CS 496 Lecture 17: Equiangular lines and multiplicity of λ_2

Sidhanth Mohanty

November 19, 2025

1 Equiangular lines

Fix an angle $\theta \in [0, \pi]$ and write $\alpha := \cos \theta \in [-1, 1]$. A set $\mathcal{L} = \{\ell_1, \dots, \ell_n\}$ of lines in \mathbb{R}^d is *equiangular with angle* θ if one can orient each line by a unit vector $v_i \in \ell_i$ so that

$$\langle v_i, v_j \rangle \in \{ \pm \alpha \}$$
 for all $i \neq j$.

Let $N(d, \alpha)$ denote the largest n for which such a set exists in \mathbb{R}^d .

The punchline of today's lecture is that $N(d, \alpha)$ is controlled by an apparently unrelated parameter: the multiplicity of the second largest adjacency eigenvalue of a bounded-degree graph, which was proved by [JTY⁺21].

Theorem 1.1. *Let* $\alpha \in (0,1)$ *and set*

$$\lambda = \frac{1 - \alpha}{2\alpha}.$$

(i) Let k be the smallest integer such that there exists a connected graph H on k vertices with spectral radius $\rho(A_H) = \lambda$. Then:

$$N(d,\alpha) = (1 \pm o(1)) \frac{k}{k-1} d.$$

(ii) If λ is not the spectral radius of any finite connected graph, then

$$d \leq N(d, \alpha) \leq d + o(d)$$
.

1.1 From equiangular lines to Gram matrices and graphs

Given a configuration $\{v_1, \ldots, v_n\}$ with $\langle v_i, v_j \rangle \in \{\pm \alpha\}$, define a graph G on vertex set [n] by declaring an edge $\{i, j\}$ exactly when $\langle v_i, v_j \rangle = -\alpha$. Let A_G be its adjacency matrix and J the all-ones matrix. Then the $n \times n$ *Gram matrix*

$$M = \left(\langle v_i, v_j \rangle \right)_{i,j=1}^n = (1 - \alpha)I_n - \alpha(2A_G - J) = (1 - \alpha)I_n - 2\alpha A_G + \alpha J. \tag{1}$$

Conversely, any symmetric positive semidefinite matrix of the form (1) with 1's on the diagonal is a Gram matrix of unit vectors with the desired inner products.

For later use, note the convenient parameterization

$$(1-\alpha)I_n - 2\alpha A_G = 2\alpha (\lambda I_n - A_G), \quad \text{where } \lambda = \frac{1-\alpha}{2\alpha}.$$
 (2)

Proposition 1.2 (Graph-based construction). Let $\alpha \in (0,1)$ and $\lambda = (1-\alpha)/(2\alpha)$. Suppose there exists a connected graph H on k vertices with spectral radius $\rho(A_H) = \lambda$, and let k be minimum with this property. For any integer $m \ge 1$, consider the graph G that is the disjoint union of m copies of H (so n = mk). Then the matrix M in (1) is positive semidefinite and

$$corank(M) = m - 1, \quad rank(M) = m(k - 1) + 1.$$

Consequently one obtains an equiangular set of n = mk lines in \mathbb{R}^d with

$$d = \text{rank}(M) = m(k-1) + 1,$$
 so $n = \frac{k}{k-1}d - \frac{k}{k-1}$.

In particular $N(d, \alpha) \geqslant \frac{k}{k-1} d - O(1)$.

Proof. Observe that $(1 - \alpha)I - 2\alpha A_G$ is PSD and has corank m. Adding a rank-1 matrix αJ decreases the corank by at most 1 — in particular, the rank is m(k-1)+1. Interpreting M as a Gram matrix yields the construction of equiangular lines.

When λ is not the spectral radius of any graph adjacency matrix, we simply resort to the construction $M = (1 - \alpha)I + \alpha J$, which is PSD.

We now focus on the upper bound, and assume the case where $\lambda = (1 - \alpha)/(2\alpha)$ is *not* the spectral radius of any finite connected graph. The strategy is to show that every equiangular configuration induces a bounded-degree graph G whose adjacency matrix has the number λ as a second eigenvalue, and that the multiplicity of the second eigenvalue in bounded-degree graphs is o(n).

From vectors to a bounded-degree graph. Let $\{v_i\}_{i=1}^n$ be unit vectors realizing n equiangular lines at angle θ in \mathbb{R}^d .

Claim 1.3 (Switching to bounded "negative degree"). There exists a choice of signs $\sigma_i \in \{\pm 1\}$ such that, writing $w_i = \sigma_i v_i$ and defining G by placing an edge $\{i, j\}$ iff $\langle w_i, w_j \rangle = -\alpha$, the maximum degree satisfies

$$\Delta(G) \leq \Delta_{\alpha}$$

for some constant Δ_{α} depending only on α (not on n or d).

With this switching in place, our Gram matrix is still $M = (1 - \alpha)I - 2\alpha A_G + \alpha J \succeq 0$. By PSDness of M and Cauchy's interlacing theorem, A_G has at most one eigenvalue strictly larger than λ .

It follows that every other appearance of λ in the spectrum must be as a *second* eigenvalue. Thus, we have:

$$n - d \leqslant \operatorname{corank}(M) \leqslant 1 + \operatorname{mult}_{G}(\lambda_{2}),$$
 (3)

where λ_2 denotes the (global) second-largest eigenvalue of A_G (counted with multiplicity). Thus to prove $n \leq d + o(d)$ it suffices to show:

Theorem 1.4. For every fixed Δ and every n-vertex connected graph G with $\Delta(G) \leq \Delta$,

$$\operatorname{mult}_G(\lambda_2) = o(n).$$

It remains to prove Theorem 1.4.

Heavy vertices and their clustering. Let $B_r(v)$ denote the radius-r neighborhood around a vertex v, and write $\rho(X)$ for the spectral radius of the adjacency matrix of a graph X.

Definition 1.5 (Heavy vertices). A vertex v is r-heavy if $\rho(G[B_r(v)]) > \lambda_2(G)$.

Lemma 1.6 (Heavy vertices are clustered). *If* u and v are r-heavy and $dist(u,v) \ge 2r+1$, then A_G has at least two eigenvalues strictly larger than $\lambda_2(G)$, a contradiction. Hence all r-heavy vertices lie inside a single ball of radius 2r, and therefore there are at most Δ^{2r} heavy vertices.

Proof. When $\operatorname{dist}(u,v) \geqslant 2r+1$, the induced balls $B_r(u)$ and $B_r(v)$ are vertex-disjoint. Let x_u (resp. x_v) be unit Perron eigenvectors of $A_{G[B_r(u)]}$ (resp. $A_{G[B_r(v)]}$). Then x_u and x_v have disjoint supports and Rayleigh quotients $> \lambda_2(G)$. By the variational characterization of eigenvalues, A_G has two eigenvalues $> \lambda_2(G)$. The bound on the number of heavy vertices is immediate from the degree bound of Δ .

Delete all r-heavy vertices; by Lemma 1.6 this removes at most $\Delta^{2r} = o(n)$ vertices if $r = c \log n$ with c > 0 small. In the remaining graph G° , every r-ball has spectral radius at most $\lambda_2(G)$.

Choose $r' = c' \log \log n$. Let $S \subseteq V(G^{\circ})$ be a *maximal* r'-separated set, i.e., any pair of vertices in S are at least r' apart, and every vertex of G° lies within distance $\leq r'$ of S. Such an S exists with

$$|S| \leqslant \frac{n}{\min_{v \in V(G^{\circ})} |B_{r'}(v)|} \leqslant \frac{n}{\Theta(r')} = o(n),$$

We will use the notation $H := G^{\circ} \setminus S$.

Lemma 1.7. Let L := 2r'. For every $v \in V(H)$,

$$(A_H^L)_{nn} \leqslant (A_{G^{\circ}}^L)_{nn} - 1.$$

Consequently, for each v the spectral radius of the adjacency matrix of the ball $H[B_r(v)]$ satisfies

$$\rho \big(H[B_r(v)] \big)^L \leqslant \rho \big(G^{\circ}[B_r(v)] \big)^L - 1 \leqslant \lambda_2(G)^L - 1. \tag{4}$$

Proof. For a vertex $v \in V(H)$, let $s \in S$ be some vertex at distance- $\leq r'$. A length- $\leq r'$ path between v and s concatenated with its reverse forms a closed walk of length exactly $2t \leq 2r'$ through s. All such walks vanish upon deleting S, so the diagonal entry of $A^{2r'}$ drops by at least 1, which completes the proof.

Trace method and multiplicity bound. For even t, trace(A_H^t) = $\sum_v (A_H^t)_{vv}$ counts closed t-walks. Since any closed t-walk from v stays within $B_t(v)$,

$$(A_H^t)_{vv} = (A_{H[B_t(v)]}^t)_{vv} \leqslant \rho(H[B_t(v)])^t.$$

Apply this with t = r and use (4):

$$\operatorname{trace}(A_H^r) \, \leqslant \, \sum_{v \in V(H)} \rho \big(H[B_r(v)] \big)^r \, \leqslant \, |V(H)| \cdot \big(\lambda_2(G)^L - 1 \big)^{r/L}.$$

On the other hand, by Cauchy interlacing, deleting o(n) vertices reduces the multiplicity of λ_2 by at most o(n): if $m = \text{mult}_G(\lambda_2)$ and $m_H = \text{mult}_H(\lambda_2)$, then $m_H \ge m - o(n)$. Therefore,

$$m_H \lambda_2(G)^r \leqslant \operatorname{trace}(A_H^r) \leqslant |V(H)| \cdot (\lambda_2(G)^L - 1)^{r/L}$$
.

Rearranging,

$$m_H \leqslant |V(H)| \cdot \left(1 - \lambda_2(G)^{-L}\right)^{r/L}. \tag{5}$$

Now take $r = c \log n$ and $L = 2r' = \Theta(\log \log n)$. Since $\lambda_2(G) \ge 1$ and $L \to \infty$, the factor $(1 - \lambda_2(G)^{-L})^{r/L}$ tends to 0 faster than any $1/\operatorname{polylog}(n)$. Hence $m_H = o(n)$ and therefore $m = m_H + o(n) = o(n)$, proving Theorem 1.4.

Finally, inserting $\operatorname{mult}_G(\lambda_2) = o(n)$ into (3) yields

$$n \leqslant d + 1 + o(n)$$
, hence $n \leqslant d + o(d)$,

which completes the proof of Theorem 1.1(ii).

References

[JTY⁺21] Zilin Jiang, Jonathan Tidor, Yuan Yao, Shengtong Zhang, and Yufei Zhao. Equiangular lines with a fixed angle. *Annals of Mathematics*, 194(3):729–743, 2021. 1