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Last lecture, we proved the Cheeger inequalities, which established a connection between
edge expansion and spectral expansion. Today we will discuss how eigenvalues control various
combinatorial quantities in graphs such as the independence number, chromatic number and cuts,
and then we will see how this can be used to algorithmically find planted cuts, colorings, and
independent sets in random graphs.

1 Connections between eigenvalues and cuts, chromatic number, and
independent sets

Let G be a graph, and let LG = DG − AG be the unnormalized Laplacian of G.

Lemma 1.1. The size of the max cut in G is bounded by λmax(LG) · n.

Proof. For any cut described by a set S, let xS ∈ {±1}n denote the vector with +1 for entries in S,
and −1 for entries outside S. The number of edges that participate in the cut is exactly equal to
x⊤S LGxS, which is at most λmax(LG) · ∥xS∥2 ⩽ λmax(LG) · n.

Corollary 1.2. The max cut in a d-regular λ-two-sided spectral expander cuts at most 1+λ
2 -fraction of the

edges.

Next, we describe a connection between the eigenvalues of LG and its chromatic number.

Lemma 1.3. Suppose G has m edges and is q-colorable. Then, λmax(LG) ⩾ 2m
n · q

q−1 . Specialized to a
d-regular graph, this is saying that for the adjacency matrix AG:

−λmin(AG) ⩾ d ·
(

1 − 1
q − 1

)
.

Proof. For a coloring π : V → [q], let Xπ be the matrix that has blocks of 1s on the diagonal blocks
corresponding to the color classes, and − 1

q−1 on the off-diagonal blocks. It can be verified that Xπ

is a positive semidefinite matrix since it is block diagonally dominant. On one hand, we have:

⟨LG, Xπ⟩ = 2m · q
q − 1

since for any edge e we have ⟨Le, Xπ⟩ = 2q
q−1 . On the other hand, ⟨LG, Xπ⟩ ⩽ λmax(LG) · tr(Xπ) =

λmax(LG) · n. Combining these gives the desired inequality.

Remark 1.4. A similar connection can be drawn between the independence number and the top
eigenvalue of the Laplacian.
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2 Planted problems

We now describe a couple of algorithmic problems on random graphs.

Problem 2.1 (Hidden clique in random graph). Let G be an n-vertex random graph generated by
choosing k vertices at random, placing a clique on them, and for every other pair in the graph,
placing an edge independently with probability 1

2 . The algorithmic task is to recover the planted
clique given G as input.

Problem 2.2 (Stochastic block model). Let G be an n-vertex random graph generated by coloring
each vertex red or blue independently, and then placing an edge between vertices of the same
color with probability p, and between vertices of opposite colors with probability q.

We focus on the hidden clique model from above with edge probability 1/2. Let S ⊆ [n] be the
planted k-clique and write 1S ∈ {0, 1}n for its indicator. Define the centered adjacency matrix

AG := AG − EAG,

The spectral algorithm to recover the hidden clique, due to Alon, Krivelevich, and Sudakov
[AKS98] is as follows:

• Compute the top eigenvector v1 of AG.

• Let S′ be the k vertices with largest coordinates in v1.

• Return the set of all vertices with ⩾ k/2 neighbors in S′.

It turns out that the returned set is equal to S once k ≳
√

n. Roughly, one may model AG as
W + 1S1⊤S where W is the “noise” part (it is a random matrix where all the clique entries are 0, and
all the nonclique entries are independent uniform ±1 random variables.

Lemma 2.3 (Spectral norm of the noise). With probability 1 − o(1), ∥W∥ ⩽ (2 + o(1))
√

n for an
absolute constant C.

We will not prove this in the current lecture, but will see some of the proof ideas in the future
when studying expansion of random graphs.

Lemma 2.4 (Outlier in the clique direction). We have with high probability

1
k

1⊤S AG1S = k ± O(
√

n) .

Proof. By expanding AG as W + 1S1⊤S , we see that 1
k 1⊤S AG1S = k + 1⊤S W1⊤S , where the second term

is ±O(
√

n) by Lemma 2.3.

In particular, the above proves that λmax(AG) ⩾ k − O(
√

n).

Observation 2.5. By Cauchy interlacing, there is only one eigenvalue larger than k − O(
√

n) and it
must have magnitude at most k + O(

√
n).
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Write v1 for a unit top eigenvector. We now show that v1 must correlate strongly with 1S. We
may write AG = W̃ + λv1v⊤1 where λ is the corresponding eigenvalue, and

∥∥∥W̃
∥∥∥ ⩽ (2 + o(1))

√
n.

We have:

k2 − O
(
k
√

n
)
⩽ 1⊤S AG1S ⩽

(
k + O(

√
n)

)
⟨1S, v1⟩2 + 1⊤S W̃1S

⩽
(
k + O

(√
n
))
⟨1S, v1⟩2 + O

(
k
√

n
)

.

After some rearrangement, we see for k = C
√

n:

⟨1S, v1⟩2 ⩾ 1 − O(1/C).

It turns out the stochastic block model, which is essentially a planted model for cuts, and also a
corresponding model for planted colorings can be algorithmically solved with a spectral algorithm,
where the planted solution sticks out as an outlier eigenvector.
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