
CS 496 Homework 1

Due Date: October 28

Instructions

This problemset might be harder than intended so feel free to email me to ask for hints! When
you’re done, email me your solutions with an email titled CS496 HW1 solutions (your name).

1 Spectral graph theory basics + ε

Let G be a graph on n vertices, average degree d and maximum degree dmax, and let AG be its
unnormalized adjacency matrix.

1. Prove the following inequalities:

λmax(AG) ⩾ d

λmax(AG) ⩽ dmax

λmax(AG) ⩾
√

dmax

2. Prove that there always exists an orientation of edges in G such that the out-degree of every
vertex is at most λmax(AG).

3. Let G be a d-regular connected graph such that λ2(AG) > λ3(AG). Let f2 be the second
eigenvector of G, and let G2 be the graph obtained by deleting all edges uv such that
sign( f2(u)) ̸= sign( f2(v)). Prove that G2 has exactly two connected components.

Hint: Use the variational characterization of eigenvalues and eigenvectors.

4. Let G and H be graphs. We define the Cartesian product of two graphs G × H as the graph
whose vertex set is V(G)× V(H), and edges described by {(a, b), (a, c)} for a ∈ V(G) and
{b, c} ∈ E(H), and {(a, c), (b, c)} for c ∈ V(H) and {a, b} ∈ E(G).

Prove that the eigenvalues of AG×H are described by {λ + µ : λ ∈ Spec(AG), µ ∈ Spec(AH)}.

5. Write down all the eigenvalues of the d-dimensional Boolean hypercube.

6. Recall the notion of a 2-lift of a graph G from Lecture 7. Prove that the spectrum of a 2-lift
Gσ of G described by the signing σ is equal to Spec(AG) ⊔ Spec(AG,σ) where AG,σ is the
corresponding signed adjacency matrix.
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2 Markov chains and eigenvalues

Let G be a graph, and let PG be its random walk transition matrix, where PG[u, v] = 1
deg(u) .

1. Prove that if G is connected, then it has a unique stationary distribution π.

2. Prove that π satisfies the detailed balance condition: i.e., for any pair of vertices u and v,
π(u) · PG[u, v] = π(v) · PG[v, u].

3. Suppose ν0 is a probability distribution on V(G), and ν1 is the distribution of sampling x ∼ ν0

and then taking a random step to y according to PG. Define f0 = ν0
π and f1 = ν1

π . Prove that
f1 = PG f0.

4. The measure of how close two probability distributions µ and ν are is the total variation
distance, which has several equivalent definitions. Prove that all of these definitions are equal.

dTV(µ, ν) := max
E events

|µ(E)− ν(E)| = 1
2 ∑

x
|µ(x)− ν(x)| = 1

2
Ex∼µ

∣∣∣∣1 − ν

µ
(x)

∣∣∣∣ .

5. Prove that dTV(µ, ν) ⩽
√

1
2 Varx∼µ

ν
µ (x).

6. Let νt be the distribution obtained by running a t-step random walk initialized from a vertex
sampled from ν0. Prove that if max{λ2(PG), |λn(PG)|} < 1 − ε, then for every ν0:

dTV(νt, π) ⩽

√
1
2
· (1 − ε)t · 1

mini π(i)
.

3 Lossless expanders and error-correcting codes

We say that a (c, d)-biregular n-vertex bipartite graph G with left vertex set L, right vertex set R,
and edge set E is an ε-one-sided lossless expander if there is a constant η (possibly depending on c, d
and ε, but independent of n) such that for every S ⊆ L with |S| ⩽ η|L|, we have:

|N(S)| ⩾ (1 − ε) · c · |S|,

where N(S) ⊆ R refers to the neighborhood of S.

1. Prove that a random (c, d)-biregular graph drawn from the configuration model is an ε-one-
sided lossless expander with high probability for some ε = oc,d(1).

2. Let c < d, and consider the linear subspace C ⊆ FL
2 of all f such that for all v ∈ R,

∑u∼Gv f (u) = 0. Prove that C is a good code.

3. Design a linear time algorithm that takes as input a “corrupted” codeword, i.e., y ∈ FL
2 such

that there is an x with Hamming distance at most η|L|/2 close to y, and outputs the closest
codeword x.

4. In this part, we will see how to construct a lossless expander from a good spectral expander.

Let’s take the following fact for granted: for every K, C ∈ N, there is an explicit infinite family
of graphs that are (K, C)-biregular, and λ2(G) ⩽

√
K − 1 +

√
C − 1 for any G in this family.

2



Let H be a (c, d)-biregular graph with C vertices on the left and D vertices on the right that is
a oC,D(1)-lossless expander.

The routed product Z of G and H is defined by taking G, creating D copies v(1), . . . , v(D) of
every vertex v in R(G), and then placing a copy of H between the C neighbors u1, . . . , uC of v
in L(G) and v(1), . . . , v(D).

Prove that Z is a lossless expander.

4 On forbidden subgraphs

Let G be a d-regular Ramanujan graph on n vertices.

1. Use the expander mixing lemma to prove that there is a constant η > 0 (possibly depending
on d) such that for every set S with at most ηn vertices has vertex expansion ≈ d

4 . I.e. we
have:

|NG(S)|
|S| ⩾

d
4
− o(d)

where NG(S) denotes the neighborhood of a set S within G.

2. Given a set S of vertices, use G[S] to denote the induced subgraph of G on the vertices S.
Prove that for any set S, we have:

λmax(AG[S]) ⩽
d|S|

n
+ λ2(AG) .

3. Improve on the bound from part 1. and prove that:

|NG(S)|
|S| ⩾

d
2
− o(d) .

Hint: I don’t think this is achievable by just using the expander mixing lemma. Try the following
style of proof strategy instead. Assume for contradiction that S fails to exhibit the desired vertex
expansion. Consider an ℓ-ball Sℓ around S ∪ NG(S) for some large constant ℓ, and exhibit a test vector
v that witnesses that the subgraph G[Sℓ] has a large eigenvalue and use 2. to prove that this shows a
violation of the second eigenvalue bound.
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