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In today’s lecture, we will cover the result of Anari, Liu, Oveis Gharan, and Vinzant [ALOGV19]
that the down-up walk on bases of a matroid (e.g. the down-up walk on spanning trees of a graph)
mixes rapidly.

1 The down–up walk on spanning trees has a spectral gap

Let G = (V, E) be a connected graph on |V| = n vertices. Denote by T (G) the set of spanning trees
of G. The down–up walk (also known as the basis exchange walk) on T (G) is the Markov chain that,
from a current tree T ∈ T (G),

1. chooses an edge e ∈ T uniformly at random and deletes it, creating two connected compo-
nents of T \ {e}, and then

2. chooses uniformly at random an edge f ∈ E \ T that reconnects those two components
(equivalently, one for which (T \ {e}) ∪ { f } is a spanning tree), and moves to T′ := (T \
{e}) ∪ { f }.

The stationary distribuition of this Markov chain with transition matrix P is the uniform distribution
on T (G). We are interested in obtaining a handle on the spectral gap γ(P) = 1 − λ2(P).

The simplicial complex of spanning trees. Let X be the simplicial complex of the forests of G. In
particular, consider the k-dimensional simplicial complex for k = n − 2 obtained by defining its
k-faces as spanning trees of G, and obtaining lower dimensional faces via subset closure. Recall
that the link of a face U ∈ X is described by:

LinkX(U) = {σ \ U : σ ∈ X, U ⊆ σ} .

Recall that we used P∇
k to denote the transition matrix of the down-up walk on k-faces.

Recall the notation γ(LinkX(U)) to denote the spectral gap of the weighted random walk on
the 1-skeleton of LinkX(U), as well as

γj := min
U∈X(j)

γ(LinkX(τ)) (−1 ⩽ j ⩽ k − 2).

Two lectures ago, we proved the following local-to-global theorem of Alev and Lau [AL20].
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Theorem 1.1 (Local-to-global). We have:

γ(P∇
k ) ⩾

1
k + 1

k−2

∏
j=−1

γj.

In the setting of spanning trees, we show that γj ⩾ 1 for all −1 ⩽ j ⩽ k − 2, which immediately
yields via Theorem 1.1 that

γ(P∇
k ) ⩾

1
k + 1

=
1

n − 1
.

To this end, we use the trickle-down theorem.

Lemma 1.2 (Trickle-down). Suppose that for some j ⩽ k − 2 every j-link has spectral gap at least γ > 0,
and every (j − 1)-link is connected. Then every (j − 1)-link has spectral gap at least 2 − 1

γ .

Our proof strategy to prove the desired lower bound on γj is to prove that γk−2 ⩾ 1, and
verify that all links are connected. The lower bound on γj is then an immediate consequence of
Lemma 1.2.

Structure of links. Fix a forest U ∈ X and consider LinkX(U). For two distinct components C, C′

of U, set
EC,C′ := { e ∈ E : e has one endpoint in C and the other in C′ }.

Then the 0-faces of LinkX(U) are precisely the edges in
⊔

C ̸=C′ EC,C′ , and two vertices e, e′ of the link
span an edge (i.e. can be added simultaneously to U while maintaining acyclicity) if and only if
they lie in different parts EC,C′ . Thus the 1-skeleton of LinkX(U) is a (possibly weighted) complete
multipartite graph with parts {EC,C′}. In particular, it is connected whenever there are at least two
parts.

At dimension-(k − 2), the picture simplifies further. If |U| = n − 3 then U has exactly three
components A, B, C and LinkX(U) is (the 1-skeleton of) a complete tripartite graph with parts EA,B,
EA,C, and EB,C where all the edges have weight equal to 1.

A spectral lemma for complete multipartite links. We next analyze the eigenvalues of dimension-
(k − 2) links.

Lemma 1.3. For every (k − 2)-face U, the link-walk on LinkX(U) has spectral gap at least 1.

Proof. When |U| = n − 3, the forest U has exactly three components A, B, C, and LinkX(U) is a
complete tripartite graph with parts EA,B, EA,C, EB,C. Let e and f be edges in different parts. Since
U ∪ {e, f } is a spanning tree, the weight of {e, f } in the link is equal to 1. In particular, the link is the
complete tripartite graph with all weights equal to 1. The unnormalized adjacency matrix is equal to
11⊤− 1EA,B 1⊤EA,B

− 1EB,C 1⊤EB,C
− 1EA,C 1⊤EA,C

. Since this matrix is of the form rank-1 matrix−PSD matrix,
it has at most one positive eigenvalue. This structure remains after normalizing too, so the random
walk matrix of the link has at most 1 positive eigenvalue, which implies that the spectral gap must
be at least 1.

Finally, in order to apply the trickle-down theorem (Lemma 1.2), we observe that the 1-skeletons
of all links are connected.

Lemma 1.4. For the complex on spanning trees of a connected graph G, every link is connected.
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Proof. Any link is a complete multipartite graph whose parts are the edge-sets EC,C′ between distinct
components C, C′ of the forest τ. If there are at least two parts, such a graph is connected.

Combining Theorem 1.1 with the above observations implies that the down-up walk mixes
rapidly.

Theorem 1.5 (Spectral gap for the down–up walk on spanning trees). Let G be a connected graph on
n vertices, and let P be the down–up walk on T (G). Then

γ(P) ⩾
1

n − 1
.

Equivalently, the (non-lazy) walk contracts L2(µ)-deviations by a factor at most 1 − 1
n−1 in each step.

Remark 1.6 (Matroids and random bases). The argument extends to any matroid. As a special case
distinct from the spanning tree example, consider the following setup. Let v1, . . . , vm ∈ Rn span
Rn. Consider the down-up walk on on k = n-sized subcollections that are bases and span Rn. One
can similarly partition the elements of a (k − 2)-link into equivalence classes and verify that the
link is the complete multipartite graph on those equivalence classes and have spectral gap at least
1. Via the trickle-down and local-to-global theorems, one may establish a spectral gap of 1/n on the
down-up walk in this instance.
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