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1 Models of random regular graphs

Let G be an n-vertex d-regular graph for d ⩾ 3, and let AG be the unnormalized adjacency matrix
of G.

Theorem 1.1 ([Fri08]). Let G be a random d-regular graph on n vertices. Then, with probability 1 − on(1),

λ2(AG) ⩽ 2
√

d − 1 · (1 + on(1)) .

Equivalently, G is near-Ramanujan with high probability.

A concrete model for sampling a random regular graph is the configuration model.

Definition 1.2 (Configuration model). Fix n and d with nd even. Form a multigraph on vertex set
[n] as follows: attach d labeled half-edges to each vertex v ∈ [n], and choose a uniformly random
perfect matching on the nd half-edges. For each matched pair, identify the endpoints to form an
edge.

While the configuration model may produce self-loops or multi-edges, conditioning on simplic-
ity yields the uniform distribution over simple d-regular graphs.

In today’s lecture, we will see how to derandomize an appropriate version of Friedman’s theorem
and obtain a deterministic poly(n)-time algorithm for constructing near-Ramanujan graphs.

Derandomization at a high level. A proof of Theorem 1.1 given by Theorem 2.3 can be verified
to succeed if the graph G is drawn from any distribution D that matches the configuration model
on Θ(log n) moments. Very roughly, this is because the proof proceeds by the trace method, i.e.
controlling variants of E tr Aℓ

G.1

This suggests the following route to an explicit construction:

If a pseudorandom generator can produce a distribution over matchings of the nd half-
edges that matches the relevant moments (up to k = log n), then the near-Ramanujan
conclusion still goes through. Consequently, one may brute-force over all seeds of such
a PRG in poly(n) time and output a near-Ramanujan graph.

1 The literal trace moments are not bounded due to some ill-behaved tail events, i.e., when the random graph has
large bicycles, so appropriate care needs to be taken. We ignore the associated subtleties in this discussion.
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Matching k moments typically requires k-wise independence, or a close approximation to it. If
we take k = Θ(log n), then a k-wise uniform construction of permutation costs Θ(k log n) =

Θ((log n)2) random bits, which is too expensive for our endgame if we hope to search over all
seeds in polynomial time.

Remark 1.3. Constructions of k-wise uniform families of permutations on [n] using Θ(k log n)
random bits were given by Kaplan, Naor, and Reingold [KNR09], and also by Kassabov [Kas07].
On the other hand, a simple entropy argument proves that k log n bits are actually necessary. It
turns out that even if one is willing to tolerate some tiny error in k-wise independent (i.e. require
that degree-k moments only approximately match the true uniform distribution), one needs k log n
bits. This is because a result of Alon and Lovett [AL13] proves that an “approximately” k-wise
uniform distribution over permutations is close in total variation distance to a truly k-wise uniform
distribution over permutations.

Starting point: Generate a moderately sized graph with few random bits. Consider the target
size n0 := exp

(√
log n

)
. There is a log n0-wise uniform distribution over permutations on dn0,

that uses (log n0)2 = log n random bits, so one may brute force a good seed in poly(n) time to
explicitly find an n0-vertex d-regular graph that is near-Ramanujan. In fact, one may also guarantee
that the constructed graph has no big bicycles, and is simple.

The remaining task is to amplify the graph from size n0 up to size n while preserving near-
Ramanujan property. This is where graph lifts enter the picture.

2 Graph lifts

Definition 2.1 (Graph lift). Let G = (V, E) be a graph and let r ∈ N. An r-lift of G is a graph G̃
obtained by replacing each vertex v ∈ V by a cloud {(v, i) : i ∈ [r]} and, for every edge uv ∈ E,
placing a perfect matching between the clouds {(u, i)}i∈[r] and {(v, i)}i∈[r]. If G is d-regular, then
every r-lift G̃ is also d-regular and has |V(G̃)| = r |V(G)|.

Definition 2.2 (Random lift). Fix G and r. A random r-lift is obtained by choosing, independently
for each uv ∈ E(G), a uniformly random perfect matching between the two clouds attached to u
and v.

Random lifts scale up the graph while preserving expansion and spectral properties, as articu-
lated by the following result of Bordenave [Bor19].

Theorem 2.3. Let G be a fixed d-regular base graph and let G̃ be a random r-lift. As r → ∞,

λ2
(

AG̃

)
⩽ 2

√
d − 1 + or(1) with probability 1 − or(1).

While Theorem 2.3 is excellent news qualitatively, drawing a truly random r-lift does not, by
itself, significantly reduce the number of random bits: the independent perfect matchings along
each edge carry substantial entropy.

Random 2-lifts on bicycle-free graphs. Following Mohanty, O’Donnell, Paredes [MOP20], we
focus on 2-lifts (the case r = 2), which can be encoded by assigning a signing σ : E(G) → {±1}
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to the edges of G. The matching between the two clouds along uv is determined by σ(uv)—
it is {((u,+), (v,+)), ((u,−), (v,−))} if σ(uv) = +1, and is {((u,+), (v,−)), ((u,−), (v,+))} if
σ(uv) = −1. The eigenvalues of a 2-lift of G are characterized by the eigenvalues of G itself along
with new eigenvalues that are precisely given by the eigenvalues of a signed adjacency matrix
associated to σ.

We now describe the notion of a bicycle, necessary to describe the technical condition on graphs
whose random 2-lifts [MOP20] can analyze.

Definition 2.4 (Bicycles). An ℓ-bicycle is a connected subgraph on at most ℓ-edges that contains at
least two cycles. We say a graph is ℓ-bicycle-free if it has no bicycles of length-⩽ ℓ.

Remark 2.5. The terminology bicycle is slightly non-standard, and is only used in a handful of
papers. The more common term in the literature is tangle.

Theorem 2.6 ([MOP20]). Let G be a d-regular base graph with no ℓ-bicycles for ℓ = Θ((log log |V(G)|)2.
Let G̃ be a uniformly random 2-lift of G. Then G̃ is near-Ramanujan with high probability.

This is particularly useful in our pipeline because when we derandomize the configuration
model at the moderate size n0 = exp(

√
log n), we can, by moment-y arguments, also ensure the

produced base graph has no ℓ-bicycles for ℓ = O(
√

log n).

Seed-length and exhaustive search for lifts. The analysis in [MOP20] of random 2-lifts proceeds
via control of low moments of the signed non-backtracking operator; consequently it only requires
approximately log n-wise independence among the edge signs σ(uv). There are PRGs with seed
length O(log n) that achieve this level of independence to the accuracy required by the moment
bounds (see, e.g., [NN93]). Therefore:

Algorithm 2.7 (Brute-force over short seeds). For every n and d, there exists a PRG G : {0, 1}O(log n) →
{±1}E(G) such that, for every d-regular G with no large bicycles, the 2-lift determined by the edge-
signs σ = G(s) is near-Ramanujan for some seed s.

Since the seed space has size nO(1), we can deterministically find such an s in polynomial time
by exhaustive search.

Scaling to n via iterated lifts. Starting from the moderate-size near-Ramanujan base Gn0 (with no
small bicycles), we iteratively apply Algorithm 2.7:

Gn0

2-lift−−−→ G2n0

2-lift−−−→ G4n0

···−−→ Gn,

each time searching over nO(1) seeds to locate a near-Ramanujan 2-lift. After O(log(n/n0)) =

O(log n) stages, we obtain a d-regular n-vertex graph Gn with

λ2(AGn) ⩽ 2
√

d − 1 (1 + o(1)),

constructed deterministically in poly(n) time.

Remark 2.8 (The need for a certificate). The search over seeds must be coupled with a fast procedure
to check that the seed is actually good. The fact that eigenvalues of a matrix can be computed in
polynomial time is a crucial ingredient to get this procedure to succeed. The lack of a certificate
is exactly what precludes using this strategy to construct other kinds of expanders, such as vertex
expanders.
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Analyzing the spectrum of a random 2-lift. In the next piece, we dive into the [MOP20] argument.
Given a 2-lift of G encoded by the signing σ, let Aσ be the signed adjacency matrix defined by

(Aσ)uv =

{
σ(uv) if uv ∈ E,

0 otherwise.

It is standard that the spectrum of the 2-lift G̃ is the multiset union of the spectrum of AG (the “old”
eigenvalues) and the spectrum of Aσ (the “new” eigenvalues). Consequently, to show that a random
2-lift is near-Ramanujan, it suffices to control the operator norm of Aσ.

Lemma 2.9 (Reduction to the signed matrix). Let G̃ be the 2-lift of G determined by σ. Then

Spec(AG̃) = Spec(A) ⊎ Spec(Aσ).

In particular, if ∥Aσ∥ ⩽ 2
√

d − 1 + o(1), then all new eigenvalues lie in the Ramanujan interval
[−2

√
d − 1 − o(1), 2

√
d − 1 + o(1)], and the lift is near-Ramanujan.

To prove a bound on ∥Aσ∥ and hence Theorem 2.6, we will use the trace method.

Trace-method setup. Write λmax(M) for the spectral radius of a symmetric matrix M. For any
even ℓ,

λmax(Aσ)
ℓ ⩽ tr Aℓ

σ.

An upper bound on Eσ tr Aℓ
σ of the form

(
2
√

d − 1 + o(1)
)ℓ for a suitably growing even ℓ already

implies by Markov that ∥Aσ∥ ⩽ 2
√

d − 1 + o(1) with high probability over the random signs.
To understand this quantity, we expand the trace in the standard way:

tr Aℓ
σ = ∑

v0∈V
∑

v1,...,vℓ−1

(Aσ)v0v1(Aσ)v1v2 · · · (Aσ)vℓ−1v0 .

Each length-ℓ term corresponds to a closed walk w = (v0, v1, . . . , vℓ−1, v0) in G, contributing the
product ∏e∈E σ(e)me(w), where me(w) is the number of times w traverses edge e (in either direction).
Taking expectation over the independent, uniform signs σ(e) ∈ {±1} gives:

Eσ

[
∏

e
σ(e)me(w)

]
=

{
1 if me(w) is even for every e,

0 otherwise.

Hence

Eσ tr Aℓ
σ = #{closed length-ℓ walks in G that use every edge an even number of times}. (1)

Heuristic: tree-like walks dominate. The right-hand side of (1) is a purely combinatorial quantity.
The guiding intuition is that the dominant contribution comes from walks that are tree-like: they
live on portions of G that look like the d-regular infinite tree Td. On an actual tree, the constraint
“every edge is used an even number of times” is automatically enforced by the walk being closed.

Last lecture, we saw how to count closed walks in the d-regular infinite tree. Given our guiding
intuition, one expects

Eσ tr Aℓ
σ ≲ n ·

(
2
√

d − 1
)ℓ
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which in turn suggests (
Eσ tr Aℓ

σ

)1/ℓ
≲ 2

√
d − 1 + o(1).

This then yields

∥Aσ∥ ⩽ 2
√

d − 1 + o(1) with high probability over the random signs.
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