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Some of the material here has been adapted from a note I wrote a couple years ago [Moh22].

1 Spectral independence and link expansion

Last lecture, we saw how to prove that the down-up walk has a spectral gap from link expansion. In
this lecture, we will first recall the local-to-global theorem from last lecture and obtain the spectral
independence theorem from two lectures ago as a corollary.

Recall the following two statements.

Theorem 1.1. Given a d-dimensional simplicial complex X, define γj as minU∈j-links γ(MU). Then for
0 ⩽ k ⩽ d − 1:

γ(P∆
k ) = γ(P∇

k+1) ⩾
1

k + 2

k−1

∏
j=−1

γj.

Theorem 1.2 (Spectral independence ⇒ rapid mixing). Let µ be a distribution on F ⊆ ([n]k ). If for

every pinning T the influence matrix satisfies ∥Ψµ|T∥op ⩽ min
{

κ, d−|T|
2

}
, then the down-up walk has

spectral gap at least k−O(κ), hence mixes in kO(κ) log n time.

We now prove Theorem 1.2 using Theorem 1.1.

Proof of Theorem 1.2. Recall that the influence matrix of a distribution µ is the n × n matrix:

Ψµ|T[i, j] = PrS∼µ|T[i ∈ S|j ∈ S]− PrS∼µ|T[i ∈ S] .

The random walk matrix PU of the 1-skeleton of a link of T is given by:

PU [i, j] =
1

k − |T| ·
PrS∼µ|T[i, j ∈ S]
PrS∼µ|T[i ∈ S]

.

Observe that Ψµ|T can be obtained by taking P⊤
U and subtracting a rank-1 component that is self-

adjoint under π. Since eigenvalues interlace under rank-1 updates, the spectral radius of Ψµ|T is at
least λ2(PU). The desired statement then follows by plugging in Theorem 1.1.
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2 Trickle-down theorem

In this lecture, we will cover the trickle-down theorem—a method to lower bound the spectral gaps
of all links in a complex by proving a lower bound on the spectral gap of only the top-level links.
This was first proved by [Żuk03] (see also [BdlHV08, Theorem 5.6.1] for the sharpest version of
this statement, and the work of Oppenheim [Opp18] for the formulation used in the modern era).

Theorem 2.1. Given a d-dimensional simplicial complex X, k ⩽ d − 2, and a lower bound γ on the spectral
gap of all k-links. Then for every (k − 1)-link U, either γ(MU) = 0 or γ(MU) ⩾ 2 − 1

γ .

Proof. It suffices to prove the statement for k = 0. In particular, we assume that the link of every
vertex has spectral gap at least γ and show that this implies that the graph underlying S either has
spectral gap at least 2 − 1

γ or is disconnected.
We do so via the following chain of inequalities:

⟨ f , L∆
0 f ⟩π0 = E{v,w}∼L∆

0

[
( fv − fw)2

2

]
= Eu∼π0E{v,w}∼Mu

[
( fv − fw)2

2

]
⩾ γEu∼π0Ev,w∼πu

[
( fv − fw)2

2

]
= γ⟨ f , (Id − (P∆

0 )
2) f ⟩ (by time reversibility).

Suppose L∆
0 has spectral gap α, then the spectral gap of Id − (P∆

0 )
2 is 1 − (1 − α)2 = 2α − α2, and

consequently the above is at least:

αγ(2 − α)Ev,w∼π0

[
( fv − fw)2

2

]
.

Let f ∗ be a nonconstant vector that achieves the spectral gap of L∆
0 . Then:

αEv,w∼π0

[
( f ∗v − f ∗w)2

2

]
⩾ αγ(2 − α)Ev,w∼π0

[
( f ∗v − f ∗w)2

2

]
and consequently

α ⩾ αγ(2 − α).

Since we know α ⩾ 0, to satisfy the above inequality either α = 0 or α ⩾ 2 − 1
γ .

Recall the notation γj(X) := minU j-link in X γ(MU) for a simplicial complex X. As an immediate
corollary of Theorem 2.1, we have:

Corollary 2.2. Let X be a simplicial complex such that the 1-skeleton of every j-link is connected for
j ⩽ k − 1. Then:

γj ⩾ 2 − 1
γj+1

.

Corollary 2.3. The translation in the second eigenvalue world is λ → λ
1−λ .
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Let X be a 2D complex. Observe that the trickle-down recurrence is nontrivial if γj+1 > 1
2 . We

cover some examples below of when the trickle-down theorem can be used to prove expansion in
graphs.

Example 2.4 (Clique). A single edge has a spectral gap of 2, and via trickle-down, the triangle has
spectral gap 3/2, the 4-clique has spectral gap 4/3 and so on. In particular, one can use this to
derive the optimal spectral gap of n

n−1 for the n-clique.

Example 2.5 (Complete multipartite complex). Consider the simplicial complex where the vertices
are split into d + 1 parts V1, . . . , Vd+1, and then one considers the d-dimensional complex obtained
by taking all faces of size d + 1 with exactly one element per Vi. Much like the clique, one can
recursively trickle-down until the link looks like a complete bipartite graph, which has a spectral
gap of 1, which implies that all complete multipartite graphs have spectral gap 1.
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