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1 Limits on expansion

Let G be a d-regular graph with adjacency matrix Ag. Denote the eigenvalues by A1(G) > A2(G) >
- 2 Ay (G), and in particular A1 (G) = d. The main motivating question in today’s lecture is: how
small can A, (G) be?

Theorem 1.1 (Alon-Boppana bound [Nil91]). For every fixed d > 3 and any n-vertex d-regular graph
G, we have:

A (G) = 2vd—1—0,(1).

Today, we will prove Theorem 1.1, but in a slightly circuitous way that hopefully gives a sense
of the lay of the land.

So, where does this number 2v/d — 1 come from? It turns out that this is exactly equal to the
spectral radius of the d-reqular infinite tree T;. This is no coincidence. Indeed, the proof that we will
see today will directly connect the spectral radius of the infinite tree to the expansion of a finite
d-regular graph.

A notion that shows up time and again in the study of expansion of finite graphs is that of a
cover or a lift.

Definition 1.2 (Cover). A graph H covers a graph G if there is a map ¢ : V(H) — V(G) such that
(i) for every edge uv € E(H), ¢(u)$p(v) € E(G); and
(ii) for every u € V(H), the restriction ¢ : Ny (u) — Ng(¢(u)) is a bijection.

Remark 1.3. A cover is sometimes called a /iff. One may also think of forming H from G by
replacing each vertex of G with a “cloud” of r vertices (where r = |V(H)|/|V(G)|) and replacing
each edge uv with a perfect matching between the two corresponding clouds.

Observe that Tj is a cover of every d-regular graph, which earns it its title as the universal cover.



2 Spectral radius of T

Let At denote the adjacency operator on ¢?(Tj): the set of all functions f : V(T;) — R such that
Yoev(ty |f(0) |2 < o0; it can be verified that this is a well-defined inner product space.
Its operator norm is

A
jal= sup 1A
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We will show ||A|| = 2v/d — 1 by counting closed walks (the trace method). Connecting the closed
walk counts to the operator norm of the infinite tree takes a little bit of functional analysis to
formalize, but we will skip that since that isn’t the point of the class. Instead, let’s see how trace
powers relate to the spectral radius of a finite matrix. In the sequel we will use p(M) to denote the
spectral radius of a matrix M.

Observation 2.1. For any symmetric matrix M and integer ¢, we have: p(M) = limy_, (tr M%) /@b,
Proof. Observe that tr M2 = Y, A2* € [p(M)*,n - p(M)?], and in particular (tr Mzg)l/(%) €
(M) - [1,n/20] = o(M) as £ — co. O

It turns out that for the d-regular infinite tree, one can get a handle on its spectral radius by
looking at a single diagonal entry of A%ﬁ, which precisely counts the number of closed walks of
length-2/ starting and ending at a fixed vertex v in Tj.

Counting closed walks on T;. One may draw the infinite tree by first setting some vertex v as
the root, and then draw 1 neighbor “up” and d — 1 neighbors “down”, and extend this picture
indefinitely.

A closed walk from the root consists of steps that either move up or down. There are at most
22¢ choices for which steps are up and which steps are down. If a step is taking you away from
the root, then there are (d — 1) choices for where to walk, while a step towards the root is unique.
Since the number of steps away from the root and towards the root must be equal, exactly half the
steps are away from the root. Thus, the number of closed walks of length 2/ is at most:

22 —1)".
and in particular we obtain
p(AT) =2V d—1.
Thus ||Ar|| = 2vd — 1.

Proving the Alon-Boppana bound. We are now ready to prove the Alon-Boppana bound. Let
v := ||Ar]| (so v = 2v/d — 1). We show that for any d-regular G on n vertices,

A2(G) = v —o0u(1).

The cool aspect of the proof is that it is agnostic to the exact value of y—it simply translates the
infinite tree’s spectral radius to the second eigenvalue of a finite matrix.

Setup. Pick f € ¢%(T;) with ||f||2 = 1 and ||Af|2 = v — e. Truncate f to a finitely supported
function f so that || f||2 > 1 —eand ||Af||2 > v — 2¢; the support of f lies in a finite ball of the tree.
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Paste into G. Choose two vertices u,v € V(G) whose radius-R neighborhoods are disjoint, with
R — coasn — oo (e.g., R = Llog, ,n works for almost all d-regular graphs and for many explicit
families). Use the covering map from those balls to paste copies of f into G, supported on the two
disjoint balls around u and v (if multiple vertices from supp(f) map to the same vertex x, we place
the ¢, norm of the vector of values assigned to the preimage of x; but for now, let’s ignore this
consideration and pretend that the neighborhoods look tree-like). Let these be f,, and f.

Because supports are far apart and A is local, Af, and Af, are orthogonal; moreover

Fu Afa) (fo Afe)
Hfu”% ! ||va% =y —2¢ OR(l).

An upshot of the above is that for every function g in the 2D subspace U/ = span{ fy, f»}, the
quadratic form is at least v — O(e).

3 Ramanujan graphs

Definition 3.1. A finite d-regular graph G is Ramanujan if every nontrivial eigenvalue A € Spec(A)\
{d} satisfies |A| < 2v/d — 1. Equivalently, the new eigenvalues of any nontrivial lift lie within the
tree spectrum.

There are 3 widely different techniques that let us get a handle on Ramanujan graphs, and we
will see some of the ideas from each one in the coming few lectures.

* Explicit Ramanujan graphs for d = p + 1 (prime p): Lubotzky-Phillips-Sarnak [LPS88] and
Margulis [Mar88] constructed Ramanujan graphs using Cayley graphs of arithmetic groups.

* Explicit Ramanujan graphs for d = g + 1 (prime powers q): Morgenstern [Mor94] extended
to all prime powers.

¢ Existence of bipartite Ramanujan graphs for all 4: Marcus-Spielman-Srivastava [MSS515]
proved the existence of infinite families where all nontrivial eigenvalues are less than 2v/d — 1
using a new technique they pioneered called interlacing polynomials, which also lead to a major
breakthrough in the resolution of the Kadison-Singer conjecture.

* Random d-regular graphs: Alon conjectured that a random d-regular is asymptotically
Ramanujan; Friedman proved that A, < 2v/d — 1+ 0(1) with high probability [Fri08]. Later,
Bordenave [Bor19] gave a simpler proof. Even more recently, due to a striking work of Huang-
McKenzie-Yau [HMY24], we know that a random d-regular graph is truly Ramanujan graph
occur with probability ~ 0.69.
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