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1 Cheeger’s inequalities

Recall the Cheeger inequalities from an earlier lecture, where ΦE(G) is the edge expansion or
conductance.

Theorem 1.1 (Cheeger inequalities, [AM85]). The following inequality relating the second eigenvalue
and edge expansion is true:

2ΦE(G) ⩾ 1 − λ2(PG) ⩾
ΦE(G)2

2
.

Recall that we proved the first inequality in an earlier lecture, that a large spectral gap forces
good expansion. Today, we will prove the second inequality—i.e. when the spectral gap is small,
then the witness eigenvector can be “rounded” to a low conductance set.

Before we get into the proof of the hard direction of Cheeger inequalities, let us discuss an
interpretation for what the second eigenvector is doing. Define the Laplacian as LG = I − PG, and
the Dirichlet form as E( f , f ) = ⟨ f , LG f ⟩π = Euv∼G( f (u)− f (v))2.

The eigenvector v2 corresponding to the eigenvalue λ2 can then be interpreted as:

v2 = arg min
f :V(G)→R, f nonconstant

E( f , f )
Varπ f

.

Rounding via threshold cuts. Let f be a (real) eigenvector for λ2 with Eπ f = 0 and f ̸≡ 0. We
may scale f so that it lives in an interval of width 1.

To round f to a partition of the vertices of the graph with a low conductance cut in between, we
find a threshold τ and partition the graph based on whether a vertex lies to the left or right of τ.

For the sequel, for τ ∈ [0, 1], define Sτ := {u : f (u) ⩾ τ}.
We will show the existence of a threshold that finds a low conductance cut via a probabilistic

argument. More concretely,

min
τ

ΦE(Sτ) = min
τ

Pruv∼E(G)[u ∈ Sτ, v /∈ Sτ]

π(Sτ)

⩽ min
τ

Pruv∼E(G)[u ∈ Sτ, v /∈ Sτ]

π(Sτ)(1 − π(Sτ)
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⩽
Eτ∼DPruv∼E(G)[u ∈ Sτ, v /∈ Sτ]

Eτ∼Dπ(Sτ)(1 − π(Sτ)

where the last inequality uses the fact that ∑i ai
∑i bi

⩾ mini
ai
bi

as long as (ai) and (bi) are nonnegative
sequences.

Thus, we need to:

• Design a distribution D.

• Analyze the numerator and denominator of the above expression.

It turns out that a good distribution for us to use is the distribution with density pD(t) = 2|t|.
We now analyze the cut size, and the set size.

Expected numerator. We can analyze the numerator as follows. First observe:

Eτ∼DPruv∼E(G)[u ∈ Sτ, v /∈ Sτ] = Euv∼E(G)Prτ∼D [u ∈ Sτ, v /∈ Sτ]

For a fixed choice of u and v, observe that

Prτ∼D[u ∈ Sτ, v /∈ Sτ] = |sign( f (v)) · f (v)2 − sign( f (u)) · f (u)2| .

Thus,

Euv∼E(G)Prτ∼D[u ∈ Sτ, v /∈ Sτ] = Euv∼E(G)|sign( f (v)) · f (v)2 − sign( f (u)) · f (u)2|
⩽ Euv∼E(G)| f (u)− f (v)| · (| f (u)|+ | f (v)|)

⩽
√

Euv∼E(G)( f (u)− f (v))2 · Euv∼E(G)(| f (u)|+ | f (v)|)2

⩽ 2
√
E( f , f ) · Varπ[ f ] .

Expected denominator. Note that

π(Sτ)
(
1 − π(Sτ)

)
= Pru,v∼π[u ∈ Sτ, v /∈ Sτ].

Taking expectation over τ gives:

Eτ∼Dπ(Sτ)
(
1−π(Sτ)

)
=

1
2

Eu,v∼π|sign( f (u)) · f (u)2 − sign( f (v)) · f (v)2| ⩾ 1
2

Eu,v∼π( f (u)− f (v))2 ,

which is equal to Varπ f .
Thus, we get that:

min
τ

Φ(Sτ) ⩽
2
√
E( f , f ) · Varπ f

Varπ f
= 2

√
1 − λ2

In particular, we have proved ΦE(G)2

4 ⩽ 1 − λ2.

Remark 1.2. The tight examples for Cheeger are described by the hypercube and the sphere. The
second eigenvector space of the d-dimensional Boolean hypercube is the set of all linear functions,
and the spectral gap can be calculated to be 1/d. The sparsest cut can also be showed to be a
“coordinate cut”, i.e., choose S as the set of all x ∈ {0, 1}d such that x(1) = 0. The conductance of
the coordinate cut can also be seen to equal 1/d, which essentially shows that the “easy direction”
of Cheeger can essentially be made tight.

The sphere witnesses the tightness for the other direction. The eigenvectors are yet again linear
functions, and the sparsest cut is a “halfspace cut”, i.e., the set S ⊆ Sd−1 such that x(1) ⩾ 0.
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