CS 496 Lecture 20: Matrix concentration and graph sparsification

Sidhanth Mohanty

November 20, 2025

1 Spectral sparsification of graphs

Let *G* be an undirected graph on *n* vertices, and let L_G denote the Laplacian of *G*. For every $x \in \mathbb{R}^V$ we have the quadratic form

$$x^{\top}L_{G}x = \sum_{e=\{u,v\}\in E(G)} (x_{u} - x_{v})^{2}.$$

Definition 1.1 (Spectral sparsifier). For $\varepsilon \in (0,1)$, a weighted subgraph $H = (V, E_H, w)$ is a $(1 \pm \varepsilon)$ -spectral sparsifier of G if

$$(1-\varepsilon)L_G \leq L_H \leq (1+\varepsilon)L_G$$
.

In this lecture, we will construct such an H with only $O(n \log n/\epsilon^2)$ edges, based on the work of Spielman and Srivastava [SS08].

1.1 Importance sampling for PSD matrices and effective resistances

Before specializing to graphs, consider a finite collection of positive semidefinite (PSD) matrices M_1, \ldots, M_m and their sum

$$M = \sum_{e=1}^{m} M_e.$$

The basic importance sampling trick is:

- Choose probabilities $p_1, \ldots, p_m > 0$.
- Sample each index e independently: let $z_e \sim \text{Bernoulli}(p_e)$.
- Form the random sum

$$\widehat{\boldsymbol{M}} = \sum_{e=1}^m \frac{z_e}{p_e} M_e.$$

Then

$$\mathbf{E}\widehat{M} = M$$
.

In particular, \widehat{M} is an unbiased estimator of the sum.

We now specialize the M_e to be the normalized edge Laplacians of a graph, and henceforth specialize these linear operators to the space orthogonal to the span of the indicator vectors of connected components.

For each edge *e*, define

$$M_e = L_G^{-1/2} L_e L_G^{-1/2}$$
.

Each M_e is PSD and

$$\sum_{e\in F}M_e=\mathbb{I}.$$

Define the *effective resistance* of an edge *e* as

$$R_e \coloneqq ||M_e||$$
.

We may verify that $R_e \leqslant 1$ since $0 \leq M_e \leq \mathbb{I}$.

We will use the following key bound.

Observation 1.2. $\sum_{e} R_e \leqslant n$.

Proof. Since each
$$M_e$$
 is rank-1, we have $R_e = \operatorname{tr}(M_e)$ and $\sum_e R_e = \operatorname{tr}(\sum_e M_e) = \operatorname{tr}(\mathbb{I}) \leqslant n$.

We now construct a random sparsifier H by sampling edges of G. Fix parameters $\varepsilon \in (0,1)$ and a sufficiently large constant C > 0. For each edge $e \in E$ define the sampling probability

$$p_e = \min\left\{1, \frac{C\log n}{\varepsilon^2} R_e\right\}.$$

We then form a random weighted subgraph H according to the importance sampling scheme described by the above family of p_e . By Observation 1.2, the number of edges in H is bounded by $O(n \log n/\varepsilon^2)$ with high probability.

To prove that H is a spectral sparsifier of G, we use the matrix Chernoff bound (see, e.g., [Tro15]).

Theorem 1.3 (Matrix Chernoff). Let X_0 be a deterministic positive semidefinite matrix, and let X_1, \ldots, X_N be independent random self-adjoint matrices in $\mathbb{R}^{d \times d}$ such that

$$0 \leq X_k \leq R \cdot \mathbb{I}$$
 for $k = 1, ..., N$,

for some scalar R > 0. Define

$$\mathbf{Y} = X_0 + \sum_{k=1}^N \mathbf{X}_k, \qquad \mu_{\min} = \lambda_{\min}(\mathbf{E}\,\mathbf{Y}), \qquad \mu_{\max} = \lambda_{\max}(\mathbf{E}\,\mathbf{Y}).$$

Then for $0 \le \varepsilon \le 1$ *,*

$$\mathbb{P}\left[\lambda_{\min}(\mathbf{Y}) \leqslant (1-\varepsilon)\mu_{\min}\right] \leqslant d \cdot \exp\left(-\frac{\varepsilon^2}{2}\frac{\mu_{\min}}{R}\right),$$

$$\mathbb{P}\left[\lambda_{\max}(Y) \geqslant (1+\varepsilon)\mu_{\max}\right] \leqslant d \cdot \exp\left(-\frac{\varepsilon^2}{3}\frac{\mu_{\max}}{R}\right).$$

We now analyze L_H using matrix Chernoff. Consider the normalized random matrix:

$$\mathbf{Z} = L_G^{-1/2} L_H L_G^{-1/2}$$

By design, $\mathbf{E} \mathbf{Z} = \mathbb{I}$.

We now calculate a uniform bound satisfied by the summands X_e corresponding to edge e satisfies

$$0 \preceq X_e \preceq \frac{1}{p_e} M_e$$
 ,

so

$$\lambda_{\max}(\mathbf{X}_e) \leqslant \frac{1}{p_e} \lambda_{\max}(M_e) \leqslant \frac{1}{p_e} R_e.$$

By the definition of p_e , whenever $p_e < 1$ we have $p_e = \frac{C \log n}{\varepsilon^2} R_e$, and hence

$$\lambda_{\max}(X_e) \leqslant \frac{\varepsilon^2}{C \log n}.$$

If $p_e = 1$, then $X_e = M_e$ deterministically, and can be accounted for by the X_0 term.

Thus, we can apply the matrix Chernoff bound with $R = \frac{\varepsilon^2}{C \log n}$, which then tells us that with high probability $(1 - \varepsilon)\mathbb{I} \leq M \leq (1 + \varepsilon)\mathbb{I}$.

Rearranging this inequality yields $(1 - \varepsilon)L_G \leq L_H \leq (1 + \varepsilon)L_G$.

References

- [SS08] Daniel A Spielman and Nikhil Srivastava. Graph sparsification by effective resistances. In Proceedings of the fortieth annual ACM symposium on Theory of computing, pages 563–568, 2008. 1
- [Tro15] Joel A Tropp. An introduction to matrix concentration inequalities. *Foundations and Trends*® *in Machine Learning*, 8(1-2):1–230, 2015. 2