
CS 496 Lecture 3: Expander Codes

Sidhanth Mohanty

September 23, 2025

Today, we will wrap up the analysis of majority dynamics from the previous lecture (see notes
for Lecture 2 for a full proof), and then we will see an application of expander graphs to the
construction of good error-correcting codes. The material in this lecture is based on the work of
Sipser and Spielman [SS02].

1 Error-correcting codes 101

The setup here is that Alice wants to send a k-bit message to Bob, but the channel she is sending the
message over undergoes some amount of corruption by an adversary: i.e., the adversary has some
budget of bitflips they are allowed to perform on the message. Therefore, Alice must introduce
some amount of redundancy in her messages. The question is: how can Alice encode her message
so as to not add too much redundancy, and yet have her encoded message be resilient to adversarial
errors.

This is formalized via the following notion.

Definition 1.1. A code C is a subset of {0, 1}n. We say the rate of C is r(C) := log |C|
n , and the distance

of C is ∆(C) := minx,y∈C dist(x, y), where dist measures the Hamming distance.

Remark 1.2. Alice can pick some function Enc that maps the bijectively maps the space {0, 1}k

of possible messages to some C of size 2k, and if she wishes to send x to Bob, she sends him the
bits of Enc(x). If the number of corruptions is < ∆(C)/2, then Bob can recover Alice’s message by
rounding his corrupted word y to the closest codeword y∗, which has to equal Enc(x), and then
computing Enc−1(y∗).

To get a sense of what rate and distance are acceptable to us, we define the notion of a good code.

Definition 1.3 (Good code). We say that a family of codes Cn is a family of good codes if there are
absolute constants r0 > 0 and ∆0 > 0 such that r(Cn) ⩾ r0 and ∆(Cn) ⩾ ∆0. I.e. the rate and
distance do not depend on n.

One of the first things you are told about codes is that a random code is a good code! However,
it is impossible to succinctly describe a random linear code, or give an efficient algorithm for
encoding and decoding.

1

It turns out that a random linear code is also a good code—i.e. the code C is a random k-
dimensional subspace of Fn

2 . The proof of this fact will be relegated to homework—the distance of
random linear codes is related to the expansion of an associated Cayley graph over Fn

2 !
A random linear code is a step up from a fully random code, because for one, it is efficiently

storeable, and there is an efficient encoding algorithm too: consider a n× k matrix A whose columns
span the code, and simply encode a message x with Ax. However, it is completely unclear how
one efficiently decodes a corrupted codeword from a random linear code, and it is even possibly a
hard problem.

Today, we will see a construction of a good code based on expander graphs!

2 Codes from expanders

Fix a d-regular λ-spectral expander G = (V, E) on |V| = n vertices (so |E| = m = dn
2), where λ < ε

is a sufficiently small constant. Let C0 ⊆ {0, 1}d be a linear “small code” of rate r0 > 1/2 and
(absolute) distance at least 2εd.

Definition of the code. We define a “big code” C ⊆ {0, 1}E whose coordinates are indexed by the
edges of G. For x ∈ {0, 1}E and a vertex v ∈ V, fix an arbitrary ordering of the edges incident to v
as (v, 1), . . . , (v, d), and write

x|N(v) =
(
x(v,1), . . . , x(v,d)

)
∈ {0, 1}d.

Then x ∈ C iff for every v ∈ V we have the local constraint x|N(v) ∈ C0.

Linearity and rate. Since C0 is a linear subspace, there is a parity-check matrix A ∈ {0, 1}(1−r0)d×d

with C0 = {z ∈ {0, 1}d : Az = 0}. Imposing Az = 0 independently at each vertex gives (1 − r0)d
linear constraints per vertex, for a total of (1 − r0)dn linear equations over F2. Because m = dn

2
variables live on edges while constraints live on vertices, standard counting (and independence of
local checks up to edge sharing) yields

dim(C) ⩾ m − (1 − r0)dn = dn
(
r0 − 1

2

)
,

so

r(C) =
dim(C)

m
⩾ 2r0 − 1.

In particular, C has good rate whenever r0 > 1/2.

Distance via expansion. A basic fact about linear codes is that the distance is equal to the
minimum Hamming weight codeword in the space.

Let x ∈ C be a nonzero codeword, and let F ⊆ E be the support of x. Let S := V(F) be the set
of vertices incident to at least one edge of F. Because each local view x|Γ(v) is a codeword of C0 of
distance ⩾ 2εd, we have, for every v ∈ S,

degF(v) ∈ {0} ∪ [2εd, d],

and in particular degF(v) ⩾ 2εd for all v ∈ S. Summing over v ∈ S and using ∑v∈S degF(v) = 2|F|,

2|F| ⩾ (2εd) |S| ⇒ |S| ⩽ |F|
εd

.

2

Every edge in F has both endpoints in S, so |F| ⩽ e(S). By the expander mixing lemma and λ < ε,

|F| ⩽ e(S) ⩽
d

2n
|S|2 + λd

2
|S| ⩽ d

2n

(
|F|
εd

)2

+
εd
2

(
|F|
εd

)
=

|F|2
2ε2nd

+
|F|
2

.

Rearranging gives
|F|
2

⩽
|F|2

2ε2nd
⇒ |F| ⩾ ε2nd = 2ε2 m.

Hence every nonzero codeword has Hamming weight at least 2ε2 times the blocklength m, and so
the (relative) distance of C satisfies

δ(C) ⩾ 2ε2.

References

[SS02] Michael Sipser and Daniel A Spielman. Expander codes. IEEE transactions on Information
Theory, 42(6):1710–1722, 2002. 1

3

	1 Error-correcting codes 101
	2 Codes from expanders

