CS 496 Lecture 13: Trickle-Down in High-Dimensional Expanders

Sidhanth Mohanty

October 29, 2025

Some of the material here has been adapted from a note I wrote a couple years ago [Moh22].

1 Spectral independence and link expansion

Last lecture, we saw how to prove that the down-up walk has a spectral gap from link expansion. In this lecture, we will first recall the local-to-global theorem from last lecture and obtain the spectral independence theorem from two lectures ago as a corollary.

Recall the following two statements.

Theorem 1.1. Given a d-dimensional simplicial complex X, define γ_j as $\min_{U \in j\text{-links}} \gamma(M_U)$. Then for $0 \le k \le d-1$:

$$\gamma(P_k^{\Delta}) = \gamma(P_{k+1}^{
abla}) \geqslant rac{1}{k+2} \prod_{j=-1}^{k-1} \gamma_j.$$

Theorem 1.2 (Spectral independence \Rightarrow rapid mixing). Let μ be a distribution on $\mathcal{F} \subseteq \binom{[n]}{k}$. If for every pinning T the influence matrix satisfies $\|\Psi^{\mu|T}\|_{op} \leqslant \min\left\{\kappa, \frac{d-|T|}{2}\right\}$, then the down-up walk has spectral gap at least $k^{-O(\kappa)}$, hence mixes in $k^{O(\kappa)}\log n$ time.

We now prove Theorem 1.2 using Theorem 1.1.

Proof of Theorem 1.2. Recall that the influence matrix of a distribution μ is the $n \times n$ matrix:

$$\Psi^{\mu|T}[i,j] = \mathbf{Pr}_{S \sim \mu|T}[i \in S|j \in S] - \mathbf{Pr}_{S \sim \mu|T}[i \in S].$$

The random walk matrix P_U of the 1-skeleton of a link of T is given by:

$$P_{U}[i,j] = \frac{1}{k - |T|} \cdot \frac{\mathbf{Pr}_{S \sim \mu | T}[i,j \in S]}{\mathbf{Pr}_{S \sim \mu | T}[i \in S]}.$$

Observe that $\Psi^{\mu|T}$ can be obtained by taking P_U^{\top} and subtracting a rank-1 component that is self-adjoint under π . Since eigenvalues interlace under rank-1 updates, the spectral radius of $\Psi^{\mu|T}$ is at least $\lambda_2(P_U)$. The desired statement then follows by plugging in Theorem 1.1.

2 Trickle-down theorem

In this lecture, we will cover the *trickle-down theorem*—a method to lower bound the spectral gaps of all links in a complex by proving a lower bound on the spectral gap of only the top-level links. This was first proved by [Żuk03] (see also [BdlHV08, Theorem 5.6.1] for the sharpest version of this statement, and the work of Oppenheim [Opp18] for the formulation used in the modern era).

Theorem 2.1. Given a d-dimensional simplicial complex X, $k \le d-2$, and a lower bound γ on the spectral gap of all k-links. Then for every (k-1)-link U, either $\gamma(M_U) = 0$ or $\gamma(M_U) \ge 2 - \frac{1}{\gamma}$.

Proof. It suffices to prove the statement for k=0. In particular, we assume that the link of every vertex has spectral gap at least γ and show that this implies that the graph underlying S either has spectral gap at least $2-\frac{1}{\gamma}$ or is disconnected.

We do so via the following chain of inequalities:

$$\begin{split} \langle f, L_0^{\Delta} f \rangle_{\pi_0} &= \mathbf{E}_{\{v,w\} \sim L_0^{\Delta}} \left[\frac{(f_v - f_w)^2}{2} \right] \\ &= \mathbf{E}_{u \sim \pi_0} \mathbf{E}_{\{v,w\} \sim M_u} \left[\frac{(f_v - f_w)^2}{2} \right] \\ &\geqslant \gamma \mathbf{E}_{u \sim \pi_0} \mathbf{E}_{v,w \sim \pi_u} \left[\frac{(f_v - f_w)^2}{2} \right] \\ &= \gamma \langle f, (\mathrm{Id} - (P_0^{\Delta})^2) f \rangle \end{split} \tag{by time reversibility)}.$$

Suppose L_0^{Δ} has spectral gap α , then the spectral gap of Id $-(P_0^{\Delta})^2$ is $1-(1-\alpha)^2=2\alpha-\alpha^2$, and consequently the above is at least:

$$\alpha \gamma (2-\alpha) \mathbf{E}_{v,w \sim \pi_0} \left[\frac{(f_v - f_w)^2}{2} \right].$$

Let f^* be a nonconstant vector that achieves the spectral gap of L_0^{Δ} . Then:

$$\alpha \mathbf{E}_{v,w \sim \pi_0} \left\lceil \frac{(f_v^* - f_w^*)^2}{2} \right\rceil \geqslant \alpha \gamma (2 - \alpha) \mathbf{E}_{v,w \sim \pi_0} \left\lceil \frac{(f_v^* - f_w^*)^2}{2} \right\rceil$$

and consequently

$$\alpha \geqslant \alpha \gamma (2 - \alpha)$$
.

Since we know $\alpha \ge 0$, to satisfy the above inequality either $\alpha = 0$ or $\alpha \ge 2 - \frac{1}{\gamma}$.

Recall the notation $\gamma_j(X) := \min_{U \text{ } j\text{-link in } X} \gamma(M_U)$ for a simplicial complex X. As an immediate corollary of Theorem 2.1, we have:

Corollary 2.2. Let X be a simplicial complex such that the 1-skeleton of every j-link is connected for $j \le k-1$. Then:

$$\gamma_j\geqslant 2-rac{1}{\gamma_{i+1}}$$
 .

Corollary 2.3. The translation in the second eigenvalue world is $\lambda \to \frac{\lambda}{1-\lambda}$.

Let *X* be a 2D complex. Observe that the trickle-down recurrence is nontrivial if $\gamma_{j+1} > \frac{1}{2}$. We cover some examples below of when the trickle-down theorem can be used to prove expansion in graphs.

Example 2.4 (Clique). A single edge has a spectral gap of 2, and via trickle-down, the triangle has spectral gap 3/2, the 4-clique has spectral gap 4/3 and so on. In particular, one can use this to derive the optimal spectral gap of $\frac{n}{n-1}$ for the *n*-clique.

Example 2.5 (Complete multipartite complex). Consider the simplicial complex where the vertices are split into d + 1 parts V_1, \ldots, V_{d+1} , and then one considers the d-dimensional complex obtained by taking all faces of size d + 1 with exactly one element per V_i . Much like the clique, one can recursively trickle-down until the link looks like a complete bipartite graph, which has a spectral gap of 1, which implies that all complete multipartite graphs have spectral gap 1.

References

- [BdlHV08] Bachir Bekka, Pierre de la Harpe, and Alain Valette. *Kazhdan's property (T)*, volume 11. Cambridge university press, 2008. 2
- [Moh22] Sidhanth Mohanty. Local-to-global theorems for high-dimensional expansion. 2022. Available at https://sidhanthm.com/pdf/local-to-global.pdf. 1
- [Opp18] Izhar Oppenheim. Local spectral expansion approach to high dimensional expanders part I: Descent of spectral gaps. *Discrete & Computational Geometry*, 59(2):293–330, 2018.
- [Żuk03] Andrzej Żuk. Property (T) and Kazhdan constants for discrete groups. *Geometric & Functional Analysis GAFA*, 13(3):643–670, 2003. 2