CS 496 Lecture 11: Sampling via Markov Chains 101

Sidhanth Mohanty

October 22, 2025

1 Some sampling problems

Consider the following sampling problems.

1. Random spanning tree. Given a connected graph G = (V, E), sample a uniformly random
spanning tree T.

2. Hardcore model on independent sets. On a graph G of maximum degree A, sample an
independent set I C V with probability

(1) o< AL

where A > 0 is a parameter known as the fugacity.

3. Ising model from a quadratic form. Given a symmetric matrix M € R"*", sample x from
{#£1}" according to the distribution

(x) o< exp (% xTMx) :
The key motivating question for us is: when is a sampling problem tractable or intractable? The

complexity of the above three sampling problems turns out to be well-understood.

1. Random spanning trees. It turns out that it is easy to sample a uniformly random spanning
tree from any graph.

2. Hardcore model. This problem undergoes a computational phase transition—there is an efficient

when A < A (A) = %A—_lgj ~ %, and the problem is NP-hard above that threshold.

3. Ising model. This problem undergoes a similar computational phase transition—it is easy
when Amax (M) — Amin(M) < 1, and NP-hard otherwise.

In each of these cases, the algorithm to sample from these distributions is to run some simple
local Markov chain for poly(n) time. The template that these Markov chains use is very versatile
and generalizes far beyond the above examples.



2 The down-up walk and Glauber dynamics

Definition 2.1 (Down-up walk). Let F C ([Z}) be a family of k-element subsets of [n]. A single step
of the k-down-up walk from S € F:

i. (down) pick x € S uniformly and set S’ < S\ {x};

ii. (up) picky € [n]\ S’ such that S’ U {y} € F, and move to S” = S U {y}.
If each T € F has a nonnegative weight w(T), the up-step chooses y with probability proportional
to w(S' U {y}) among feasible options.

Remark 2.2. For the problem of choosing a uniformly random spanning tree in a graph, F is the
set of all spanning trees. A step deletes a random edge of the current tree, disconnecting the tree
into two components, and then adds a random edge that reconnects these components.

A basic property one would want out of this Markov chain is that its stationary distribution is
indeed the target distribution that one is interested in sampling from. For the down-up walk, this
is easily verified by checking that the Markov chain satisfies the detailed balance condition.

Claim 2.3 (Detailed balance = stationarity). If a distribution 7w and Markov kernel P satisfy
n(x)P(x = y) = n(y)P(y — x) for all x, y,
then 7 is a stationary distribution of P.
Proof. One may verify that 7' P =Y, w(x)P(x — y) = ¥, ©(y)P(y — x) = 7(y). O
A related Markov chain on product domains is Glauber dynamics

Definition 2.4 (Glauber dynamics). Let y be a distribution on X" for some alphabet ~. A single
step of the Glauber dynamics Markov chain is given as follows:

i. pick v € [n] uniformly at random;
ii. resample x, from the conditional marginal u( - | x_).

Remark 2.5. We can express Glauber dynamics as a down-up walk where x € X" is identified with
the set { (v, x,) : v € [n]}. Dropping (v, x,) and adding (v, o) according to the conditional marginal
realizes Glauber dynamics as a down-up step.

A nice property of Markov chains whose stationary distribution satisfies detailed balance
(known as time-reversible Markov chains)

Now that we have established canonical Markov chains whose stationary distribution is the
target distribution we are interested in sampling from, it remains to understand why running the
Markov chain for a short time horizon actually samples, i.e., the mixing time of the Markov chain.

3 Mixing times of random walks

In general, the distribution of the state of a Markov chain gets closer to the stationary distribution
over time. How close should the distribution we are sampling from be to the stationary distribution
for us to declare that our sampling algorithm was successful?
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No distinguisher should be able to tell the distribution v being sampled from apart from the
target distribution p.

This requirement is formally articulated by the total variation distance (colloquially known as the
“TV distance”) between a pair of distributions:
drv(p,v) = max |Pry,[E] — Pr,,[£]].
& events
The event can be thought of as the space of all elements u such that (1) > v(u), and the dis-
tinguisher that outputs y when this event occurs, and v otherwise is optimal. In particular, no
distinguisher can tell the two distributions apart with advantage better than the TV distance

One nice fact about the TV distance is it can be characterized as the ¢; distance between the two
distributions.

1
drv(p,v) = EHV — vy

For a Markov chain with transition matrix P and stationary distribution y. Denote the eigenval-
uesof Pby 1= A1 > Ay > -+ > Ajq| = —1 and let the spectral gap be ¢ := 1 — max{[A2|, [Aq[}

Theorem 3.1 (Spectral gap = rapid mixing). If the second-largest eigenvalue in magnitude is 1 — 6,
then for any initial distribution v and any t > 0,

1

2 min

||1/Pt—7'(||TV < (1—5)t.

Equivalently, to achieve total variation distance at most ¢ it suffices to take

Proof idea. Expand % — 1 in the eigenbasis and note that P multiplies the orthogonal component by
at most 1 — 0 each step. (Full details omitted; it’s on the homework.) O

4 Spectral independence

For a distribution y, the essence of spectral independence is that if all pairwise correlations in y (and
also all partially pinned versions of y) small, there is a large spectral gap for Markov chains such as
the down-up walk and Glauber dynamics.

Definition 4.1 (Influence matrix). Let y be a distribution on F C ([Z}). Define the influence matrix
i ¢ R"" by
Y = PrsylieS|jeS] — PrslieS].

For a pinning T C [n], |T| < k —1, let u|T denote y conditioned on T C S.

Definition 4.2 (Spectral independence). A family y is k-spectrally independent if for every pinning T
in the support of y,
H‘PMTHOP <K.



Theorem 4.3 (Spectral independence = rapid mixing). Let u be a distribution on F C ([Z}). If for
every pinning T the influence matrix satisfies H‘PV‘THOP < O(1), then the down-up walk has spectral gap at
least n=O®)  hence mixes in n°®) time.

The use of this conceptual framework for analyzing the mixing time of Markov chains began in
the breakthrough work of Anari, Liu, Oveis Gharan, and Vinzant [ALGV19] where they proved
that the down-up walk mixes rapidly on the bases of a matroid (see also the work of Anari, Liu,
and Oveis Gharan [ALG21] for an application to the hardcore model). Ever since, this framework
has been developed further, and the most evolved form is in the localization schemes framework of
Chen and Eldan [CE22]. The roots of Theorem 4.3 can be traced back to the local-to-global method
of Garland; a weak version of Theorem 4.3 was proved by Kaufman and Oppenheim [KO20], and
the current version is due to Alev and Lau [AL20].
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