignment,
inspired by the algorithm of Charikar & Wirth [CW04] for 2XOR.

*MIT. sidhanth@csail.mit.edu. Much of this work was done while the author was a PhD student at UC Berkeley.
†UC Berkeley. raghavendra@berkeley.edu.
‡UC Berkeley. david_wu@berkeley.edu.
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1 Introduction

The stochastic block model (SBM) has provided an enlightening lens into understanding a wide
range of computational phenomena in Bayesian inference problems, such as computational phase
transitions & information-computation gaps [DKMZ11, MNS18, Mas14, HS17], spectral methods
for sparse matrices [KMM+13, SKZ14, BLM15], local message-passing algorithms [MNS14, YP23,
GP23], and robustness [MPW16, BMR21, DdNS22, LM22].

The SBM is a model of random graphs where the vertices are partitioned into communities,
denoted by 𝒙, and the probability of an edge existing is contingent on the communities that the
two endpoints are part of. The algorithmic task is the community recovery problem: given an input
graph 𝑮, estimate the posterior 𝒙 |𝑮 with an efficient algorithm.

Definition 1.1 (Informal). In the stochastic block model, we are given a 𝑘 × 𝑘 matrix M, a distribution
𝜋 over [𝑘], and 𝑑 > 0, and SBM𝑛(M,𝜋, 𝑑) denotes the distribution where an 𝑛-vertex graph 𝑮 is
sampled by:

1. drawing a color 𝒙(𝑢) ∼ 𝜋 for every 𝑢 ∈ [𝑛],

2. for each pair of vertices 𝑢, 𝑣, the edge {𝑢, 𝑣} is chosen with probability M𝒙(𝑢),𝒙(𝑣) · 𝑑𝑛 .

In the community recovery problem, the goal is to give an efficient algorithm that takes𝑮 as input and
outputs a community assignment �̂� approximating 𝒙 |𝑮 (see Definition 4.4 for a formal definition).

Computational thresholds. For a given M and 𝜋, increasing 𝑑 can only possibly make the problem
easier. The main question is to understand the computational threshold for community recovery —
i.e. the minimum value of 𝑑 where the problem goes from being intractable to admitting efficient
algorithms.

The first predictions for this computational threshold came from the cavity method in statistical
physics in the work of Decelle, Krzakala, Moore & Zdeborova [DKMZ11]. They posited that the
location of this transition is at the Kesten–Stigum threshold (henceforth KS threshold), a threshold
for broadcast processes on trees studied in the works of Kesten & Stigum [KS66, KS67]. The
algorithmic side of these predictions was confirmed in the case of the 2-community block model in
the works of Mossel, Neeman & Sly [MNS18] and Massoulié [Mas14], and then for block models
in increasing levels of generality by Bordenave, Lelarge & Massoulié [BLM15], Abbe & Sandon
[AS15], and Hopkins & Steurer [HS17].

Robust algorithms. All of these algorithms utilize the knowledge of the distribution the input is
sampled from quite strongly — they are based on Ω(log 𝑛)-length walk statistics in the stochastic
block model. However, the full generative process in inference is not always known precisely.
Thus, we would like algorithms that utilize but do not overfit to the distributional assumptions.

Demanding that our algorithm be robust, i.e. resilient to adversarial corruptions to the input, is
often a useful way to design algorithms that are less sensitive to distributional assumptions. This
leads one to wonder: can algorithms that don’t strongly exploit the prior distribution approach
the KS threshold?

Optimization vs. inference. Earlier approaches to robust recovery in 2-community block models
were based on optimization: semidefinite programming relaxations of the minimum bisection
problem, as in the work of Guedon & Vershynin [GV16]. These approaches have the advantage of
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being naturally robust, since the algorithms are approximately Lipschitz around random inputs,
but the minimum bisection relaxation is not known to achieve statistical optimality and only
succeeds well above the KS threshold.

The following two results point to the suboptimality of optimization-based strategies. Moitra,
Perry & Wein [MPW16] considered the monotone adversary in the 2-community setting, where
the adversary is allowed to make an unbounded number of edge insertions within communities
and edge deletions across communities. At an intuitive level, this is supposed to only make
the problem easier and indeed does so for the minimum bisection approach, but to the contrary
[MPW16] proves that the threshold for recovery increases. Dembo, Montanari & Sen [DMS17]
exactly nailed the size of the minimum bisection in Erdős–Rényi graphs, which are complete noise
and have no signal in the form of a planted bisection — and strikingly, it is actually smaller than
the size of the planted bisection in the detectable regime! Thus, it is conceivable that there are
bisections completely orthogonal to the planted bisection in a stochastic block model graph that
nevertheless have the same size.

The problem of recovering communities is more related to the task of Bayesian inference, i.e.,
applying Bayes’ rule and approximating 𝒙 |𝑮. Optimizing for the minimum bisection is akin to
computing the maximum likelihood estimate, which does not necessarily produce samples represen-
tative of the posterior distribution of 𝒙 |𝑮.

SDPs for inference. The work of Banks, Mohanty & Raghavendra [BMR21] proposed a semidef-
inite programming-based algorithm for inference tasks that incorporates the prior distribution in
the formulation, and illustrated that this algorithm can distinguish between 𝑮 sampled from the
stochastic block model from an Erdős–Rényi graph of equal average degree anywhere above the
KS threshold while being resilient to Ω(𝑛) arbitrary edge insertions and deletions.

A similar SDP formulation was later studied by Ding, d’Orsi, Nasser & Steurer [DdNS22] in
the 2-community setting, and was used to give an algorithm to recover the communities with a
constant advantage over random guessing in the presence of Ω(𝑛) edge corruptions for all degrees
above the KS threshold. They analyze the spectra of matrices associated with random graphs after
deleting vertices with large neighborhoods, which introduces unfriendly correlations, and causes
their analysis to be highly technical.

The main contribution of our work is an algorithm for robust recovery, which is amenable to a
significantly simpler analysis. Our algorithm also succeeds at the recovery task for arbitrary block
models with a constant number of communities.

Theorem 1.2 (Informal statement of main theorem). Let (M,𝜋, 𝑑) be SBM parameters such that 𝑑 is
above the KS threshold, and let 𝑮, 𝒙 ∼ SBM𝑛(M,𝜋, 𝑑). There exists 𝛿 = 𝛿(M,𝜋, 𝑑) > 0 such that the
following holds. There is a polynomial time algorithm that takes as input any graph 𝑮 that can be obtained
by performing arbitrary 𝛿𝑛 edge insertions and deletions to 𝑮 and outputs a coloring �̂� that has “constant
correlation” with 𝒙, with high probability over the randomness of 𝑮 and 𝒙.

Many of the ingredients in the above result are of independent interest. First, we exhibit a
symmetric matrix closely related to the Bethe Hessian of the graph, such that its bottom eigenspace
is correlated with the communities. Next, we design an efficient algorithm to robustly recover the
bottom-𝑟 eigenspace of a sparse matrix in the presence of adversarial corruptions. Finally, we
demonstrate a general rounding scheme to obtain community assignments from this eigenspace.
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Remark 1.3 (Robustness against node corruptions). The node corruption model, introduced by
Liu & Moitra [LM22], is a harsher generalization of the edge corruption model. In recent work,
Ding, d’Orsi, Hua & Steurer [DdHS23] proved that in the setting of sparse SBM, any algorithm
that is robust to edge corruptions can be turned into one robust to node corruptions in a blackbox
manner. Hence, our results apply in this harsher setting too.

1.1 Related work

We refer the reader to the survey of Abbe [Abb17] for a detailed treatment of the rich history and
literature on community detection in block models, its study in other disciplines, and the many
information-theoretic and computational results in various parameter regimes.

Introducing an adversary into the picture provides a beacon towards algorithms that utilize
but do not overfit to distributional assumptions. Over the years, a variety of adversarial models
have been considered, some of which we survey below.

Corruption models for stochastic block model. Prior to the works of [BMR21, DdNS22], Stefan &
Massoulié [SM19] considered the robust recovery problem, and gave a robust spectral algorithm
to recover communities under 𝑂(𝑛𝜀) adversarial edge corruptions for some small enough 𝜀 > 0.

Liu & Moitra [LM22] introduced the node corruption model where an adversary gets to perform
arbitrary edge corruptions incident to a constant fraction of corrupted vertices, and gave algorithms
that achieved optimal accuracy in the presence of node corruptions and the monotone adversary
sufficiently above the KS threshold. Soon after, Ding, d’Orsi, Hua & Steurer [DdHS23] gave
algorithms achieving the Kesten–Stigum threshold using algorithms for the edge corruption model
in the low-degree setting [DdNS22], and results on the optimization SDP in the high-degree setting
[MS16] in a blackbox manner.

Semirandom & smoothed models. Some works have considered algorithm design under harsher
adversarial models, where an adversarially chosen input undergoes some random perturbations.

Remarkably, at this point, the best algorithms for several graph and hypergraph problems match
the performance of our best algorithms for their completely random counterparts. For example,
at this point, the semirandom planted coloring and clique problems were introduced by Blum &
Spencer [BS95], and Feige & Kilian [FK01], and a line of work [CSV17, MMT20] culminating in
the work of Buhai, Kothari & Steurer [BKS23] showed that the size of the planted clique/coloring
recoverable in the semirandom setting matches the famed

√
𝑛 in the fully random setting.

Another example where algorithms for a semirandom version of a block model-like problem
have been considered is semirandom CSPs with planted solutions, where the work of Guruswami,
Hsieh, Kothari & Manohar [GHKM23] gives algorithms matching the guarantees of solving fully
random planted CSPs.

1.2 Organization

In Section 2, we give an overview of our algorithm and proof. In Section 3, we give some technical
preliminaries. In Section 4, we describe our algorithm and show how to analyze it. In Section 5, we
prove results about the spectrum of the Bethe Hessian matrix and variants, key to our algorithm.
In Section 6, we show how to use a trimming procedure and a spectral algorithm on a Bethe
Hessian variant to recover a subspace which has good correlation with the true communities in the
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presence of adversarial corruptions. Finally, in Section 7, we prove some technical claims relevant
to analyzing our algorithm.

2 Technical overview

An 𝑛-vertex graph 𝑮 is drawn from a stochastic block model and undergoes 𝛿𝑛 adversarial edge
corruptions, and then the corrupted graph𝑮 is given to us as input. For simplicity of discussion, we
restrict our attention to assortative symmetric 𝑘-community block models above the KS threshold,
i.e. the connection probability between two vertices 𝑖 and 𝑗 only depends on whether they belong
to the same community or different communities, and the intra-community probability is higher.
Nevertheless, our approach generalizes to any arbitrarily specified 𝑘-community block model
above the KS threshold.

Let us first informally outline the algorithm; see Section 4 for formal details.

1. First, we preprocess the corrupted graph𝑮 by truncating high degree vertices, which removes
corruptions localized on small sets of vertices in the graph.

2. We then construct an appropriately defined graph-aware symmetric matrix 𝑀𝑮 ∈ R𝑛×𝑛
whose negative eigenvalues contains information about the true communities for the uncor-
rupted graph. We motivate this construction in Section 2.1.

3. We recursively trim the rows and columns of 𝑀𝑮 to remove small negative eigenvalues in its
spectrum. Then we use a spectral algorithm to robustly recover a subspace𝑈 which contains
information about the communities. Both points are described in Section 2.2.

4. Finally, we round the subspace 𝑈 into a community assignment, using a vertex embedding
provided by𝑈 . This is detailed in Section 2.3.

2.1 Outlier eigenvectors for the Bethe Hessian

Bordenave, Lelarge & Massoulié [BLM15] analyzed the spectrum of the nonbacktracking matrix and
rigorously established its connection to community detection. The asymmetric nonbacktracking
matrix 𝐵𝐺 ∈ {0, 1}2|𝐸(𝐺)|×2|𝐸(𝐺)| is indexed by directed edges, with

(𝐵𝐺)(𝑢1→𝑣1),(𝑢2→𝑣2) ≜ 1[𝑣1 = 𝑢2]1[𝑣2 ≠ 𝑢1].

[BLM15] showed that above the KS threshold, the 𝑘 outlier eigenvalues for 𝐵𝑮 correspond to the 𝑘
community vectors. More precisely, in the case of symmetric 𝑘-community stochastic block models
above the KS threshold, [BLM15] proved that for the randomly drawn graph 𝑮, there is a small
𝜀 > 0 for which its nonbacktracking matrix 𝐵𝑮 has exactly 𝑘 eigenvalues larger than (1 + 𝜀)

√
𝑑 in

magnitude (Theorem 5.3).
The Bethe Hessian matrix is a symmetric matrix associated with a graph, whose early appear-

ances can be traced to the works of Ihara [Iha66] and Bass [Bas92]. The Bethe Hessian of a graph
with parameter 𝑡 ∈ R is defined as

𝐻𝐺(𝑡) ≜ (𝐷𝐺 − 𝐼)𝑡2 − 𝐴𝐺𝑡 + 𝐼 ,
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where 𝐷𝐺 and 𝐴𝐺 are the diagonal degree matrix and adjacency matrix of 𝐺, respectively. For 𝑡 in
the interval [0, 1], it can be interpreted as a regularized version of the standard graph Laplacian.
The Bethe Hessian for the stochastic block model was considered in the empirical works [KMM+13,
SKZ14], where they observed that for some choice of 𝑡, the Bethe Hessian and the nonbacktracking
matrix has outlier eigenvectors which can be used for finding communities in block models.
Concretely, in [SKZ14] they observed that for 𝑮 drawn from stochastic block models above the KS
threshold, there is a choice of 𝑡 such that 𝐻𝑮(𝑡) only has a small number of negative eigenvectors,
all of which correlate with the hidden community assignment.

We confirm this empirical observation in the following proposition.

Proposition 2.1 (Bethe Hessian spectrum). Let (M,𝜋, 𝑑) be 𝑘-community SBM parameters such that 𝑑
is above the KS threshold, and let 𝑮, 𝒙 ∼ SBM𝑛(M,𝜋, 𝑑). Then there exists 𝜀 > 0 such that for 𝑡∗ = 1

(1+𝜀)
√
𝑑
,

the Bethe Hessian 𝐻𝑮(𝑡∗) has at most 𝑘 negative eigenvalues and at least 𝑘 − 1 negative eigenvalues.

Constructing the outlier eigenspace There are two assertions in Proposition 2.1. To show that
𝐻𝑮(𝑡∗) has at most 𝑘 negative eigenvalues, one can relate these negative eigenvalues to the 𝑘 outlier
eigenvalues of 𝐵𝑮 using an Ihara–Bass argument and use a continuity argument as outlined in Fan
and Montanari [FM17, Theorem 5.1].

The more interesting direction is to exhibit at least 𝑘 −1 negative eigenvalues; we will explicitly
construct a 𝑘−1 dimensional subspace starting with the community vectors to witness the negative
eigenvalues for 𝐻𝐺(𝑡∗).

Let 1𝑐 denote the indicator vector for the vertices belonging to community 𝑐 and 1 the all-ones
vector. We show that every vector in the span of {𝐴(ℓ )(1𝑐 − 1

𝑘
1)}𝑐∈[𝑘] achieves a negative quadratic

form against 𝐻𝑮(𝑡∗), where 𝐴(ℓ ) is the 𝑛 × 𝑛 matrix where the (𝑖 , 𝑗)-th entry encodes the number of
length-ℓ nonbacktracking walks between 𝑖 and 𝑗. This demonstrates a (𝑘−1)-dimensional subspace
on which the quadratic form is negative. Formally, we show the following:.

Proposition 2.2. Under the same setting and notations as Proposition 2.1, for ℓ ⩾ 0 define

𝑀𝑮,ℓ ≜ 𝐴
(ℓ )𝐻𝑮(𝑡∗)𝐴(ℓ ).

For ℓ = Θ

(
log(1/𝜀)

𝜀

)
and every 𝑐 ∈ [𝑘], we have〈

1𝑐 − 1
𝑘
1, 𝑀𝑮,ℓ (1𝑐 − 1

𝑘
1)
〉
⩽ −Ω(𝑛).

Hence, 𝑀𝑮,ℓ has at most 𝑘 negative eigenvalues and at least 𝑘 − 1 negative eigenvalues.

Nonbacktracking powers and related constructions were previously studied in [Mas14, MNS18],
but there they take ℓ = Θ(log 𝑛), whereas we only consider constant ℓ . Besides simplifying the
analysis of the quadratic form, using constant ℓ is also critical for tolerating up to Ω(𝑛) corruptions.

As a consequence of Proposition 2.2, the negative eigenvectors of 𝑀𝑮,ℓ are correlated with
the centered community indicators {1𝑐 − 1

𝑘
1}𝑐∈[𝑘], while the negative eigenvectors of 𝐻𝑮(𝑡∗) are

correlated with {𝐴(ℓ )(1𝑐− 1
𝑘
1)}𝑐∈[𝑘]. The upshot is that we can directly use the negative eigenvectors

of 𝑀𝑮,ℓ to recover the true communities in the absence of corruptions.
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Remark 2.3. Based on the empirical observations in [KMM+13, SKZ14], a natural hope is to
directly use the Bethe Hessian for recovery. However, it turns out that the quadratic form of the
centered true community indicators

〈
(1𝑐 − 1

𝑘
1), 𝐻𝑮(𝑡∗)(1𝑐 − 1

𝑘
1)
〉

are actually positive close to the
KS threshold, so the same approach does not establish that the negative eigenvectors of 𝐻𝑮(𝑡∗)
correlate with the communities.

We will now discuss how to recover the outlier eigenspace in the presence of adversarial
corruptions.

2.2 Robust PCA for sparse matrices

The discussion above naturally leads to the following algorithmic problem of robust recovery:
Given as input a corrupted version �̃� of a symmetric matrix 𝑀, can we recover the bottom/top
𝑟-dimensional eigenspace of 𝑀? Since the true communities are constantly correlated with the
outlier eigenspace of 𝑀 = 𝑀𝑮,ℓ , recovering the outlier eigenspace of 𝑀 from its corrupted version
�̃� = �̃�𝑮,ℓ is a major step towards robustly recovering communities.

The problem of robustly recovering the top eigenspace, a.k.a. robust PCA has been extensively
studied, and algorithms with provable guarantees have been designed (see [CLMW11]). However,
the robust PCA problem in our work is distinct from those considered in the literature in a couple
of ways. For us, the uncorrupted matrix 𝑀 is sparse and both the magnitude and location of
the noisy entries are adversarial. Furthermore, for our purposes, we need not recover the actual
outlier eigenspace of 𝑀. Indeed, as we discuss below, it suffices to robustly recover a constant
dimensional subspace which is constantly correlated with the true communities.

We design an efficient algorithm to robustly recover such a subspace under a natural set of
sufficient conditions on 𝑀. Before we describe these conditions, let us fix some notation. We will
call a vector 𝑥 ∈ R𝑛 to be 𝐶-delocalized if no coordinate is large relative to others, i.e., |𝑥𝑖 |2 ⩽ 𝐶

𝑛 ∥𝑥∥2

for all 𝑖 ∈ [𝑛]. Delocalization has previously been used in the robust PCA literature under the
name “incoherence” [CLMW11].

Let 𝑀 be a 𝑛 × 𝑛 matrix with at most 𝑟 negative eigenvalues. In particular, the 𝑟-dimensional
negative eigenspace𝑉𝑀 of 𝑀 is the object of interest. Let �̃� be a corrupted version of 𝑀, differing
from 𝑀 in 𝛿𝑛 coordinates.

Given the corrupted version �̃�, a natural goal would be to recover the 𝑟-dimensional negative
eigenspace𝑉𝑀 . It is easy to see that it could be impossible to recover the space𝑉𝑀 . Instead, we will
settle for a relaxed goal, namely, recover a slightly larger dimensional subspace𝑈 that non-trivially
correlates with delocalized vectors in the true eigenspace 𝑉𝑀 . More formally, we will solve the
following problem.

Problem 2.4. Given the corrupted matrix �̃� as input, give an efficient algorithm to output a
subspace𝑈 with the following properties:

1. Low dimensional. The dimension of𝑈 is 𝑂(𝑟).

2. Delocalized. The diagonal entries of its projection matrix Π𝑈 are bounded by 𝑂
(
𝑟
𝑛

)
.

3. Preserves delocalized part of negative eigenspace. For any 𝐶-delocalized unit vector 𝑦 such
that ⟨𝑦, 𝑀𝑦⟩ < −Ω(1), we have ⟨𝑦,Π𝑈 𝑦⟩ ⩾ Ω(1).
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In fact, our algorithm will recover a principal submatrix of �̃� whose eigenspace 𝑉 for eigen-
values less than −𝜂 is 𝑂(𝑟)-dimensional. Moreover, the eigenspace 𝑉 can be processed to another
delocalized, 𝑂(𝑟)-dimensional subspace𝑈 that satisfies the conditions outlined above.

Although the matrix 𝑀 has a constant number of negative eigenvalues, its corruption �̃� can
have up to Ω(𝑛) many. At first glance, it may be unclear how a constant dimensional subspace 𝑈
can be extracted from �̃�. The crucial observation is that the large negative eigenvalues introduced
by the corruptions are highly localized. Thus, we will design an iterative trimming algorithm that
aims to delete rows and columns to clean up these localized corruptions. When the algorithm
terminates, it yields the 𝑂(𝑟)-dimensional subspace 𝑉 .

Recovering a principal submatrix. We now describe the trimming algorithm informally and refer
the reader to Section 6 for the formal details.

We first fix some small parameter 𝜂 > 0 and execute the following procedure, which produces
a series of principal submatrices �̃�(𝑡) for 𝑡 ⩾ 0, starting with �̃�(0) ≜ �̃�.

1. At step 𝑡, if the eigenspace 𝑉 of eigenvalues of �̃�(𝑡) less than −𝜂 is 𝑂(𝑟)-dimensional, we
terminate the algorithm and output 𝑉 .

2. Otherwise, compute the projection Π(𝑡) corresponding to the ⩽ −𝜂 eigenspace of �̃�(𝑡).

3. Sample an index 𝑖 ∈ [𝑛] of �̃�(𝑡) with probability proportional to Π
(𝑡)
𝑖 ,𝑖

.

4. Zero out row and column 𝑖, and set this new principal submatrix as �̃�(𝑡+1).

We now discuss the intuition behind the procedure and formally prove its correctness in
Section 6.1. The main idea of step 3 is that one should prefer to delete highly localized eigenvectors
which have relatively large negative eigenvalues. This is reasonable because the size of the diagonal
entries of �̃�(𝑡) serve as a rough proxy for the level of delocalization.

As a concrete illustration of this intuition, suppose that �̃� = Π(0) = −𝑢𝑢⊤ − 𝑣𝑣⊤, where 𝑢, 𝑣
are orthogonal unit vectors. Moreover, suppose 𝑢 is 𝐶-delocalized whereas 𝑣 = 𝑒1. Then Π

(0)
1,1 = 1

whereas |Π(0)
𝑖 ,𝑖
| ⩽ 𝐶2/𝑛 for 𝑖 > 1. Hence, deleting the first row and column of �̃� also deletes the

localized eigenvector 𝑣. In general, whenever one of the eigenvectors of �̃�(𝑡) is heavily localized
on a subset of coordinates 𝑆, the diagonal entries in Π

(𝑡)
𝑆,𝑆

are disproportionately large. This leads
to a win-win scenario: either we reach the termination condition, or we are likely to mitigate the
troublesome large localized eigenvectors.

We now discuss how we achieve the second and third guarantees in Problem 2.4.

Trimming the subspace. The final postprocessing step is simple. Let 𝑉 denote the eigenspace
with eigenvalues less than −𝜂 for the matrix �̃�(𝑇) obtained at end of iterative procedure.

To ensure delocalization (condition 2 in Problem 2.4), the idea is to take its projector Π𝑉 and
trim away the rows and columns with diagonal entry exceeding 𝜏

𝑛 for some large parameter 𝜏 > 0.
The desired delocalized subspace 𝑈 is obtained by taking the eigenspace of the trimmed Π𝑉

corresponding to the eigenvalues exceeding a threshold that is 𝑂(𝜂). Since𝑉 is 𝑂(𝑟)-dimensional,
so too is𝑈 .

The more delicate part is condition 3 in Problem 2.4. Namely, we must show that despite
corruptions and the repeated trimming steps, 𝑥 remains a delocalized witness vector for Π𝑈 , and
thus has constant correlation with the subspace 𝑈 . The key intuition for this is that delocalized
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witnesses are naturally robust to adversarial corruptions, so long as the adversarial corruptions
have bounded row-wise ℓ1 norm. In particular, since delocalization is an ℓ∞ constraint, Hölder’s
inequality bounds the difference in value of the quadratic form using 𝑀 and �̃�. In Section 6.2, we
prove that for sufficiently small constant levels of corruption, 𝑥 is also a delocalized witness for �̃�
and Π𝑈 .

Finally, we discuss how to round the recovered subspace𝑈 into a community assignment.

2.3 Rounding to communities

At this stage, we are presented with a constant-dimensional subspace 𝑈 with the key feature that
it is correlated with the community assignment vectors {1𝑐}𝑐∈[𝑘]. Our goal is to round 𝑈 to a
community assignment that is “well-correlated” with the ground truth. In order to discuss how
we achieve this goal, we must make precise what it means to be “well-correlated” with the ground
truth. Notice that a community assignment is just as plausible as the same assignment with the
names of communities permuted, and thus counting the number of correctly labeled vertices is
not a meaningful metric.

A more meaningful metric is the number of pairwise mistakes, i.e. the number of pairs of
vertices in the same community assigned to different communities or in different communities
assigned to the same community. A convenient way to express this metric is via the inner product
of positive semidefinite matrices encoding whether pairs of vertices belong to the same community
or not. Given a community assignment 𝑥, we assign it the matrix 𝑋, defined as

𝑋[𝑖 , 𝑗] =
{

1 if 𝑥(𝑖) = 𝑥(𝑗)
− 1
𝑘−1 if 𝑥(𝑖) ≠ 𝑥(𝑗).

For the ground truth assignment 𝒙 and the output of our algorithm �̂�, we measure the correlation
with ⟨𝑿 , 𝑋⟩. Observe that for any guess 𝑋 that is oblivious to the input (for example, classifying
all vertices to the same community, or blindly guessing), the value of ⟨𝑿 , 𝑋⟩ is concentrated
below �̃�(𝑛3/2). On the other hand, if 𝑋 = 𝑿 , then this correlation is Ω(𝑛2). See Definition 4.4
and Appendix A for how this notion generalizes to arbitrary block models, and subsumes other
notions of weak-recovery defined in literature.

The projection matrixΠ𝑈 satisfies ⟨Π𝑈 ,𝑿⟩ ⩾ Ω(∥Π𝑈 ∥ 𝐹 · ∥𝑿 ∥ 𝐹) = Ω(𝑛). We give a randomized
rounding strategy according to which E𝑋 ⪰ 𝑐 · 𝑛 · Π𝑈 for some constant 𝑐 > 0. Consequently,
E⟨𝑿 , 𝑋⟩ = 𝑐𝑛 · ⟨Π𝑈 ,𝑿⟩ ⩾ Ω(𝑛2).

Observe that for any community assignment 𝑥, its matrix representation 𝑋 is rank-(𝑘 − 1),
which lets us write it as 𝑉𝑉⊤ for some 𝑛 × (𝑘 − 1) matrix 𝑉 . Here, the 𝑖-th row of 𝑉 is some vector
𝑣𝑥(𝑖) that only depends only on the community 𝑥(𝑖) where vertex 𝑖 is assigned.

Our rounding scheme usesΠ𝑈 to produce an embedding of the 𝑛 vertices as rows of a 𝑛×(𝑘−1)
matrix 𝑊 whose rows are in {𝑣1 , . . . , 𝑣𝑘}. In the community assignment �̂� outputted by the
algorithm, the 𝑖-th vertex is assigned to community 𝑗 if the 𝑖-th row of 𝑊 is equal to 𝑣 𝑗 . We then
show that E𝑊𝑊⊤ ⪰ 𝑐 · 𝑛 ·Π𝑈 . Since 𝑋 = E𝑊𝑊⊤, we can conclude E⟨𝑿 , 𝑋⟩ ⩾ Ω(𝑛2).

Rounding scheme. Our first step is to obtain an embedding of the 𝑛 vertices into R𝑘−1 by choosing
a (𝑘−1)-dimensional random subspace𝑈′ of𝑈 , then writing its projector as 𝑀′𝑀′⊤, and choosing
the embedding as the rows of 𝑀′: 𝑢′1 , . . . , 𝑢

′
𝑛 . Suppose this embedding has the property that for
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some 𝑐′ > 0, the rows of
√
𝑐′𝑛𝑈′ lie inside the convex hull of 𝑣1 , . . . , 𝑣𝑘 , then we can express each 𝑢′

𝑖

as a convex combination
∑𝑘
𝑗=1 𝑝

(𝑖)
𝑗
𝑣 𝑗 and then independently sample𝑤𝑖 from {𝑣1 , . . . , 𝑣𝑘} according

to the probability distribution (𝑝(𝑖)
𝑗
)𝑗∈[𝑘]. The resulting embedding 𝑊 would satisfy the property

that E𝑊𝑊⊤ ⪰ 𝑐′ · 𝑘−1
dim(𝑈) · 𝑛 · Π𝑈 , where this inequality holds since the off-diagonal entries are

equal, and the diagonal of𝑊𝑊⊤ is larger.
The reason an appropriate scaling 𝑐′ exists follows from the facts that the convex hull of

𝑣1 , . . . , 𝑣𝑘 is full-dimensional and contains the origin, which we prove in Section 7.

3 Preliminaries

Stochastic block model notation. We write 1 to denote the all-ones vector and 𝑒𝑖 to denote the
𝑖th standard basis vector, with the dimensions implicit. For a 𝑘-community block model, let
𝜋 ∈ R𝑘 denote the prior community probabilities, and Π = diag(𝜋), so that 𝜋 = Π1. The edge
probabilities are parameterized by a symmetric matrix M ∈ R𝑘×𝑘 , the block probability matrix. A
true community assignment 𝒙 : [𝑛] → [𝑘] is sampled i.i.d. from 𝜋. Conditioned on 𝒙, an edge
between 𝑖 and 𝑗 is sampled with probability M𝒙(𝑖),𝒙(𝑗)𝑑

𝑛 . To ensure that the average degree is 𝑑, we
stipulate that M𝜋 = 1.

We will also use 𝑿 ∈ R𝑛×𝑘 to denote the one-hot encoding of 𝒙, i.e., the matrix where the 𝑡-th
row is equal to 𝑒𝒙(𝑡). We will sometimes find it convenient to access the columns of 𝑿 , which are
the indicator vectors for the 𝑘 different communities; we denote these by 1𝑐 for any community
𝑐 ∈ [𝑘]. For any 𝑓 : [𝑘] → R, define the lift of 𝑓 with respect to the true community assignment by
𝒇 (𝑛) ≜

∑
𝑐∈[𝑘] 𝑓 (𝑐) · 1𝑐 .

Another natural matrix that appears throughout the analysis is the Markov transition matrix
𝑇 ≜ 𝑀Π, which by detailed balance evidently has stationary distribution 𝜋. This is an asymmetric
matrix, but since 𝑇 defines a time-reversible Markov chain with respect to 𝜋, 𝑇 is self-adjoint
with respect to the inner product ⟨·, ·⟩𝜋 in R𝑘 induced by 𝜋. Hence 𝑇 is diagonalizable with real
eigenvalues and its eigenvalues are 1 = 𝜆1 > |𝜆2 | ⩾ · · · ⩾ |𝜆𝑘 |, with ties broken by placing positive
eigenvalues before the negative ones. Note that the normalization condition M𝜋 = 1 translates
into 𝑇1 = 1.

Matrix notation. We use ⪯ and ⪰ to denote inequalities on matrices in the Loewner order.
For any 𝑛 × 𝑛 matrix 𝑋, we use Π⩽𝑎(𝑋) and Π⩾𝑎(𝑋) to denote the projectors onto the spaces
spanned by eigenvectors of 𝑋 with eigenvalue at most and at least 𝑎 respectively. We also de-
fine 𝑋⩽𝑎 ≜ Π⩽𝑎(𝑋)𝑋Π⩽𝑎(𝑋) and 𝑋⩾𝑎 ≜ Π⩾𝑎(𝑋)𝑋Π⩾𝑎(𝑋), the corresponding truncations of the
eigendecomposition of 𝑋.

For 𝑆 ⊆ [𝑛], we use 𝑋𝑆,𝑆 to denote the matrix obtained by taking 𝑋 and zeroing out all rows
and columns with indices outside 𝑆.

Nonbacktracking matrix and Bethe Hessian. For a graph 𝐺, let 𝐵𝐺 be its nonbacktracking matrix,
𝐴𝐺 be its adjacency matrix, 𝐷𝐺 be its diagonal matrix of degrees, 𝐴(ℓ )

𝐺
be its ℓ -th nonbacktracking

power of 𝐴𝐺, and 𝐻𝐺(𝑡) ≜ (𝐷𝐺 − 𝐼)𝑡2 − 𝐴𝐺𝑡 + 𝐼 be its Bethe Hessian matrix. The matrix we use for
our algorithm is 𝑀𝐺,ℓ (𝑡) ≜ 𝐴(ℓ )

𝐺
𝐻𝐺(𝑡)𝐴(ℓ )

𝐺
. We will drop the 𝐺 from the subscript when the graph

𝐺 is clear from context.

Determinants. Below, we collect some standard linear algebraic facts that will prove useful.
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Fact 3.1. Suppose a matrix 𝑋 has a kernel of dimension 𝑘, then every (𝑛 − 𝑗) × (𝑛 − 𝑗) submatrix of 𝑋 for
𝑗 < 𝑘 is singular.

Fact 3.2 (Jacobi’s formula). For any differentiable function 𝑋 : R→ R𝑛×𝑛 ,

𝑑

𝑑𝑢
det(𝑋(𝑢)) =

𝑛∑
𝑖=1

𝑛∑
𝑗=1

det
(
𝑋(𝑢)[𝑛]\{𝑖},[𝑛]\{ 𝑗}

)
· (−1)𝑖+𝑗 · 𝑑

𝑑𝑢
(𝑋(𝑢))𝑖 , 𝑗 .

Lemma 3.3. Let 𝑋 : R→ R𝑛×𝑛 and 𝑓 : R→ R be any pair of smooth functions. For any 𝑗 ⩾ 0, there exist
functions (𝑞𝑆,𝑇 : R→ R)𝑆,𝑇⊆[𝑛], |𝑆 |=|𝑇 |⩾𝑛−𝑗 such that:(

𝑑

𝑑𝑢

) 𝑗
[det(𝑋(𝑢)) · 𝑓 (𝑢)] =

∑
𝑆,𝑇⊆[𝑛], |𝑆 |=|𝑇 |⩾𝑛−𝑗

det(𝑋(𝑢)𝑆,𝑇)𝑞𝑆,𝑇(𝑢).

Proof. We prove this by induction. This is clearly true when 𝑗 = 0, and the induction step is a
consequence of Jacobi’s formula. □

Kesten-Stigum threshold. We say that a stochastic block model is above the Kesten–Stigum (KS)
threshold if 𝜆2(𝑇)2𝑑 > 1, where recall that 𝜆2 is the second largest eigenvalue in absolute value.
We use 𝑟 to denote the number of eigenvalues of 𝑇 equal to 𝜆2(𝑇).

4 Recovery algorithm

Let 𝑮 be the graph drawn from SBM𝑛(M,𝜋, 𝑑), and let 𝑮 denote the input graph which is 𝑮 along
with an arbitrary 𝛿𝑛 adversarial edge corruptions. Our algorithm for clustering the vertices into
communities proceeds in multiple phases, described formally below.

The first phase preprocesses the graph by making it bounded degree and constructs an ap-
propriate matrix 𝑀 associated to the graph. The second phase cleans up 𝑀 and uses a spectral
algorithm to robustly recover a subspace containing nontrivial information about the true com-
munities. Finally, the third phase rounds the subspace to an actual community assignment.

Algorithm 4.1. 𝑮 is given as input, and a community assignment to the vertices is produced as
output.
Phase 1: Deletion of high-degree vertices. For some large constant 𝐵 > 0 to be specified later,
we perform the following truncation step: delete all edges incident on vertices with degree larger
than 𝐵 in 𝑮. This forms a graph 𝑮𝐵, with corresponding adjacency matrix 𝐴𝑮𝐵

∈ R|𝑉(𝑮)|×|𝑉(𝑮)|. To
avoid confusion, we preserve the vertex set 𝑉(𝑮), but it should be understood that the truncated
vertices do not contribute to the graph.

For technical considerations, we also define a (nonstandard) truncated diagonal matrix

𝐷𝑮𝐵
≜ diag

(
deg(𝑣)1[deg(𝑣) ⩽ 𝐵]

)
𝑣∈𝑉(𝑮) (1)

With this, we can then define the truncated Bethe Hessian matrix

𝐻𝑮𝐵
(𝑡) ≜ 𝐼 − 𝑡𝐴𝑮𝐵

+ 𝑡2(𝐷𝑮𝐵
− 𝐼). (2)
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Finally, the input matrix to the next phase is

𝑀𝑮𝐵 ,ℓ
(𝑡) ≜ 𝐴(ℓ )

𝑮𝐵

𝐻𝑮𝐵
(𝑡)𝐴(ℓ )

𝑮𝐵

, (3)

where we also choose the value of 𝑡 later.

Remark 4.2. To reduce any chance of confusion with the notation, we reiterate our conventions
for distinguishing between different versions of various matrices. If a graph is truncated at level
𝐵, then we add a subscript 𝐵. We use tilde to denote that we are working with a corrupted graph.
Finally, we use overline to denote that we are working with the nonstandard version of the Bethe
Hessian after truncation.

For example, the matrix 𝐷𝑮𝐵
no longer corresponds to the degree matrix of 𝑮𝐵, since as stated

it still counts edges from truncated vertices. This is done to simplify the analysis of the spectrum
of 𝑀𝑮𝐵 ,ℓ (𝑡) but we do not believe it to be essential.

Phase 2: Recovering a subspace with planted signal. Define 𝑀 ≜ 𝑀𝑮𝐵 ,ℓ
. We give an iterative

procedure to “clean up” 𝑀 by deleting a few rows and columns. We then run a spectral algorithm
on the cleaned up version of 𝑀.

Let 𝜂 > 0 be a small constant we choose later, and let 𝐾 ≜ 𝐵2ℓ+3.

1. Define 𝑀(0) as 𝑀. Let 𝑡 be a counter initialized at 0, and Φ(𝑋) as the number of eigenvalues
of 𝑋 smaller than −𝜂.

2. While Φ(𝑀(𝑡)) > 2𝐾
𝜂 𝑟: compute the projection matrix Π(𝑡) ≜ Π⩽−𝜂(𝑀(𝑡)), choose a random

𝑖 ∈ [𝑛] with probability
Π

(𝑡)
𝑖 ,𝑖

Tr(Π(𝑡)) , and define 𝑀(𝑡+1) as the matrix obtained by zeroing out the

𝑖-th row and column of 𝑀(𝑡). Then increment 𝑡.

Let𝑇 be the time of termination and 𝜏 > 0 be a large enough constant we choose later. We compute
Π(𝑇), and then compute as the set 𝑆 of all indices 𝑖 where Π

(𝑇)
𝑖 ,𝑖
⩽ 𝜏

𝑛 . Define Π̃ as
(
Π

(𝑇)
𝑆,𝑆

)
⩾𝜂/𝐾

, and

compute its span𝑈 , where we recall that (𝑋)⩾𝑎 denotes the truncation of the eigendecomposition
of 𝑋 for eigenvalues at least 𝑎. This subspace𝑈 is passed to the next phase.

Phase 3: Rounding to a community assignment. Define 𝑟′ as 𝑟 − 1 when 𝜆2(𝑇) > 0 and as 𝑟
when 𝜆2(𝑇) < 0. We first obtain an 𝑟′-dimensional embedding of the vertices into R𝑟′. Compute
a random 𝑟′-dimensional subspace 𝑈′ of 𝑈 , and take an orthogonal basis 𝑢′1 , . . . , 𝑢

′
𝑟′. Place these

vectors as a column of a matrix 𝑀′ in R𝑛×𝑟′. The rows of 𝑀′ gives us the desired embedding.
On the other hand, we use the natural embedding of the 𝑘 communities into R𝑟′ induced by the

𝑟′ nontrivial right eigenvectors corresponding to the eigenvalue 𝜆2(𝑇): (𝜓𝑖)1⩽𝑖⩽𝑟′ of𝑇. In particular,
let Ψ𝑟′ ≜

[
𝜓1 · · · 𝜓𝑟′

]
∈ R𝑘×𝑟′ be the matrix of these 𝑟′ nontrivial eigenvectors of 𝑇. Then the

row vectors 𝜙1 , . . . , 𝜙𝑘 ∈ R𝑟
′ form the desired embedding of communities.

In the rounding algorithm, we first find the largest 𝑐 such that all the rows of 𝑐 · 𝑀′ lie in the
convex hull of 𝜙1 , . . . , 𝜙𝑘 . We can find such a value of 𝑐 if it exists by solving a linear program, and
this 𝑐 > 0 is guaranteed to exist by Lemma 7.1. Then, for each 𝑖 ∈ [𝑛] we express each row of 𝑐 ·𝑀′

as a convex combination
∑𝑘
𝑗=1 𝑤

(𝑗)
𝑖
𝜙 𝑗 for nonnegative 𝑤(𝑗)

𝑖
such that

∑𝑘
𝑗=1 𝑤

(𝑗)
𝑖

= 1. Finally, we assign

vertex 𝑖 to community 𝑗 with probability 𝑤(𝑗)
𝑖

, and output the resulting community assignment �̂�.
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Remark 4.3. Scaling the rows of 𝑀′ so as to lie in the convex hull of {𝜙 𝑗} 𝑗∈[𝑘], is reminiscent of the
rounding algorithm of Charikar & Wirth [CW04] to find a cut of size 1

2 +Ω( 𝜀
log(1/𝜀) ) in a graph with

maximum cut of size 1
2 + 𝜀: in their algorithm, they scale 𝑛 scalars to lie in the interval [−1, 1].

4.1 Analysis of algorithm

Our goal is to prove that the output �̂� of our algorithm is well-correlated with the true community
assignment 𝒙. We begin by defining a notion of weak recovery for 𝑘-community stochastic block
models.

Definition 4.4 (Weak recovery). Let Ψ ≜
[
𝜓2 · · · 𝜓𝑘

]
∈ R𝑘×(𝑘−1) be the matrix of the top-(𝑘 − 1)

nontrivial eigenvectors of the transition matrix 𝑇 of a stochastic block model.
For 𝜌 > 0, we say that a (randomized) algorithm for producing community assignments

𝑿 ∈ R𝑛×𝑘 achieves 𝜌-weak recovery if〈
E𝑿Ψ ,𝑿Ψ

〉
⩾ 𝜌∥E𝑿Ψ∥ 𝐹∥𝑿Ψ∥ 𝐹 ,

where 𝐵Ψ ≜ (𝐵Ψ)(𝐵Ψ)⊤ for a matrix 𝐵 ∈ R𝑛×𝑘 .

Remark 4.5. Intuitively, this notion is capturing the “advantage” of the algorithm over random
guessing, or simply outputting the most likely community. See Appendix A for a more detailed
discussion of this notion, how it recovers other previously considered measures of correlation in
the case of the symmetric block model, and why it is meaningful. In particular, it implies the
notion of weak recovery used in [DdNS22].

Our main guarantee is stated below.

Theorem 4.6. For any SBM parameters (M,𝜋, 𝑑) above the KS threshold, there is a constant 𝜌(M,𝜋, 𝑑) > 0
such that the above algorithm takes in the corrupted graph 𝑮 as input and outputs �̂� achieving 𝜌(M,𝜋, 𝑑)-
weak recovery with probability 1 − 𝑜𝑛(1) over the randomness of 𝑮 ∼ SBM𝑛(M,𝜋, 𝑑).

To prove the above theorem it suffices to analyze
〈
(E𝑿 )Ψ ,𝑿Ψ

〉
. To see why, let us first set up

some notation. For each vertex 𝑖, we obtain a simplex vector 𝑤𝑖 ∈ R𝑘 , which we can stack as rows
into a weight matrix𝑊 ∈ R𝑛×𝑘 . We then independently round each vertex so that E𝑿 =𝑊 .

To analyze our rounding scheme, first note that E[𝑿Ψ] is equal to 𝑊Ψ off of the diagonal and
is larger than 𝑊Ψ on the diagonal, and thus E[𝑿Ψ] ⪰ 𝑊Ψ. Since 𝑿Ψ is positive semidefinite,〈
E[𝑿Ψ],𝑿Ψ

〉
⩾ ⟨𝑊Ψ ,𝑿Ψ⟩. Thus, it suffices to lower bound ⟨𝑊Ψ ,𝑿Ψ⟩. By construction,𝑊Ψ is equal

to 𝑐2 ·Π𝑈′, where recall that 𝑈′ was a random 𝑟′-dimensional subspace of 𝑈 , the output of Phase
2 of the algorithm. Thus,

E
𝑈′
𝑊Ψ = 𝑐2 · E

𝑈′
Π𝑈′ = 𝑐2 · 𝑟′

dim(𝑈)Π𝑈 .

In Lemma 6.10, we prove that when (M,𝜋, 𝑑) are above the KS threshold, ⟨Π𝑈 ,𝑿Ψ⟩ ⩾ Ω(1) ·
∥Π𝑈 ∥ 𝐹 · ∥𝑿Ψ∥ 𝐹 and dim(𝑈) = 𝑂(1). In Lemma 7.1, we show that when diag(Π𝑈 ) = 𝑂(1/𝑛),
we can take 𝑐 = Ω(

√
𝑛); this delocalization condition is guaranteed by phase 2 of the algorithm.

Combined with the fact that ∥𝑿Ψ∥ 𝐹 = 𝑂(𝑛), it follows that
〈
E𝑿Ψ ,𝑿Ψ

〉
⩾ Ω(1) · ∥𝑿Ψ∥ 𝐹 · ∥𝑿Ψ∥ 𝐹,

which establishes Theorem 4.6.
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5 The number of outlier eigenvalues

In this section, we pinpoint the number of outlier eigenvalues of 𝑀𝑮,ℓ (𝑡) ≜ 𝐴(ℓ )
𝑮 𝐻𝑮(𝑡)𝐴(ℓ )

𝑮 . Specifi-
cally, we will show the following theorem.

Theorem 5.1. Let (M,𝜋, 𝑑) be a model and let 𝑇 be its corresponding Markov transition matrix. Let 𝑟 be
multiplicity of 𝜆2(𝑇). There exists constants ℓ , 𝛿 and 𝛼, such that for 𝑡 = 1+𝛿

𝜆2𝑑
, with high probability over

𝑮 ∼ SBM𝑛(M,𝜋, 𝑑), 𝑀𝑮,ℓ (𝑡) has at least 𝑟 negative eigenvalues of magnitude at most −𝛼, and at most
𝑟 + 1 negative eigenvalues.

We first establish the upper bound on the number of outlier eigenvalues, and then the lower
bound. To establish the theorem, we will harness the Ihara-Bass formula that connects 𝐻𝐺(𝑡) to
the non-backtracking walk matrix, and the work of Bordenave et al. [BLM15] on the spectrum of
non-backtracking walk matrix 𝐵 in stochastic block models. We begin by recalling these results
from the literature.

Theorem 5.2 (Ihara–Bass formula). For any simple, undirected, unweighted graph 𝐺 on 𝑛 vertices and
𝑚 edges, we have

det(𝐼 − 𝑡𝐵𝐺) = det(𝐻𝐺(𝑡))(1 − 𝑡2)𝑚−𝑛

For a matrix𝑋, we use𝜆𝑖(𝑋) to denote its 𝑖-th largest eigenvalue when sorted by absolute value.

Theorem 5.3 (Nonbacktracking spectrum of SBM [BLM15]). For 𝑮 ∼ SBM𝑛(M,𝜋, 𝑑):

𝜆𝑖(𝐵𝑮) = 𝜆𝑖(𝑇) · 𝑑 ± 𝑜𝑛(1)

for all 1 ⩽ 𝑖 ⩽ 𝑘 such that |𝜆𝑖(𝑇)| > 1√
𝑑

with high probability. All the remaining eigenvalues of 𝐵𝑮 are at

most
√
𝑑 · (1 + 𝑜𝑛(1)) in magnitude with high probability.

The following is a consequence of the Ihara–Bass formula. Along with Theorem 5.3, this implies
an upper bound on the number of outlier eigenvalues in Theorem 5.1.

Lemma 5.4. For any 𝑡∗ > 0, the number of negative eigenvalues of 𝐻𝐺(𝑡∗) is at most the number of real
eigenvalues of 𝐵𝐺 larger than 1/𝑡∗, and for 𝑡∗ < 0, the number of negative eigenvalues of 𝐻𝐺(𝑡∗) is at most
the number of real eigenvalues of 𝐵𝐺 smaller than 1/𝑡∗.

Proof. We present the proof assuming 𝑡∗ > 0, since the case when 𝑡∗ < 0 follows an identical proof.
First, observe that the number of negative eigenvalues of 𝐻𝐺(𝑡∗) is at most:∑

0⩽𝑡<𝑡∗:𝐻𝐺(𝑡) is singular

dim kernel(𝐻𝐺(𝑡)),

since 𝐻𝐺(0) has no negative eigenvalues, and the eigenvalues are a continuous function of 𝑡.
By the Ihara–Bass formula, if 𝐻𝐺(𝑡) is singular, then det(𝐼 − 𝑡𝐵𝐺) must be 0, and in particular,

1/𝑡 must be an eigenvalue of 𝐵𝐺. We now prove that dim kernel(𝐻𝐺(𝑡)) is at most the multiplicity
of the eigenvalue 1/𝑡, from which the desired statement follows.

13



Let 𝑟 be the dimension of the kernel of 𝐻𝐺(𝑡). We will show
(
𝑑
𝑑𝑢

) 𝑗
det(𝐼 − 𝑢𝐵𝐺)

���
𝑢=𝑡

= 0 for
0 ⩽ 𝑗 ⩽ 𝑟 − 1, thereby implying that 𝑡 occurs as a root of det(𝐼 − 𝑢𝐵𝐺), and hence 1/𝑡 as an
eigenvalue, with multiplicity at least 𝑟. Now, by the Ihara–Bass formula,(

𝑑

𝑑𝑢

) 𝑗
det(𝐼 − 𝑢𝐵𝐺) =

(
𝑑

𝑑𝑢

) 𝑗 [
det(𝐻(𝑢)) · (1 − 𝑢2)𝑚−𝑛] ,

which by Lemma 3.3 is equal to ∑
𝑆,𝑇⊆[𝑛], |𝑆 |=|𝑇 |⩾𝑛−𝑗

det(𝐻(𝑢)𝑆,𝑇) · 𝑞𝑆,𝑇(𝑢)

for some collection of scalar functions 𝑞𝑆,𝑇 . Since 𝐻(𝑡) has a kernel of dimension 𝑟, by Fact 3.1
𝐻(𝑡)𝑆,𝑇 is singular for any choice of 𝑆, 𝑇 ⊆ [𝑛] with |𝑆 | = |𝑇 | ⩾ 𝑛 − 𝑟 + 1, and hence the above
quantity is 0 for all 0 ⩽ 𝑗 ⩽ 𝑟 − 1, which completes the proof. □

5.1 Lower bound on the number of outlier eigenvalues

In this section, we lower bound the number of negative eigenvalues of 𝑀𝑮,ℓ (𝑡), where 𝑡 > 0. The
same arguments apply to the case where 𝑡 < 0, so we suppress the subscript in the dimension 𝑟 of
the outlier eigenspace for ease of notation.

To lower bound the number of outliers, we will show that with high probability the quadratic
form of 𝑀𝑮,ℓ (𝑡) is negative on an 𝑟-dimensional subspace spanned by vectors corresponding to
the true community assignment. To do so, we will calculate the first and second moments of this
random quadratic form, but the bulk of the work comes in calculating the first moment. The key
insight here is that since these vectors are constructed using the true communities, the expectations
can be tractably computed.

It is fruitful to give a combinatorial interpretation of the matrix 𝑀𝑮,ℓ (𝑡). As is standard in trace
moment calculations, the quadratic form can be decomposed into sums over various different
graph shapes. Some standard accounting for these shapes then leads us to the final answer. To
concretely articulate what we mean, we first define the notion of a partially labeled shape and its
associated matrix.

Definition 5.5 (Shape matrix). A shape is a graph 𝐻 along with two distinguished vertices: a left
vertex 𝑢𝐿 and a right vertex 𝑢𝑅. Given an 𝑛-vertex graph 𝐺, its shape matrix of 𝐺, denoted 𝑀𝐻(𝐺),
is an 𝑛 × 𝑛 matrix where the (𝑖 , 𝑗) entry is the number of copies of 𝐻 in 𝐺 such that 𝑢𝐿 can be
identified with 𝑖 and 𝑢𝑅 with 𝑗. Equivalently,

𝑀𝐻(𝐺)𝑖 , 𝑗 B
∑

𝜏:𝑉(𝐻)→[𝑛]
𝜏 injective

𝜏(𝑢𝐿)=𝑖 , 𝜏(𝑢𝑅)=𝑗

∏
{𝑎,𝑏}∈𝐸(𝐻)

𝐺𝜏(𝑎),𝜏(𝑏)

Remark 5.6. We only consider shapes 𝐻 whose size does not grow with 𝑛.

Let us explain at this point how we explicitly construct the 𝑟-dimensional subspace. The
idea is to lift the 𝑟 right eigenvectors 𝜓1 , . . . ,𝜓𝑟 ∈ R𝑘 of 𝑇 above the KS threshold using the
indicator vectors 1𝑐 for 𝑐 ∈ [𝑘]. This makes the computation tractable because edges in the SBM are
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conditionally independent given the true community assignment. Accordingly, we are interested
in polynomials of the form:

1⊤𝑐 𝑀𝐻(𝐺)1𝑐′ ,

where 𝑐 and 𝑐′ are colors in [𝑘] and 1𝑐 is the indicator vector of vertices with color 𝑐. The above
quadratic form counts the number of copies of 𝐻 inside 𝐺 where the vertex identified with 𝑢𝐿 has
color 𝑐 and the vertex identified with 𝑢𝑅 has color 𝑐′.

We use the following special case of [BMR21, Theorem 6.6].

Lemma 5.7. Suppose 𝐻 is a connected graph, then for 𝑮 ∼ SBM𝑛(M,𝜋, 𝑑), we have:

1⊤𝑐 𝑀𝐻(𝑮)1𝑐′ =
∑

𝜎:𝑉(𝐻)→[𝑘]
𝜎(𝑢𝐿)=𝑐,𝜎(𝑢𝑅)=𝑐′

∏
𝑣∈𝑉(𝐻)

𝜋𝜎(𝑣)
∏
𝑖 𝑗∈𝐻

𝑀𝜎(𝑖)𝜎(𝑗) · 𝑑 |𝐸(𝐻)| · 𝑛 |𝐸(𝐻)|−|𝑉(𝐻)| ± 𝑜(𝑛)

with probability 1 − 𝑜𝑛(1), where the 𝑜(·) hides factors depending on |𝐸(𝐻)|.

Remark 5.8. Observe that in the above if 𝐻 is not a tree, then |1⊤𝑐 𝑀𝐻(𝑮)1𝑐′ | = 𝑜(𝑛). If 𝐻 is a tree,
then it can be expressed as a path 𝑃 = 𝑝0 , . . . , 𝑝ℓ where 𝑝0 = 𝑢𝐿 and 𝑝ℓ = 𝑢𝑅, along with a subtree
per vertex on 𝑃. In this case, with high probability:

1⊤𝑐 𝑀𝐻(𝑮)1𝑐′ =
〈
𝑒𝑐 , 𝑇

ℓ 𝑒𝑐′
〉
𝜋
· 𝑑 |𝑉(𝐻)|−1 · 𝑛 ± 𝑜(𝑛).

More generally, we are interested in understanding the quadratic form of vectors that are
constant on each color class with 𝑀𝐺(𝐻), i.e. lifts of vectors in R𝑘 .

Corollary 5.9. Let 𝐻 be a tree such that 𝑢𝐿 and 𝑢𝑅 are distance-ℓ apart. For any 𝑓 : [𝑘] → R, define
𝒇 (𝑛) B

∑
𝑐∈[𝑘] 𝑓 (𝑐) · 1𝑐 . Then with high probability, for all 𝑓 , 𝑔 : [𝑘] → R simultaneously:

⟨ 𝒇 (𝑛) , 𝑀𝐻(𝑮)𝒈(𝑛)⟩ =
〈
𝑓 , 𝑇ℓ𝑔

〉
𝜋
· 𝑑 |𝑉(𝐻)|−1 · 𝑛 ± 𝑜(𝑛).

The bulk of the contribution to the value of the quadratic form comes from tree shapes.

Corollary 5.10. With high probability over 𝑮 ∼ SBM𝑛(M,𝜋, 𝑑), for any collection of shapes ℋ along with
coefficients (𝑐𝐻)𝐻∈ℋ , and any functions 𝑓 , 𝑔 : [𝑘] → R, we have:〈

𝒇 (𝑛) ,
∑
𝐻∈ℋ

𝑐𝐻𝑀𝐻𝒈
(𝑛)

〉
=

〈
𝒇 (𝑛) ,

∑
𝐻∈ℋ
𝐻 tree

𝑐𝐻𝑀𝐻𝒈
(𝑛)

〉
± 𝑜(𝑛).

To lighten the notation, for the rest of this section we make the dependence on the original
graph 𝑮 implicit. So for our algorithm, we would like to illustrate negative eigenvalues in the
spectrum of 𝑀ℓ (𝑡) = 𝐴(ℓ )𝐻(𝑡)𝐴(ℓ ).

Let 𝜓1 , . . . ,𝜓𝑟 be the right eigenvectors of 𝑇 corresponding to the largest nontrivial eigenvalue
𝜆2(𝑇) =

√
1+𝜀
𝑑

for some 𝜀 > 0. We will show that with high probability for all 𝑣 in span{𝜓1 , . . . ,𝜓𝑟},
the quadratic form

〈
𝒗(𝑛) , 𝑀ℓ (𝑡)𝒗(𝑛)〉 is substantially negative, where 𝑡 = 1+𝛿√

(1+𝜀)𝑑
for some small

enough 𝛿 we choose in posterity.

Lemma 5.11. For all ℓ sufficiently large and all 𝑣 ∈ span{𝜓1 , . . . ,𝜓𝑟},
〈
𝒗(𝑛) , 𝑀ℓ (𝑡)𝒗(𝑛)〉 < −𝛼𝑛, where

𝛼 > 0 is an absolute constant. Consequently, 𝑀ℓ (𝑡) has at least 𝑟 eigenvalues less than −𝛼.
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Proof. We can write 𝑀ℓ (𝑡) as a weighted combination of a collection of shape matrices ℋ . The plan
is to extract out all the tree shapes that occur in ℋ along with their weights and obtain a formula
for the quadratic form using Corollary 5.9.

We expand 𝑀ℓ (𝑡) = 𝐴(ℓ )𝐴(ℓ ) − 𝑡𝐴(ℓ )𝐴𝐴(ℓ ) + 𝑡2𝐴(ℓ )(𝐷 − 𝐼)𝐴(ℓ ). Each term counts walks following
certain simple rules.

Observation 5.12. We can characterize the walks counted by each term as follows.

1. 𝐴(ℓ )𝐴(ℓ )[𝑖 , 𝑗] counts walks starting at 𝑖 and ending at 𝑗 with the phases (i) walk ℓ nonback-
tracking steps, (ii) walk ℓ nonbacktracking steps.

2. 𝐴(ℓ )𝐴𝐴(ℓ )[𝑖 , 𝑗] counts walks with phases (i) walk ℓ nonbacktracking steps, (ii) walk one step,
(iii) walk ℓ nonbacktracking steps.

3. 𝐴(ℓ )(𝐷 − 𝐼)𝐴(ℓ )[𝑖 , 𝑗] counts walks with phases (i) walk ℓ + 1 nonbacktracking steps and then
backtrack one step, (ii) walk ℓ nonbacktracking steps.

Observation 5.13. For a walk to give rise to a tree shape, each step must either (i) visit a vertex not
visited in the walk so far, or (ii) use an edge that has already been stepped on.

Using this rule, we can deduce all the tree shapes that come from each term. The tree shapes
arising in ℋ turn out to have quite simple structure. We use 𝐻𝑠,𝑖,𝑟 to denote the shape obtained
by taking a length-𝑠 path where both endpoints are distinguished, and attaching a length-𝑟 path
at vertex 𝑖.

Analysis of 𝐴(ℓ )𝐴(ℓ ). By Observation 5.12 and Observation 5.13, any tree shape for this term must
arise as a result of first walking ℓ self-avoiding steps, then backtracking 𝑠 steps, and then walking
ℓ − 𝑠 self-avoiding steps for 0 ⩽ 𝑠 ⩽ ℓ . The shape this gives rise to is 𝐻2ℓ−2𝑠,ℓ−𝑠,𝑠 . Therefore, by
Corollary 5.10, with high probability, for all 𝑣 : [𝑘] → Rwe have:〈

𝒗(𝑛) , 𝐴(ℓ )𝐴(ℓ )𝒗(𝑛)
〉
=

ℓ∑
𝑠=0

〈
𝒗(𝑛) , 𝑀𝐻2ℓ−2𝑠,ℓ−𝑠,𝑠𝒗

(𝑛)
〉
± 𝑜(𝑛) =

ℓ∑
𝑠=0

〈
𝑣, 𝑇2ℓ−2𝑠𝑣

〉
𝜋
· 𝑑2ℓ−𝑠 · 𝑛 ± 𝑜(𝑛).

Analysis of 𝐴(ℓ )𝐴𝐴(ℓ ). By Observation 5.12 and Observation 5.13, the tree shapes arising here must
fall into one of the following cases.

1. Length-ℓ self-avoiding walk, then 𝑠 backtracking edges, and then a length-(ℓ − 𝑠 + 1) self-
avoiding walk for 0 ⩽ 𝑠 ⩽ ℓ . The shapes arising in this case are 𝐻2ℓ−2𝑠+1,ℓ−𝑠,𝑠 .

2. Length-(ℓ + 1) self-avoiding walk, then 𝑠 backtracking edges, and then a length-(ℓ − 𝑠) self-
avoiding walk for 1 ⩽ 𝑠 ⩽ ℓ . The shapes arising in this case are 𝐻2ℓ−2𝑠+1,ℓ+1−𝑠,𝑠 .

3. Length-ℓ self-avoiding walk using edge 𝑒 for its final step, then a backtracking step that uses
𝑒, and then a backtracking step that uses 𝑒 for a third time, followed by a self-avoiding walk
of length-(ℓ − 1). The shape arising in this case is simply a length-(2ℓ − 1) path with both
endpoints distinguished.
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By Corollary 5.10, with high probability, for all 𝑣 : [𝑘] → R:〈
𝒗(𝑛) , 𝐴(ℓ )𝐴𝐴(ℓ )𝒗(𝑛)

〉
=

(〈
𝑣, 𝑇2ℓ−1𝑣

〉
· 𝑑2ℓ−1 −

〈
𝑣, 𝑇2ℓ+1𝑣

〉
· 𝑑2ℓ+1

)
· 𝑛 +

ℓ∑
𝑠=0

2
〈
𝑣, 𝑇2ℓ−2𝑠+1𝑣

〉
· 𝑑2ℓ−𝑠+1 · 𝑛 ± 𝑜(𝑛).

Analysis of 𝐴(ℓ )(𝐷 − 𝐼)𝐴(ℓ ). By Observation 5.12 and Observation 5.13, the tree shapes fall into one
of the cases below.

1. Length-(ℓ+1) self-avoiding walk, then 𝑠 nonbacktracking steps, followed by a length-(ℓ−𝑠+1)
self-avoiding walk for 1 ⩽ 𝑠 ⩽ ℓ + 1. The shapes arising in this case are 𝐻2ℓ−2𝑠+2,ℓ−𝑠+1,𝑠 .

2. Length-(ℓ + 1) self-avoiding walk where the last used edge is 𝑒, a backtracking step that uses
𝑒, and then a backtracking step that uses 𝑒 for a third time, followed by a length-(ℓ − 1)
self-avoiding walk. This shape is simply a length-2ℓ path with both endpoints distinguished.

By Corollary 5.10, with high probability, for all 𝑣 : [𝑘] → R:〈
𝒗(𝑛) , 𝐴(ℓ )(𝐷 − 𝐼)𝐴(ℓ )𝒗(𝑛)

〉
=
〈
𝑣, 𝑇2ℓ𝑣

〉
· 𝑑2ℓ · 𝑛 +

ℓ+1∑
𝑠=1

〈
𝑣, 𝑇2ℓ−2𝑠+2𝑣

〉
· 𝑑2ℓ−𝑠+2 · 𝑛 ± 𝑜(𝑛).

Estimating
〈
𝒗(𝑛) , 𝑀ℓ (𝑡)𝒗(𝑛)〉. By combining the above estimates, the value of

〈
𝒗(𝑛) , 𝑀ℓ (𝑡)𝒗(𝑛)〉 is:

𝑛 · ⟨𝑣, 𝑝(𝑇)𝑣⟩ ± 𝑜(𝑛) where 𝑝 is the univariate polynomial

𝑝(𝜆) ≜ −𝑡 · 𝑑2ℓ−1𝜆2ℓ−1 · (1 − 𝜆2𝑑2) + 𝑡2𝑑2ℓ𝜆2ℓ +
ℓ∑
𝑠=0

𝑑2ℓ−𝑠𝜆2ℓ−2𝑠 − 2𝑡𝑑2ℓ−𝑠+1𝜆2ℓ−2𝑠+1 + 𝑡2𝑑2ℓ−𝑠+1𝜆2ℓ−2𝑠 .

To prove that ⟨𝑣, 𝑝(𝑇)𝑣⟩ is negative for all 𝑣 in span{𝜓1 , . . . ,𝜓𝑟}, it suffices to show it is negative
for 𝑣 = 𝜓1 , . . . ,𝜓𝑟 since those are also eigenvectors of 𝑝(𝑇). In particular, it suffices to show that
𝑝(𝜆2) is negative. Towards doing so, we first simplify the expression for 𝑝(𝜆).

𝑝(𝜆) = (𝜆𝑑)2ℓ ·
(
𝑡2 − 𝑡

𝜆𝑑
· (1 − 𝜆2𝑑2) +

(
1 − 2𝜆𝑑𝑡 + 𝑑𝑡2

)
·
(
1 − (𝜆2𝑑)−ℓ−1

1 − (𝜆2𝑑)−1

))
.

We plug in 𝜆 =

√
1+𝜀
𝑑

, ℓ = 𝐾 ·
(

log(1/𝜀)
𝜀 ∨ 1

)
for some large 𝐾 > 0, and 𝑡 = 1+𝛿√

(1+𝜀)𝑑
for some small

𝛿 > 0 we choose in posterity, which yields:

(𝜆𝑑)2ℓ ·
(
(1 + 𝛿)2
(1 + 𝜀)𝑑 − 1 + 𝛿

(1 + 𝜀)𝑑 + (1 + 𝛿) +
(
1 − 2(1 + 𝛿) + (1 + 𝛿)2

1 + 𝜀

)
· 1 + 𝜀

𝜀
+ 𝑜𝐾(1)

)
= (𝜆𝑑)2ℓ ·

(
𝛿 + 𝛿2

(1 + 𝜀)𝑑 + (1 + 𝛿) + 1 + 𝜀 − 2(1 + 𝛿)(1 + 𝜀) + (1 + 𝛿)2
𝜀

+ 𝑜𝐾(1)
)

= (𝜆𝑑)2ℓ ·
(
𝛿 + 𝛿2

(1 + 𝜀)𝑑 + (1 + 𝛿) +
(
−1 − 2𝛿 + 𝛿2

𝜀

)
+ 𝑜𝐾(1)

)
= (𝜆𝑑)2ℓ ·

(
−𝛿 + 𝛿

(1 + 𝜀)𝑑 + 𝛿2

(1 + 𝜀)𝑑 + 𝛿2

𝜀
+ 𝑜𝐾(1)

)
,
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where 𝑜𝐾(1) denotes a quantity which vanishes as 𝐾 → ∞ regardless of the other parameters.
The above expression can be made negative by choosing 𝛿 small enough, 𝐾 large enough, and
using that 𝑑 ⩾ 1. Since 𝜆2 =

√
1+𝜀
𝑑

for some 𝜀 > 0, for ℓ = 𝑂
(

log(1/𝜀)
𝜀

)
there exists a choice of 𝛿

small enough and an absolute constant 𝛼 > 0 such that 𝑝(𝜆2) ⩽ −𝛼. Consequently, for any 𝑣 in
span{𝜓1 , . . . ,𝜓𝑟}, ⟨𝑣, 𝑝(𝑇)𝑣⟩ ⩽ −𝛼. □

5.2 Outlier eigenspace after degree truncation

In this section we show that by picking the truncation threshold 𝐵 to be large enough, the 𝑟-
dimensional subspace which witnesses the negative eigenvalues for 𝑀𝑮,ℓ (𝑡) also does the same for
the truncated matrix 𝑀𝑮𝐵 ,ℓ (𝑡). In this section, we fix 𝑡 as specified by Theorem 5.1 and suppress
dependence on 𝑡, as the same arguments apply regardless of whether we consider positive or
negative 𝑡.

Lemma 5.14 (Truncation doesn’t affect negative witnesses). Let 𝑮 ∼ SBM𝑛(M,𝜋, 𝑑). For 𝐵 > 0
sufficiently large, the following holds true with probability 1 − 𝑜𝑛(1). For all unit 𝑥 ∈ span{𝜓1 , . . . ,𝜓𝑟},
we have

〈
𝒙(𝑛) , 𝑀𝑮𝐵 ,ℓ 𝒙

(𝑛)
〉
< −𝛼5.14𝑛, where 𝛼5.14 > 0 is an absolute constant.

To facilitate the discussion, we introduce the following notion of an affected vertex.

Definition 5.15 (Affected vertices). Let 𝐺 be a graph. We say that a vertex 𝑣 ∈ 𝑉(𝐺) is affected if its
2ℓ + 1 neighborhood differs in 𝐺 and 𝐺𝐵, otherwise say that 𝑣 is unaffected.

We also need the following concentration inequality, which follows from [BLM15, Lemma 29].

Lemma 5.16. Let 𝑮 ∼ SBM𝑛(M,𝜋, 𝑑). For any vertex 𝑣, let 𝒩ℓ (𝑣) denote the distance-ℓ neighborhood of
𝑣 in 𝑮. Then for any 𝑠 ⩾ 0, there exists universal constants 𝐶, 𝑐 > 0 such that

Pr[∃ℓ : |𝒩ℓ (𝑣)| ⩾ 𝑠𝑑ℓ ] ⩽ 𝐶 exp(−𝑐𝑠).

In other words, the neighborhoods in SBMs look approximately regular. With these ingredients
assembled, we can now prove Lemma 5.14.

Proof of Lemma 5.14. The desired statement follows from Lemma 5.11 once we prove
���〈𝑢𝑢⊤ , 𝑀𝑮,ℓ −𝑀𝑮𝐵 ,ℓ

〉��� ⩽
𝑜𝐵(1), and choose 𝐵 as a large enough constant.

Throughout the proof, we use the following crude estimates: if |𝒩2ℓ+1(𝑣)| ⩽ 𝐿, then ∥𝑀𝑮,ℓ [𝑣]∥1 ⩽

2𝐿, and
𝑀𝑮𝐵 ,ℓ [𝑣]


1
⩽ 𝐵2ℓ+1.

By Hölder’s inequality we have���〈𝑥𝑥⊤ , 𝑀𝑮,ℓ −𝑀𝑮𝐵 ,ℓ

〉��� ⩽ 𝑥𝑥⊤max

𝑀𝑮,ℓ −𝑀𝑮𝐵 ,ℓ


1
,

where
𝑀𝑮,ℓ −𝑀𝑮𝐵 ,ℓ


1

is the entrywise ℓ1 norm. Let 𝑣 be any vertex in 𝑮; we first upper bound

the expected contribution of the 𝑣th row of 𝑀𝑮,ℓ −𝑀𝑮𝐵 ,ℓ to the norm.
By our earlier observation and triangle inequality, we deduce𝑀𝑮,ℓ −𝑀𝑮𝐵 ,ℓ


1
⩽ 2

∑
𝑣

1[𝑣 is affected](|𝒩2ℓ+1(𝑣)| + 𝐵2ℓ+1)
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= 2
∑
𝑣

1[deg(𝑣) > 𝐵]
∑

𝑤∈𝒩2ℓ+1(𝑣)
(|𝒩2ℓ+1(𝑤)| + 𝐵2ℓ+1)

⩽ 2
∑
𝑣

1[deg(𝑣) > 𝐵]|𝒩4ℓ+2(𝑣)|(|𝒩4ℓ+2(𝑣)| + 𝐵2ℓ+1),

since𝒩4ℓ+2(𝑣) ⊇ 𝒩2ℓ+1(𝑤). For ease of notation, introduce the quantity 𝑓 (𝑣) ≜ |𝒩4ℓ+2(𝑣)|(|𝒩4ℓ+2(𝑣)|+
𝐵2ℓ+1). Taking expectations, we see that

E
[𝑀𝑮,ℓ −𝑀𝑮𝐵 ,ℓ


1

]
⩽ 2

∑
𝑣

Pr[deg(𝑣) > 𝐵]E[ 𝑓 (𝑣)| deg(𝑣) > 𝐵]

To proceed, we use the general property that if ℰ is an event, 𝑋 is a random variable with CDF Φ,
and 𝑓 : R → R is increasing, then E[ 𝑓 (𝑋)|ℰ] ⩽ E[ 𝑓 (𝑋)|𝑋 ⩾ Φ−1(Pr[ℰ])]. Take ℰ to be the event{
deg(𝑣) > 𝐵

}
, and set 𝑝 ≜ Pr[deg(𝑣) > 𝐵]. Then as E[𝑋 |𝑋 ⩾ Φ−1(𝑝)] =

E[𝑋1[𝑋⩾Φ−1(𝑝)]]
𝑝 , we can

upper bound the conditional expectation by inverting Lemma 5.16. We see that

Pr[deg(𝑣) > 𝐵]E[ 𝑓 (𝑣)| deg(𝑣) > 𝐵] ⩽
∫ ∞

𝑐 log(𝐶/𝑝)
𝑦𝑑4ℓ+2(𝑦𝑑4ℓ+2 + 𝐵2ℓ+1)Pr[|𝒩4ℓ+2(𝑣)| ⩾ 𝑦𝑑4ℓ+2]𝑑𝑦

⩽ 𝐶

∫ ∞

𝑐 log(𝐶/𝑝)
𝑦𝑑4ℓ+2(𝑦𝑑4ℓ+2 + 𝐵2ℓ+1) exp(−𝑐𝑦)𝑑𝑦

⩽ 𝑂(𝐵8ℓ+4) · 𝑝(log(1/𝑝)2 + log(1/𝑝)),

where the last line follows from from an explicit integral computation. Note that 𝑝(log(1/𝑝)2 +
log(1/𝑝)) is monotonically increasing for 𝑝 < 0.1, so for sufficiently large 𝐵 we can simply set 𝑝 to
be the upper bound furnished by Lemma 5.16. Indeed, since ℓ = 𝑂(1), we conclude that

Pr[deg(𝑣) > 𝐵]E[ 𝑓 (𝑣)| deg(𝑣) > 𝐵] ⩽ 𝑂(𝐵8ℓ+6) exp(−𝑐𝐵/𝑑)
= 𝑜𝐵(1),

for 𝐵 = Ω(ℓ log ℓ ). To summarize, we have just shown that

E
[𝑀𝑮,ℓ −𝑀𝑮𝐵 ,ℓ


1

]
= 𝑜𝐵(1)𝑛

Next, we bound the variance. Since ℓ = 𝑂(1), an Efron-Stein argument as before shows that
the variance of

𝑀𝑮,ℓ −𝑀𝑮𝐵 ,ℓ


1

is 𝑂(𝑛). More precisely, consider rerandomizing edge (𝑖 , 𝑗) ∈ 𝑮.
With probability 1 − 𝑂(1/𝑛), the rerandomized edge agrees with the original edge, in which case
the ℓ1 norm doesn’t change. Otherwise, with probability 𝑂(1/𝑛), we can crudely bound the effect
on the ℓ1 norm by (log 𝑛)ℓ . Hence Var

(𝑀𝑮,ℓ −𝑀𝑮𝐵 ,ℓ


1

)
⩽ 𝑂(𝑛), and the desired concentration

follows. □

As a corollary, we obtain the analogous version of Theorem 5.1 for the truncated matrix 𝑀𝑮𝐵 ,ℓ .

Lemma 5.17 (Spectral gap for truncated matrix). For sufficiently large 𝐵 > 0, with high probability over
𝑮 ∼ SBM𝑛(M,𝜋, 𝑑), the matrix 𝑀𝑮𝐵 ,ℓ has at most 𝑟 + 1 negative eigenvalues, at least 𝑟 of which are upper
bounded by −𝛼5.14.
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Proof. By construction (see Section 4), 𝐻ℓ is a principal submatrix of 𝐻ℓ . This is where we use the
non-standard way in which we truncated the degree matrix to get 𝐻ℓ . It would not have been true
if we had naively truncated 𝐷𝑮𝐵

.
Since𝐻ℓ has at most 𝑟+1 negative eigenvalues, by the Cauchy interlacing theorem, its principal

submatrix 𝐻ℓ has at most 𝑟 + 1 negative eigenvalues. The number of negative eigenvalues of
𝑀𝑮𝐵 ,ℓ = 𝐴

(ℓ )
𝑮𝐵
𝐻ℓ𝐴

(ℓ )
𝑮𝐵

is the same as that of 𝐻ℓ . Hence 𝑀𝑮𝐵 ,ℓ has at most 𝑟 + 1 negative eigenvalues,
and Lemma 5.14 implies that𝑀𝑮𝐵 ,ℓ has at least 𝑟 negative eigenvalues. Now using 𝛼5.14 guaranteed
by the second part of Lemma 5.14, we conclude. □

6 Robust recovery of a subspace

In this section, we consider the following algorithmic problem, which we recall from Section 2.2.

Assumption 6.1. Let𝑀 be a 𝑛×𝑛 matrix with at most 𝑟 negative eigenvalues. Let �̃� be a corrupted
version of 𝑀. Formally, let �̃� = 𝑀 + Δ where Δ is supported on a 𝛾𝑛 × 𝛾𝑛 submatrix, indexed by
𝑄 ⊆ [𝑛]. Further, assume that the ℓ1-norm of every row and column of 𝑀 and Δ are bounded by
𝐾. Observe that this implies that ∥𝑀∥ ⩽ 𝐾 and ∥Δ∥ ⩽ 𝐾.

Problem 2.4. Given the corrupted matrix �̃� as input, give an efficient algorithm to output a
subspace𝑈 with the following properties:

1. Low dimensional. The dimension of𝑈 is 𝑂(𝑟).

2. Delocalized. The diagonal entries of its projection matrix Π𝑈 are bounded by 𝑂
(
𝑟
𝑛

)
.

3. Preserves delocalized part of negative eigenspace. For any 𝐶-delocalized unit vector 𝑦 such
that ⟨𝑦, 𝑀𝑦⟩ < −Ω(1), we have ⟨𝑦,Π𝑈 𝑦⟩ ⩾ Ω(1).

We show that Phase 2 of the algorithm described in Section 4 with �̃� as input indeed solves
Problem 2.4, where a more precise quantitative dependence is articulated below.

Theorem 6.2. For every 𝐶, 𝑣, 𝐾 > 0, the following holds for all sufficiently small 𝛾 > 0: There is an efficient
algorithm that takes in �̃� from Assumption 6.1 along with 𝐶 and 𝜐 as input, and with high probability over
the randomness of the algorithm, outputs a subspace𝑈 with the following properties.

1. The dimension of𝑈 is at most 𝑂
(
𝐾
𝜐 · 𝑟

)
.

2. The diagonal entries of the projection matrix Π𝑈 are at most 𝑂
(
𝐶2𝐾3

𝜐3 · 𝑟𝑛
)
.

3. For any 𝐶-delocalized unit vector 𝑦 such that ⟨𝑦, 𝑀𝑦⟩ < −𝜐, we have ⟨𝑦,Π𝑈 𝑦⟩ ⩾ Ω
( 𝜐
𝐾

)
.

To prove Theorem 6.2, we analyze Phase 2 of the algorithm in Section 4. The precise version of
the algorithm we analyze is stated below.

Algorithm 6.3. The provided input is �̃� according to Assumption 6.1, and real numbers 𝜐 and 𝐶.
Define 𝜂 ≜ 𝜐

48 .
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1. Define �̃�(0) as �̃�. Let 𝑡 as a counter initialized at 0, and letΦ(𝑋) be the number of eigenvalues
of 𝑋 smaller than −𝜂.

2. While Φ(�̃�(𝑡)) > 2𝐾
𝜂 𝑟: compute the projection matrix Π(𝑡) ≜ Π⩽−𝜂(�̃�(𝑡)), choose a random

𝑖 ∈ [𝑛] with probability
Π

(𝑡)
𝑖 ,𝑖

Tr(Π(𝑡)) , and define �̃�(𝑡+1) as the matrix obtained by zeroing out the

𝑖-th row and column of �̃�(𝑡). Then increment 𝑡.

3. Let 𝑇 be the time of termination and let 𝜏 = 2𝐶2𝐾2𝑟
𝜂2 . Compute Π(𝑇), and define the set of

indices 𝑆 as,
𝑆 =

{
𝑖
���Π(𝑇)

𝑖 ,𝑖
⩽

𝜏
𝑛

}
.

Define Π̃ as
(
Π

(𝑇)
𝑆,𝑆

)
⩾𝜂/𝐾

, and compute its span𝑈 .1

4. Output𝑈 .

We first bound on the number of eigenvalues of �̃�(𝑇) smaller than −𝜂, thus establishing Item 1
of Theorem 6.2.

6.1 Proof of Item 1: spectrum of cleaned-up matrix

Lemma 6.4. The matrix �̃�(𝑇) has the following properties:

1. �̃�(𝑇) has at most 2𝐾
𝜂 𝑟 eigenvalues smaller than −𝜂.

2. �̃�(𝑇) is a submatrix �̃�𝑅,𝑅 where |𝑅 | ⩾
(
1 − 4𝐾

𝜂 𝛾
)
𝑛 with high probability over the randomness of the

algorithm.

In service of proving Lemma 6.4, we prove the following statement about the localization of
outlier eigenvectors on the indices of the corruptions 𝑄.

Lemma 6.5. Let 𝑅(𝑡) ⊆ [𝑛] denote the non-zero rows and columns of �̃�(𝑡) and let 𝑄(𝑡) = 𝑄 ∩ 𝑅(𝑡). Then
the following holds:

Tr
(
Π⩽−𝜂

(
�̃�(𝑡)

)
𝑄(𝑡) ,𝑄(𝑡)

)
Tr
(
Π⩽−𝜂

(
�̃�(𝑡)

)) ⩾
𝜂

𝐾
− 𝑟

Tr
(
Π⩽−𝜂

(
�̃�(𝑡)

))
Proof. The desired statement follows from the chain of inequalities below.

−𝜂 · Tr
(
Π⩽−𝜂

(
�̃�(𝑡)

))
⩾ Tr

(
�̃�

(𝑡)
⩽−𝜂

)
=

〈
�̃�(𝑡) ,Π⩽−𝜂

(
�̃�(𝑡)

)〉
=

〈
𝑀𝑅(𝑡) ,𝑅(𝑡) + Δ𝑅(𝑡) ,𝑅(𝑡) ,Π⩽−𝜂

(
�̃�(𝑡)

)〉
1Recall that (𝑋)⩾𝑎 denotes the truncation of the eigendecomposition of 𝑋 for eigenvalues at least 𝑎.
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⩾ Tr
( (
𝑀𝑅(𝑡) ,𝑅(𝑡)

)
⩽0

)
− ∥Δ∥ · Tr

(
Π⩽−𝜂

(
�̃�(𝑡)

)
𝑄(𝑡) ,𝑄(𝑡)

)
⩾ −𝐾𝑟 − 𝐾 · Tr

(
Π⩽−𝜂

(
�̃�(𝑡)

)
𝑄(𝑡) ,𝑄(𝑡)

)
.

In the last step, we used the fact that
𝑀𝑅(𝑡) ,𝑅(𝑡)

 ⩽ ∥𝑀∥ ⩽ 𝐾 and the number of negative eigenvalues
of (𝑀)𝑅(𝑡) ,𝑅(𝑡) is at most the number of negative eigenvalues of 𝑀, namely 𝑟. □

We now prove Lemma 6.4.

Proof of Lemma 6.4. By definition of the iterative process, Item 1 is satisfied on termination, and the
process has to terminate since it cannot run for more than 𝑛 steps.

It remains to prove Item 2. Towards doing so, first observe that the process terminates if all
rows and columns in 𝑄 are zeroed out. Indeed, 𝑀 itself satisfies the termination condition, and
if all the rows and columns in 𝑄 are zeroed out, then the support is a principal submatrix of 𝑀,
which satisfies the termination condition by Cauchy’s interlacing theorem.

Suppose the termination condition is not satisfied at iteration 𝑡, then the 𝑖-th row/column of the
matrix is zeroed out where 𝑖 is chosen with probability Π⩽−𝜂(�̃�(𝑡))𝑖 ,𝑖

Tr
(
Π⩽−𝜂(�̃�(𝑡))

) . Consequently, the probability

that 𝑖 is in 𝑄 is equal to:

Tr
(
Π⩽−𝜂

(
�̃�(𝑡)

)
𝑄(𝑡) ,𝑄(𝑡)

)
Tr
(
Π⩽−𝜂

(
�̃�(𝑡)

)) ,

which by Lemma 6.5 is at least
𝜂

𝐾
− 𝑟

Tr
(
Π⩽−𝜂

(
�̃�(𝑡)

)) .
Since Tr

(
Π⩽−𝜂

(
�̃�(𝑡)

))
counts the number of eigenvalues smaller than −𝜂 and the termination

condition is not satisfied, the above probability is at least 𝜂
2𝐾 .

Since the process terminates if all of𝑄 is zeroed out (in which case𝑅 = 𝑄), a standard martingale
argument shows that the process can last for at most 4𝐾

𝜂 𝛾𝑛 steps with high probability. □

We now proceed to proving Items 2 and 3 of Theorem 6.2.

6.2 Proofs of Items 2 and 3: delocalization and correlation with recovered subspace

The proof of Item 2 is fairly straightforward.

Lemma 6.6. All the diagonal entries of Π𝑈 , the projection matrix onto𝑈 , are bounded by 2𝐶2𝐾3

𝜂3 · 𝑟𝑛 .

Proof. Let 𝑆 be the set of indices whose diagonal entries are at most 𝜏
𝑛 , where 𝜏 = 2𝐶2𝐾2

𝜂2 · 𝑟. By
definition, Π𝑆,𝑆 has entries bounded by 𝜏

𝑛 , and since Π𝑆,𝑆 ⪰ (Π𝑆,𝑆)⩾ 𝜂
𝐾
= Π̃, the diagonal entries of

Π̃ are at most 𝜏
𝑛 . All eigenvalues of Π̃ are at least 𝜂

𝐾 , and hence 𝐾
𝜂 · Π̃ ⪰ Π𝑈 , which gives us a bound

of 𝐾𝜏
𝜂𝑛 on the diagonal entries of Π𝑈 , from which the statement follows. □
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Now, we turn our attention to proving Item 3. We first show that �̃�𝑅,𝑅 = �̃�(𝑇) preserves
negative correlations with delocalized vectors. Henceforth, we assume that the high probability
guarantee from Lemma 6.4 that |𝑅 | ⩾

(
1 − 4𝐾

𝜂 𝛾
)
𝑛 holds.

Lemma 6.7. For unit 𝐶-delocalized vector 𝑦 such that ⟨𝑦, 𝑀𝑦⟩ < −𝜐, we have:
〈
𝑦, �̃�𝑅,𝑅𝑦

〉
< −𝜐

2 .

Proof. By Assumption 6.1 and Lemma 6.4, we can write �̃�𝑅,𝑅 as 𝑀+𝐸1 +𝐸2 where 𝐸1 is supported
on at most

(
4𝐾
𝜂 + 1

)
𝛾𝑛 rows and 𝐸2 is supported on at most

(
4𝐾
𝜂 + 1

)
𝛾𝑛 columns. Consequently,

the entrywise ℓ1 norm of 𝐸 ≜ 𝐸1 + 𝐸2 is at most 10𝐾2

𝜂 𝛾𝑛. The statement follows from the inequality
below for small enough 𝛾:

⟨𝑦, 𝐸𝑦⟩ ⩽ ∥𝑦𝑦⊤∥ max · ∥𝐸∥ 1 ⩽ 𝑂

(
10𝐾2𝐶2

𝜂
𝛾

)
<
𝜐
2 . □

We have the following immediate corollary of Lemma 6.7.

Corollary 6.8. For any 𝐶-delocalized unit vector 𝑦 such that ⟨𝑦, 𝑀𝑦⟩ < −𝜐, we have:〈
𝑦,Π⩽−𝜂

(
�̃�𝑅,𝑅

)
𝑦
〉
⩾

𝜐/2 − 𝜂

2𝐾 − 𝜂
.

Proof. Starting with Lemma 6.7, we get

−𝑣2 >
〈
𝑦, �̃�𝑅,𝑅𝑦

〉
⩾ −

�̃�𝑅,𝑅

 · 〈𝑦,Π⩽−𝜂 (�̃�𝑅,𝑅

)
𝑦
〉
+ (−𝜂) ·

(
1 −

〈
𝑦,Π⩽−𝜂

(
�̃�𝑅,𝑅

)
𝑦
〉)
.

Since the spectral norm of a matrix is at most its maximum ℓ1 norm of a row, ∥�̃�𝑅,𝑅∥ ⩽ 2𝐾.
Substituting in the above inequality and simplifying yields the desired result. □

We are finally ready to establish Item 3.

Lemma 6.9. For any unit 𝐶-delocalized vector 𝑦 such that ⟨𝑦, 𝑀𝑦⟩ < −𝜐,

⟨𝑦,Π𝑈 𝑦⟩ ⩾ Ω

( 𝜐
𝐾

)
.

Proof. We abbreviate Π⩽−𝜂
(
�̃�𝑅,𝑅

)
to Π. Recall 𝜏 = 2𝐶2𝐾2𝑟

𝜂2 from Algorithm 6.3, and let 𝑆 denote
the set of indices where the diagonal entries of Π are at most 𝜏

𝑛 . By Lemma 6.4, Tr(Π) ⩽ 2𝐾
𝜂 𝑟, and

hence |𝑆 | ⩽ 2𝐾𝑟
𝜂𝜏 𝑛. By positivity of Π and Corollary 6.8,

⟨𝑦,Π𝑆,𝑆𝑦⟩ +
〈
𝑦,Π

𝑆,𝑆
𝑦
〉
⩾

1
2 ⟨𝑦,Π𝑦⟩ ⩾

1
2 · 𝜐/2 − 𝜂

2𝐾 − 𝜂
.

The second term of the LHS is equal to〈
𝑦𝑦⊤

𝑆,𝑆
,Π

〉
⩽ Tr

(
𝑦𝑦⊤

𝑆,𝑆

)
· ∥Π∥ ⩽ 𝐶2 |𝑆 |

𝑛
⩽

𝜂

𝐾
,
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and consequently,

⟨𝑦,Π𝑆,𝑆𝑦⟩ ⩾
1
2 · 𝜐/2 − 𝜂

2𝐾 − 𝜂
− 𝜂

𝐾
.

Finally, since Π̃ is obtained by discarding eigenvalues of Π𝑆,𝑆 of magnitude at most 𝜂
𝐾 :〈

𝑦, Π̃𝑦
〉
⩾

1
2 ·

𝜐/2 − 𝜂

2𝐾 − 𝜂
−

2𝜂
𝐾
⩾

𝜐/8 − 3𝜂
𝐾

⩾
𝜐

16𝐾 .

The statement follows since Π̃ ⪯ Π𝑈 . □

6.3 Correlation of subspace with communities

In the model of adversarial corruptions we are considering, a graph𝑮 is sampled from SBM𝑛(M,𝜋, 𝑑).
The graph then undergoes 𝛿𝑛 adversarial edge insertions and deletions, and the resulting graph
𝑮 is handed to us.

In this section, we prove a guarantee on the subspace𝑈 produced by Phase 2 of the algorithm
in Section 4 as a special case of Theorem 6.2.

Lemma 6.10. The subspace 𝑈 produced as output at the end of phase 2 of the algorithm described in
Section 4 has the following guarantees with high probability over the randomness of the stochastic block
model.

1. The dimension of𝑈 is at most 𝑂
(
𝐵2ℓ+3

𝛼5.14
𝑟
)
.

2. All the diagonal entries of Π𝑈 are bounded by 𝑂
(

𝐵6ℓ+9

𝛼3
5.14𝜋min

· 𝑟𝑛
)
.

3. For any unit 𝑥 in span{𝜓1 , . . . ,𝜓𝑟},〈
𝒙(𝑛) ,Π𝑈𝒙(𝑛)

〉
⩾ Ω

( 𝛼5.14

𝐵2ℓ+3 · 𝑛
)
.

To prove Lemma 6.10, we plug in the following into the setup of Theorem 6.2.

𝑀 = 𝑀𝑮𝐵 ,ℓ , Δ ≜ 𝑀𝑮𝐵 ,ℓ
−𝑀𝑮𝐵 ,ℓ , 𝐾 = 2𝐵2ℓ+3, 𝐶 = 1√

𝜋min
, 𝛾 = 8𝐵2ℓ+2𝛿, and 𝜐 = 𝛼5.14.

Our proof of Lemma 6.10 is complete once we verify that:

1. 1√
𝑛
𝒙(𝑛) is 𝐶-delocalized and achieves quadratic form less than −𝜐 with our choice of 𝑀.

2. The choice of 𝛾 is indeed a sufficiently small constant depending on 𝜈, 𝐶, and 𝐾.

3. 𝑀, Δ, and 𝐾 satisfy Assumption 6.1.

Verifying the assumption on 𝒙(𝑛). Note that Lemma 5.14 establishes that the quadratic form of 𝒙(𝑛)
is sufficiently negative, and the delocalization follows from the fact that ∥𝒙(𝑛)∥ ∞ ⩽ ∥𝑥∥ ∞ ⩽

1√
𝜋min

since 𝑥 is a unit vector, along with the fact that ∥𝒙(𝑛)∥ concentrates around
√
𝑛.

Verifying the assumption on 𝛾. The magnitude of 𝛾 can be made sufficiently small by choosing
𝛿 as a sufficient small constant.

Verifying the assumption on 𝑀, Δ, and 𝐾. The below lemma proves why our choice of 𝑀, Δ and
𝐾 satisfy Assumption 6.1.
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Lemma 6.11. The matrixΔ ≜ 𝑀𝑮𝐵 ,ℓ −𝑀𝑮𝐵 ,ℓ
is supported on a 8𝐵2ℓ+2𝛿𝑛×8𝐵2ℓ+2𝛿𝑛 principal submatrix.

Further, each row and column of 𝑀𝑮𝐵 ,ℓ and 𝑀𝑮𝐵 ,ℓ
have ℓ1 norm bounded by 𝐵2ℓ+3, and consequently each

row and column of Δ has ℓ1 norm bounded by 2𝐵2ℓ+3.

Proof of Lemma 6.11. First, observe that 𝐷𝑮𝐵
differs from 𝐷𝑮𝐵

only on rows and columns corre-
sponding to vertices incident to a corrupted edge, of which there are at most 2𝛿𝑛.

Next, we bound the number of vertices whose neighborhoods differ between 𝑮𝐵 and 𝑮𝐵.
Observe that if a vertex 𝑣 has differing neighborhoods between 𝑮𝐵 and 𝑮𝐵, then either 𝑣 is
incident to an edge corruption, or 𝑣 has a neighbor in 𝑮𝐵 ∪ 𝑮𝐵 that is truncated in one of 𝑮𝐵 or
𝑮𝐵 but not the other.

The number of vertices incident to an edge corruption is at most 2𝛿𝑛. We can bound the number
of vertices of the second kind by:∑

𝑣∈𝑉(𝑮)

∑
𝑢∈𝑁𝑮𝐵∪𝑮𝐵

(𝑣)
|1[deg𝑮(𝑢) > 𝐵] − 1[deg𝑮(𝑢) > 𝐵]|

=
∑

𝑢∈𝑉(𝑮)

∑
𝑣∈𝑁𝑮𝐵∪𝑮𝐵

(𝑢)
|1[deg𝑮(𝑢) > 𝐵] − 1[deg𝑮(𝑢) > 𝐵]|

⩽
∑

𝑢∈𝑉(𝑮)
𝐵 · |1[deg𝑮(𝑢) > 𝐵] − 1[deg𝑮(𝑢) > 𝐵]|

⩽ 2𝛿𝐵𝑛

where the last inequality is because deg𝑮(𝑢) can differ from deg𝑮(𝑢) only when 𝑢 is incident
to an edge corruption. Thus, the number of vertices with differing neighborhoods is at most
2𝛿(𝐵 + 1)𝑛 ⩽ 4𝛿𝐵𝑛.

Finally, 𝑀𝑮𝐵 ,ℓ
and 𝑀𝑮𝐵 ,ℓ can differ only on rows and columns corresponding to vertices that

are at most 2ℓ + 1 away in either 𝑮𝐵 or 𝑮𝐵 from a vertex with differing neighborhoods. Since the
degrees in both graphs are bounded by 𝐵, there are at most 8𝛿𝐵2ℓ+3𝑛 such vertices.

The ℓ1 norm of any row 𝑣 of either 𝑀𝑮𝐵 ,ℓ
or 𝑀𝑮𝐵 ,ℓ is bounded by the total number of walks

leaving 𝑣 of length at most 2ℓ + 2, which is at most 𝐵2ℓ+3. Thus, the ℓ1 norm of any row of Δ is at
most 2𝐵2ℓ+3, which completes the proof. □

7 Rounding algorithm

In this section we fill in the details for Section 4.1, which analyzed the rounding guarantees. First,
we review the rounding procedure described in Section 4. From phase 2 of the algorithm, we
obtain a constant-dimensional delocalized subspace 𝑈 which has constant correlation with the
true communities. We process 𝑈 into a new matrix 𝑀′ ∈ R𝑛×𝑟′ which is directly used in the
rounding scheme. Consider the matrix Ψ𝑟′ of the 𝑟′ right eigenvectors of 𝑇 corresponding to 𝜆2,
assumed to be above the KS threshold:

Ψ𝑟′ ≜
[
𝜓1 · · · 𝜓𝑟′

]
.

The rows of Ψ𝑟′ induce row embeddings {𝜙𝑖}𝑖∈[𝑘] into R𝑟′. We then rescale the rows of 𝑀′ by a
uniform factor 𝑐 such that we can express each row of 𝑐 · 𝑀′ as a convex combination of the row
embeddings {𝜙𝑖}𝑖∈[𝑘]. These weights are then used to sample a valid community assignment.
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In Lemma 7.1 we prove that the scaling 𝑐 used to obtain the rounding weights can be taken to
be Ω(

√
𝑛) so long as the subspace𝑈 from phase 2 of the algorithm is delocalized.

Lemma 7.1. Suppose that diag(Π𝑈 ) ⩽ 𝑂( 1
𝑛 ). There exists 𝑐 = Θ(

√
𝑛) such that the scaled rows of 𝑐 ·𝑀′

lie within the convex hull of the 𝜙𝑖’s.

Proof. We first show that we can pick some 𝑐 = Ω(1). Since 𝜓1 = 1 is the trivial eigenvector of 𝑇,
by spectral theory we have that

〈
1,𝜓 𝑗

〉
𝜋
= 0 for 𝑗 ≠ 1. This implies that the convex combination∑𝑘

𝑖=1 𝜋(𝑖)𝜙𝑖 = 0 ∈ R𝑟−1, so the origin is in the convex hull of the row embeddings 𝜙𝑖 . Note that this
alone does not suffice to show that we can take 𝑐 > 0 because the origin might be on the boundary
of the hull.

However, as we’ll show in Lemma 7.2 below, the origin in fact lies in the interior of the convex
hull of the 𝜙𝑖’s, which permits us to take 𝑐 > 0. Furthermore, the minimum distance from the
origin to the boundary is bounded below by a positive constant (possibly depending on 𝑘), because
0 lies in the interior and the 𝜙𝑖’s are constant-sized objects. So we can take 𝑐 = Ω(1). To attain
𝑐 = Θ(

√
𝑛), first recall that diag(Π𝑈 ) ⩽ 𝑂( 1

𝑛 ) by assumption, which implies that diag(Π′
𝑈
) ⩽ 𝑂( 1

𝑛 )
since 𝑈′ ⊆ 𝑈 . By definition, Π𝑈′ = 𝑀′𝑀′⊤, the ℓ2 norm of each row of 𝑀′ is 𝑂( 1√

𝑛
), from which

the desired claim holds. □

Lemma 7.2. Assuming that 𝜋 > 0, we have 0 ∈ int(conv(𝜙1 , . . . , 𝜙𝑘)).

Proof. First, note that since the column eigenvectors 𝜓 𝑗 are orthogonal with respect to ⟨·, ·⟩𝜋, and
𝜋 > 0, the matrix of column eigenvectors has full row rank. On the other hand, we know that
0 ∈ conv(𝜙1 , . . . , 𝜙𝑘) because

∑
𝑖 𝜋(𝑖)𝜙𝑖 = 0. Since the 𝜙𝑖 are linearly independent, they in fact lie

on the boundary of the convex hull and the interior of the convex hull is a nonempty open set in
R𝑟 . As 𝜋 > 0, we have just shown that 0 lies in the interior of the convex hull. □

Acknowledgments

We would like to thank Omar Alrabiah and Kiril Bangachev for diligent feedback on an earlier
draft of this paper.

References

[Abb17] Emmanuel Abbe. Community detection and stochastic block models: recent develop-
ments. The Journal of Machine Learning Research, 18(1):6446–6531, 2017. 3, 29

[AS15] Emmanuel Abbe and Colin Sandon. Community detection in general stochastic block
models: Fundamental limits and efficient algorithms for recovery. In 2015 IEEE 56th
Annual Symposium on Foundations of Computer Science, pages 670–688. IEEE, 2015. 1

[Bas92] Hyman Bass. The Ihara-Selberg zeta function of a tree lattice. International Journal of
Mathematics, 3(06):717–797, 1992. 4

[BKS23] Rares-Darius Buhai, Pravesh K Kothari, and David Steurer. Algorithms approaching
the threshold for semi-random planted clique. In Proceedings of the 55th Annual ACM
Symposium on Theory of Computing, pages 1918–1926, 2023. 3

26



[BLM15] Charles Bordenave, Marc Lelarge, and Laurent Massoulié. Non-backtracking spectrum
of random graphs: community detection and non-regular Ramanujan graphs. In 2015
IEEE 56th Annual Symposium on Foundations of Computer Science, pages 1347–1357. IEEE,
2015. 1, 4, 13, 18

[BMR21] Jess Banks, Sidhanth Mohanty, and Prasad Raghavendra. Local Statistics, Semidefi-
nite Programming, and Community Detection. In Proceedings of the 2021 ACM-SIAM
Symposium on Discrete Algorithms (SODA), pages 1298–1316. SIAM, 2021. 1, 2, 3, 15

[BS95] Avrim Blum and Joel Spencer. Coloring random and semi-random k-colorable graphs.
Journal of Algorithms, 19(2):204–234, 1995. 3

[CLMW11] Emmanuel J Candès, Xiaodong Li, Yi Ma, and John Wright. Robust principal compo-
nent analysis? Journal of the ACM (JACM), 58(3):1–37, 2011. 6

[CSV17] Moses Charikar, Jacob Steinhardt, and Gregory Valiant. Learning from untrusted data.
In Proceedings of the 49th Annual ACM SIGACT Symposium on Theory of Computing, pages
47–60, 2017. 3

[CW04] Moses Charikar and Anthony Wirth. Maximizing quadratic programs: Extending
grothendieck’s inequality. In 45th Annual IEEE Symposium on Foundations of Computer
Science, pages 54–60. IEEE, 2004. 0, 12

[DdHS23] Jingqiu Ding, Tommaso d’Orsi, Yiding Hua, and David Steurer. Reaching kesten-
stigum threshold in the stochastic block model under node corruptions. In The Thirty
Sixth Annual Conference on Learning Theory, pages 4044–4071. PMLR, 2023. 3

[DdNS22] Jingqiu Ding, Tommaso d’Orsi, Rajai Nasser, and David Steurer. Robust recovery
for stochastic block models. In 2021 IEEE 62nd Annual Symposium on Foundations of
Computer Science (FOCS), pages 387–394. IEEE, 2022. 0, 1, 2, 3, 12, 29

[DG06] Jesse Davis and Mark Goadrich. The relationship between precision-recall and roc
curves. In Proceedings of the 23rd International Conference on Machine Learning, pages
233–240, 2006. 30

[DKMZ11] Aurelien Decelle, Florent Krzakala, Cristopher Moore, and Lenka Zdeborová. Asymp-
totic analysis of the stochastic block model for modular networks and its algorithmic
applications. Physical review E, 84(6):066106, 2011. 1

[DMS17] Amit Dembo, Andrea Montanari, and Subhabrata Sen. Extremal cuts of sparse random
graphs. The Annals of Probability, 45(2):1190–1217, 2017. 2

[FK01] Uriel Feige and Joe Kilian. Heuristics for semirandom graph problems. Journal of
Computer and System Sciences, 63(4):639–671, 2001. 3

[FM17] Zhou Fan and Andrea Montanari. How well do local algorithms solve semidefinite
programs? In Proceedings of the 49th Annual ACM SIGACT Symposium on Theory of
Computing, pages 604–614, 2017. 5

27



[GHKM23] Venkatesan Guruswami, Jun-Ting Hsieh, Pravesh K Kothari, and Peter Manohar. Ef-
ficient Algorithms for Semirandom Planted CSPs at the Refutation Threshold. arXiv
preprint arXiv:2309.16897, 2023. 3

[GP23] Yuzhou Gu and Yury Polyanskiy. Uniqueness of BP fixed point for the potts model
and applications to community detection. arXiv preprint arXiv:2303.14688, 2023. 1

[GV16] Olivier Guédon and Roman Vershynin. Community detection in sparse networks
via Grothendieck’s inequality. Probability Theory and Related Fields, 165(3-4):1025–1049,
2016. 1

[HS17] Samuel B Hopkins and David Steurer. Efficient Bayesian estimation from few samples:
community detection and related problems. In 2017 IEEE 58th Annual Symposium on
Foundations of Computer Science (FOCS), pages 379–390. IEEE, 2017. 1

[Iha66] Yasutaka Ihara. On discrete subgroups of the two by two projective linear group over
p-adic fields. Journal of the Mathematical Society of Japan, 18(3):219–235, 1966. 4

[KMM+13] Florent Krzakala, Cristopher Moore, Elchanan Mossel, Joe Neeman, Allan Sly, Lenka
Zdeborová, and Pan Zhang. Spectral redemption in clustering sparse networks. Pro-
ceedings of the National Academy of Sciences, 110(52):20935–20940, 2013. 0, 1, 5, 6

[KS66] Harry Kesten and Bernt P Stigum. Additional limit theorems for indecompos-
able multidimensional galton-watson processes. The Annals of Mathematical Statistics,
37(6):1463–1481, 1966. 1

[KS67] Harry Kesten and Bernt P Stigum. Limit theorems for decomposable multi-
dimensional galton-watson processes. Journal of Mathematical Analysis and Applications,
17(2):309–338, 1967. 1

[LM22] Allen Liu and Ankur Moitra. Minimax rates for robust community detection. In 2022
IEEE 63rd Annual Symposium on Foundations of Computer Science (FOCS), pages 823–831.
IEEE, 2022. 1, 3

[Mas14] Laurent Massoulié. Community detection thresholds and the weak ramanujan prop-
erty. In Proceedings of the forty-sixth annual ACM symposium on Theory of computing,
pages 694–703, 2014. 1, 5

[MMT20] Theo McKenzie, Hermish Mehta, and Luca Trevisan. A new algorithm for the robust
semi-random independent set problem. In Proceedings of the Fourteenth Annual ACM-
SIAM Symposium on Discrete Algorithms, pages 738–746. SIAM, 2020. 3

[MNS14] Elchanan Mossel, Joe Neeman, and Allan Sly. Belief propagation, robust reconstruction
and optimal recovery of block models. In Conference on Learning Theory, pages 356–370.
PMLR, 2014. 1

[MNS18] Elchanan Mossel, Joe Neeman, and Allan Sly. A proof of the block model threshold
conjecture. Combinatorica, 38(3):665–708, 2018. 1, 5

28



[MPW16] Ankur Moitra, William Perry, and Alexander S Wein. How robust are reconstruction
thresholds for community detection? In Proceedings of the forty-eighth annual ACM
symposium on Theory of Computing, pages 828–841, 2016. 1, 2

[MS16] Andrea Montanari and Subhabrata Sen. Semidefinite programs on sparse random
graphs and their application to community detection. In Proceedings of the forty-eighth
annual ACM symposium on Theory of Computing, pages 814–827, 2016. 3

[SKZ14] Alaa Saade, Florent Krzakala, and Lenka Zdeborová. Spectral clustering of graphs
with the bethe hessian. Advances in neural information processing systems, 27, 2014. 0, 1,
5, 6

[SM19] Ludovic Stephan and Laurent Massoulié. Robustness of spectral methods for com-
munity detection. In Conference on Learning Theory, pages 2831–2860. PMLR, 2019.
3

[YP23] Qian Yu and Yury Polyanskiy. Ising model on locally tree-like graphs: Uniqueness of
solutions to cavity equations. IEEE Transactions on Information Theory, 2023. 1

A On defining weak-recovery

One might wonder whether our definition of weak recovery (Definition 4.4) is meaningful. In
Appendix A.1, we argue that our definition is natural and interpret it in various natural settings.
In Appendix A.2, we show that our definition implies the other definitions of weak recovery found
in the literature.

For self-containedness, we reproduce our and previous definitions of weak recovery below.

Definition 4.4 (Weak recovery). Let Ψ ≜
[
𝜓2 · · · 𝜓𝑘

]
∈ R𝑘×(𝑘−1) be the matrix of the top-(𝑘 − 1)

nontrivial eigenvectors of the transition matrix 𝑇 of a stochastic block model.
For 𝜌 > 0, we say that a (randomized) algorithm for producing community assignments

𝑿 ∈ R𝑛×𝑘 achieves 𝜌-weak recovery if〈
E𝑿Ψ ,𝑿Ψ

〉
⩾ 𝜌∥E𝑿Ψ∥ 𝐹∥𝑿Ψ∥ 𝐹 ,

where 𝐵Ψ ≜ (𝐵Ψ)(𝐵Ψ)⊤ for a matrix 𝐵 ∈ R𝑛×𝑘 .

Next, we recall the notion of weak recovery used in [DdNS22]. Note that their metric is
specialized to the symmetric 2-community block model.

Definition A.1 (Weak recovery — symmetric 2-community SBM). We say that an algorithm
achieves weak recovery for the symmetric 2-community SBM if it outputs a labeling �̂� ∈ {±1}𝑛
such that

E
𝒙 ,𝑮

[|⟨𝒙 , �̂�⟩|] ⩾ Ω(𝑛).

Moving beyond the symmetric 2-community setting, we recall a more general notion of weak
recovery present in the literature, which applies to arbitrary 𝑘-community SBMs [Abb17]. To
define it, it is helpful to introduce the shorthand Ω𝑖 = {𝑣 ∈ [𝑛] : 𝑿𝑣 = 𝑖} for 𝑖 ∈ [𝑘].
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Definition A.2 (Weak recovery — nontrivial partition). We say that an algorithm achieves weak
recovery in the sense of nontrivial partition if it outputs with high probability a subset of vertices
𝑆 ⊆ 𝑉 such that there exists communities 𝑖 , 𝑗 ∈ [𝑘] with

|Ω𝑖 ∩ 𝑆 |
|Ω𝑖 |

−
|Ω𝑗 ∩ 𝑆 |
|Ω𝑗 |

⩾ Ω(1).

Note that Definition A.2 implies Definition A.1, by setting �̂�𝑣 = +1 for each 𝑣 ∈ 𝑆 and �̂�𝑣 = −1
for each 𝑣 ∈ 𝑆.

Another reasonable definition would require that the mutual information between 𝑿 and 𝑿 is
nontrivially large.

Definition A.3 (Weak recovery — mutual information). We say that an algorithm achieves weak
recovery in the sense of mutual information if∑

𝑣∈[𝑛]
I(𝑿𝑣 ;𝑿𝑣) ⩾ Ω(𝑛).

By chain rule and monotonicity of entropy, the above guarantee also implies that I(𝑿 ;𝑿 ) ⩾ Ω(𝑛).

A.1 Interpreting our new notion of weak recovery

In this section, we show that if the correlation goes to 1 then we achieve exact recovery on 𝑟

communities, and if the algorithm uses no information about the graph then we do not achieve
𝜌-weak recovery for any 𝜌 > 0 as 𝑛 → ∞.

First, let us establish some elementary formulas which will prove useful. Since Ψ ∈ R𝑘×(𝑘−1) is
the matrix of right eigenvectors of 𝑇 with the all-ones vector removed, we have ΨΨ⊤ = Π−1 −1𝑘1⊤𝑘 .
We therefore have

⟨𝑊Ψ ,𝑿Ψ⟩ = Tr
(
Ψ⊤𝑊⊤𝑿ΨΨ⊤𝑿⊤𝑊Ψ

)
=
Ψ⊤𝑊⊤𝑿Ψ

2
𝐹
.

It’s not hard to see that conditioned on 𝑿 and𝑊 , we have

(𝑊⊤𝑿 )𝑖 𝑗 = 𝑛Pr
𝑣∼[𝑛],𝑿 [𝑿𝑣 = 𝑖 |𝑿𝑣 = 𝑗],

and below we suppress the subscript in the probabilities for sake of conciseness. Notice that the
above formula connects our recovery metric to the confusion matrix, a popular metric for multiclass
classification in machine learning [DG06]. In particular, the confusion matrix 𝑃 ∈ R𝑘×𝑘 is defined
by 𝑃𝑖 𝑗 ≜ Pr[𝑿𝑣 = 𝑖 |𝑿𝑣 = 𝑗], which is exactly the expression on the RHS.

On the other hand, we can calculate

⟨𝑊Ψ ,𝑿Ψ⟩ =
〈
𝑊(Π−1 − 1𝑘1⊤𝑘 )𝑊

⊤ ,𝑿 (Π−1 − 1𝑘1⊤𝑘 )𝑿
⊤〉

=
〈
𝑊Π−1𝑊⊤ ,𝑿Π−1𝑿⊤〉 − 〈

1𝑛1⊤𝑛 ,𝑿Π−1𝑿⊤ +𝑊Π−1𝑊⊤〉 + 𝑛2.

Now using the fact that 1⊤𝑛𝑿 = 𝑛𝜋⊤(1 + �̃�(1/
√
𝑛)), the fact that 𝜋 is a distribution, and writing

𝜋 ≜ 1
𝑛1⊤𝑛𝑊 , we obtain

⟨𝑊Ψ ,𝑿Ψ⟩ =
Π−1/2𝑊⊤𝑿Π−1/2

2

𝐹
− 𝑛2

Π−1/2𝜋
2

2
+ �̃�(𝑛3/2)
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= 𝑛2©«
∑
𝑖 , 𝑗

(𝜋(𝑖)𝜋(𝑗))−1Pr[𝑿𝑣 = 𝑖 ,𝑿𝑣 = 𝑗]2 −
Π−1/2𝜋

2

2

ª®¬ + �̃�(𝑛3/2)

= 𝑛2©«
∑
𝑖 , 𝑗

𝜋(𝑖)−1𝜋(𝑗)Pr[𝑿𝑣 = 𝑖 |𝑿𝑣 = 𝑗]2 −
∑
𝑖

𝜋(𝑖)−1Pr[𝑿𝑣 = 𝑖]2ª®¬ + �̃�(𝑛3/2) (4)

with high probability over 𝑿 .

Exact recovery for 𝑟 communities Suppose there are 𝑟 eigenvalues of 𝑇 above the KS threshold.
Let 𝑼 be the subspace spanned by

{
𝝍(𝑛)

1 , . . .𝝍(𝑛)
𝑟

}
. If we achieve perfect correlation with 𝑼 , then

any orthonormal basis 𝑩 of 𝑼 with 𝑼 = 𝑩𝑩⊤ exactly recovers at least 𝑟 of the communities. This
follows from the fact that 𝑩 has full row rank, so there are 𝑟 rows which are pairwise distinct. From
these rows we can exactly recover 𝑟 communities.

Interpretation of the metric in the symmetric 𝑘-community block model Suppose we are in the
symmetric 𝑘-community block model, with parameter 𝜆, so that 𝜋 = 1

𝑘
1 and 𝑇 = 𝑘𝜆𝐼 + (1 − 𝜆)11⊤

with 𝑎 ≠ 𝑏. The trivial top eigenvector is 1, and for the remaining eigenvectors we can pick any
orthonormal basis in 1⊥. Then ΨΨ⊤ = 𝑘𝐼 − 11⊤, and from Eq. (4), when we achieve weak recovery
we have

1
𝑛2 ⟨𝑊Ψ ,𝑿Ψ⟩ =

∑
𝑖 , 𝑗

(
Pr[𝑿𝑣 = 𝑖 |𝑿𝑣 = 𝑗]2 − Pr[𝑿𝑣 = 𝑖]2

)
+ �̃�(1/

√
𝑛)

⩾ Ω(1).

Therefore, when we succeed at weak recovery in this setting, there exists some 𝑗 such that∑
𝑖

Pr[𝑿𝑣 = 𝑖 |𝑿𝑣 = 𝑗]2 ⩾
∑
𝑖

Pr[𝑿𝑣 = 𝑖]2 +Ω(1).

For example, this correlation is maximized if after permuting the columns of𝑊 we have𝑊 = 𝑋.

Comparing to natural baselines There are two obvious baselines to sanity check our metric for:
labeling vertices randomly according to the prior 𝜋, and deterministically guessing the largest
community. In fact, we will characterize the correlation for any randomized rounding scheme
which is independent of the true assignment. In this case, we have𝑊 = 1𝑤⊤, where 𝑤 is a simplex
vector which is independent of 𝑿 . Then we have

⟨𝑊Ψ ,𝑿Ψ⟩ =
Ψ⊤𝑤1⊤𝑿Ψ

2
𝐹

= 𝑛2Ψ⊤𝑤𝜋⊤Ψ
2
𝐹
(1 + �̃�(1/

√
𝑛))

= �̃�(𝑛3/2),

where the second line holds with high probability over 𝑿 , and the third line holds because we
removed 1 from Ψ. On the other hand, we know that ∥𝑊Ψ∥𝐹∥𝑿Ψ∥𝐹 = Θ(𝑛2), so indeed these
baselines fail to achieve weak recovery.
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Indistinguishability and the KS threshold Finally, suppose that two communities are actually
indistinguishable, in the precise sense that their corresponding rows in 𝑇 are identical. In our
rounding scheme, notice that the rows for Ψ are identical so indeed these two communities are
“merged” from the perspective of the correlation guarantee. In other words, we could have just
reduced the weights𝑊 ∈ R𝑛×𝑘 into weights𝑊 ′ ∈ R𝑛×(𝑘−1) in the obvious way.

This is an appealing property because it is a modest step towards understanding the more
general setting where two communities are computationally distinguishable. For example, one could
consider a 4-community setup where communities 1 and 2 are computationally indistinguishable
(as well as communities 3 and 4), but the pairs of communities (1, 2) and (3, 4) are computationally
distinguishable from each other.

A.2 Comparing the different notions of weak recovery

In this section, we show that our definition of weak recovery Definition 4.4 implies Definitions A.2
and A.3.

Lemma A.4 (Weak recovery implies nontrivial partition). If a recovery algorithm achieves weak recovery
in the sense of Definition 4.4, then it also satisfies Definition A.2.

Proof. If ⟨𝑊Ψ ,𝑿Ψ⟩ ⩾ Ω(𝑛2), then it follows that∑
𝑐,𝑐′∈[𝑘]

𝜋(𝑐)−1𝜋(𝑐′)Pr[𝑿𝑣 = 𝑐 |𝑿𝑣 = 𝑐′]2 −
∑
𝑐

𝜋(𝑐)−1Pr[𝑿𝑣 = 𝑐]2 ⩾ Ω(1),

and we conclude that there must exist some 𝑐′ such that∑
𝑐

𝜋(𝑐)−1(Pr[𝑿𝑣 = 𝑐 |𝑿𝑣 = 𝑐′]2 − Pr[𝑿𝑣 = 𝑐]2) ⩾ Ω(1).

It follows that there must exist some 𝑖 ∈ [𝑘] for which Pr[𝑿𝑣 = 𝑖 |𝑿𝑣 = 𝑐′] ⩾ Pr[𝑿𝑣 = 𝑖] +Ω(1).
After relabeling the communities for 𝑿 , using any 𝜎 ∈ 𝑆𝑘 which swaps 𝑐′ and 𝑖, we can assume
that in fact

Pr[𝑿𝑣 = 𝑖 |𝑿𝑣 = 𝑖] ⩾ Pr[𝑿𝑣 = 𝑖] +Ω(1) (5)

Moreover, with 𝑖 as defined above, since Pr[𝑿𝑣 = 𝑖] = ∑
𝑐 Pr[𝑿𝑣 = 𝑖 |𝑿𝑣 = 𝑐]𝜋(𝑐), by averaging

there must exist some 𝑗 ≠ 𝑖 such that

Pr[𝑿𝑣 = 𝑖 |𝑿𝑣 = 𝑖] ⩾ Pr[𝑿𝑣 = 𝑖 |𝑿𝑣 = 𝑗] +Ω(1). (6)

With Eq. (6) in hand, it is easy to see how to define the set 𝑆 for the partition in Definition A.2. In
particular, set 𝑆 =

{
𝑣 : �̂�𝑣 = 𝑖

}
, and pick the same 𝑖 and 𝑗 as in the above guarantee. □

Lemma A.5 (Weak correlation implies nontrivial mutual information). If ⟨𝑊Ψ ,𝑿Ψ⟩ ⩾ Ω(𝑛2), then∑
𝑣∈[𝑛] I(𝑿𝑣 ;𝑿𝑣) ⩾ Ω(𝑛).

Proof. Notice that Eq. (5) and another averaging argument implies that there exists a subset 𝑆 of
Ω(𝑛) vertices such that for each 𝑣 ∈ 𝑆,

Pr𝑿𝑣 ,𝑿 ,𝑮[𝑿𝑣 = 𝑖 |𝑿𝑣 = 𝑖] ⩾ Pr𝑿𝑣 ,𝑿 ,𝑮[𝑿𝑣 = 𝑖] +Ω(1),
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where we have used the subscript to emphasize that the probability no longer samples a random
𝑣 ∼ [𝑛]. Now by Pinsker’s inequality it suffices to lower bound 𝑑TV(𝑝𝑿𝑣 ,𝑿𝑣 , 𝑝𝑿𝑣𝑝𝑿𝑣 ). Since 𝜋(𝑖) ⩾
Ω(1), the above inequality implies that 𝑑TV(𝑝𝑿𝑣 ,𝑿𝑣 , 𝑝𝑿𝑣𝑝𝑿𝑣 ) ⩾ Ω(1), so we conclude that

I(𝑿𝑣 ;𝑿𝑣) ⩾ Ω(1).

Summing up over all 𝑣 and using the fact that mutual information is nonnegative, we conclude
that I(𝑿 ;𝑿 ) ⩾ Ω(𝑛). □
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