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Abstract

An active topic in the study of random constraint satisfaction problems (CSPs) is the geom-
etry of the space of satisfying or almost satisfying assignments as the function of the density,
for which a precise landscape of predictions has been made via statistical physics-based heuris-
tics. In parallel, there has been a recent flurry of work on refuting random constraint satisfaction
problems, via nailing refutation thresholds for spectral and semidefinite programming-based
algorithms, and also on counting solutions to CSPs. Inspired by this, the starting point for our
work is the following question:

What does the solution space for a random CSP look like to an efficient algorithm?

In pursuit of this inquiry, we focus on the following problems about random Boolean CSPs at
the densities where they are unsatisfiable but no refutation algorithm is known.

1. Counts. For every Boolean CSP we give algorithms that with high probability certify a
subexponential upper bound on the number of solutions. We also give algorithms to cer-
tify a bound on the number of large cuts in a Gaussian-weighted graph, and the number
of large independent sets in a random d-regular graph.

2. Clusters. For Boolean 3CSPs we give algorithms that with high probability certify an
upper bound on the number of clusters of solutions.

3. Balance. We also give algorithms that with high probability certify that there are no
“unbalanced” solutions, i.e., solutions where the fraction of +1s deviates significantly
from 50%.

Finally, we also provide hardness evidence suggesting that our algorithms for counting are
optimal.
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1 Introduction

Constraint satisfaction problems (CSPs) are fundamental in the study of algorithm design and
complexity theory. They are simultaneously simple and also richly expressive in capturing a wide
range of computational tasks, which has led to fruitful connections to other areas of theoretical
computer science (see, for example, [Gol11, ABW10] for connections to cryptography, [DLSS14]
for applications to hardness of learning, and [Fei02] for applications to average-case hardness).
Hence, understanding them has received intense attention in the past few decades, leading to sev-
eral comprehensive theories of their complexity. Some of the highlights include: the Dichotomy
Theorem, which characterizes the worst-case complexity of satisfiability of CSPs via their alge-
braic properties [Sch78, BJK05, Zhu20], inapproximability results via the PCP Theorem [Hås01],
and the theory of optimal inapproximability based on connections between semidefinite program-
ming and the Unique Games conjecture [Kho02, KKMO07, Rag08].

In this work, we are interested in the algorithmic aspects of random instances of CSPs. There
has been a diverse array of phenomena about random CSPs illustrated in recent work, of dra-
matically varying nature depending on the ratio of the number of constraints to the number of
variables, known as the density. Of central importance is the satisfiability threshold, which marks
a phase transition where a random CSP instance shifts from being likely satisfiable to being
likely unsatisfiable. When the density is well below the satisfiability threshold, there are sev-
eral algorithms for tasks such as counting and sampling assignments to a random CSP instance
[Moi19, JPV21, GGGY19, BGG+19], whereas well above this threshold there are efficient algo-
rithms for certifying that random CSPs are unsatisfiable [AOW15]. The densities in the interim
hold mysteries that we don’t yet fully understand, and this work is an effort to understand the
algorithmic terrain there. To make matters concrete, for now we will specialize the discussion of
the problem setup and our work to the canonical 3SAT predicate.

Consider a random 3SAT formula I on n variables and ∆n clauses where each clause is sam-
pled uniformly, independently, and adorned with uniformly random negations. Once the density
∆ is a large enough constant, this random instance is unsatisfiable with high probability.1 On the
other hand, the widely believed Feige’s random 3SAT hypothesis [Fei02] conjectures that when
∆ is any constant, there is no algorithm to certify that a random instance is unsatisfiable. Fur-
ther, the best known algorithms for efficiently certifying that it is unsatisfiable require ∆ &

√
n

[GL03, COGL07, FO07, AOW15]. Moreover, when ∆ .
√

n there is a lower bound against the
Sum-of-Squares hierarchy [Gri01, Sch08] (known to capture many algorithmic techniques), which
suggests an information-computation gap and earns

√
n the name refutation threshold.

In this picture, at both densities n.25 and n.35, I is likely unsatisfiable but “looks” satisfiable
to an efficient algorithm. But is there a concrete sense in which a random formula at density n.25

is “more satisfiable” than one at density n.35 from the lens of a polynomial-time algorithm? A
natural measure of a 3SAT formula’s satisfiability is its number of satisfying assignments, which
motivates the following question.

What is the best efficiently certifiable upper bound on the number of assignments satisfying I?

In the context of 3SAT, our work proves:

1In fact, it is conjectured that there is a sharp threshold for unsatisfiability once ∆ crosses some constant αSAT ≈ 4.267.
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Theorem 1.1 (Informal). There is an efficient algorithm to certify with high probability that a random
3SAT formula with density ∆ = n1/2−δ has at most exp(Õ(n3/4+δ/2)) satisfying assignments.

In addition to certifying the number of satisfying assignments, we can certify that the solutions
form clusters and upper bound the number of clusters under the refutation threshold.

Clusters. Besides the satisfiability threshold, random kSAT is conjectured to go through other
phase transitions too, as predicted in the work of [KMRT+07]. In particular, the clustering threshold
is the density where the solution space is predicted to change from having one giant component to
roughly resembling a union of several small Hamming balls, known as clusters, that are pairwise
far apart in Hamming distance.

Much like the refutation threshold that marks where efficient algorithms can witness unsatisfi-
ability, it is natural to ask if there is some regime under the refutation threshold where an efficient
algorithm can witness a bound on the number of clusters of solutions. The following more nu-
anced version of Theorem 1.1 gives an answer to this question.

Theorem 1.2 (Informal). There is an efficient algorithm to certify with high probability that the satisfying
assignments of a random 3SAT formula with density ∆ = n1/2−δ are covered by at most exp(Õ(n1/2+δ))

diameter-Õ(n3/4+δ/2) clusters.

Balance in the solution space. Suppose at density ∆, a typical 3SAT formula has ∼ exp(c∆n)
satisfying assignments, then due to the uniformly random negations in clauses, each string is
satisfying with probability ∼ exp((c∆ − 1)n). Then one can show via the first moment method
that with high probability there are no satisfying assignments with Hamming weight outside[ 1

2 − f (c∆), 1
2 + f (c∆)

]
.2 In particular, the intersection of the solution space with the set of un-

balanced strings empties out under the satisfiability threshold. This raises the question:

Is there an efficient algorithm to certify that a random CSP instance has no unbalanced assign-
ments at density significantly under the refutation threshold?

We affirmatively answer this question and in the special case of 3SAT prove:

Theorem 1.3 (Informal). There is an efficient algorithm to certify with high probability that a random
3SAT formula with density ∆ = n1/2−δ has no satisfying assignments with Hamming weight outside[

1
2
− Θ̃

(
1

n1/4−δ/2

)
,

1
2
+ Θ̃

(
1

n1/4−δ/2

)]
.

We illustrate our upper bounds for counting satisfying assignments and clusters in Figure 1.
We delve into the precise technical statements of our results and the techniques involved in prov-
ing them in Section 1.1. Then to put our work in context, we survey and discuss existing work
on information-computation gaps, and algorithmic work on counting, sampling and estimating
partition functions in Section 1.2.

2where f is chosen so that the number of strings outside that Hamming range is� exp((c∆ − 1)n).
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Figure 1: Our results for 3SAT. Green: certifiable upper bound on the number of satisfying as-
signments. Purple: upper bound on the number of clusters of satisfying assignments. In the case
of kSAT, the green plot looks identical but with n replaced by n(k−1)/2 and n3/2 replaced by nk/2.

1.1 Our Contributions

In this section, we give a more detailed technical description of our contributions. To set the
stage for doing so, we first formally clarify the notion of certification and some preliminaries on
constraint satisfaction problems.

Fix a sample space Ω, a probability distribution D over Ω, and a function f : Ω → R. For
example, Ω is the space of 3SAT instances, D is the distribution of instances given by the random
3SAT model, and f is the number of satisfying assignments.

Definition 1.4. We say that a deterministic algorithm A certifies that f 6 C with probability over
1− p over D if A satisfies

1. For all ω ∈ Ω, f (ω) 6 A(ω).

2. For a random sample ω ∼ D, A(ω) 6 C with probability over 1− p.

We emphasize that an algorithm that always outputs the typical value of f is not a certification
algorithm: it will satisfy the second condition but not the first. Thus, in several average-case
problems, there are gaps between the typical value and the best known certifiable upper bound.

Remark 1.5. Due to the guarantees of A, one can think of the “transcript” of the algorithm on
input ω as being a proof that f (ω) 6 A(ω).

Definition 1.6. A predicate P : {±1}k → {0, 1} is any Boolean function that is not the constant
function that always evaluates to 1. An instance I of a constraint satisfaction problem on predicate
P and vertex set [n] is a collection of clauses, where a clause is a pair (c, S) with c ∈ {±1}k and
S ∈ [n]k. Given x ∈ {±1}n, the value of I on x is:

I(x) :=
1
|I| ∑

(c,S)∈I
P(c1xS1 , . . . , ckxSk).

3



We say x satisfies a clause (c, S) if P(c1xS1 , . . . , ckxSk) = 1, and say x is (1− η)-satisfying if I(x) >
1− η. If η = 0, we say x is exactly satisfying.

In this work we are concerned with random CSPs. We defer an exact description of the random
model to Section 2.3 (note however that the common random models used in the literature are
all qualitatively similar; cf. [AOW15, Appendix D]). Our first result is an algorithm certifying a
subexponential upper bound on the number of (1− η)-satisfying assignments for random CSPs.

Theorem 1.7. Let I be a random kCSP instance on any predicate P on n variables and ∆n clauses. For
every ε > 0, there is an algorithm that certifies with high probability that the number of (1− η)-satisfying
assignments to I is upper bounded by:

exp
(

Õ(ηn)
)
· exp

Õ

√n(k+1)/2

∆

 · exp
(

O
(

n1+ε

∆1/(k−2)

))
.

To more easily parse the statement, let’s plug in concrete parameters.

Remark 1.8. Let’s fix the predicate to be kSAT for any k > 3, η = 0, and ∆ = nk/2−1.1. The quantity
of interest is the number of exactly satisfying solutions to a random kSAT formula at a density
strictly smaller than the refutation threshold of Ω̃(nk/2−1). Then, we get an algorithm that with
high probability certifies that the number of exactly satisfying assignments is at most:

exp(Õ(n0.8)),

which is a subexponential bound. More generally, our algorithms certify a subexponential bound
on the number of satisfying assignments for kSAT for ∆ = nk/2−1.5+c for any c > 0 and this bound
improves as we increase c.

The proof of Theorem 1.7 relies on 3 ingredients of increasing complexity. The first is the simple
observation that given a kCSP instance I on any predicate P, there is a transformation to a kSAT
instance I ′ such that:

(i) For any η > 0, if x is (1− η)-satisfying for I , then it is also (1− η)-satisfying for I ′.

(ii) If I is a random instance of a CSP on P with density ∆, then I ′ is a random instance of kSAT
with density ∆.

This reduction is described in the proof of Corollary 4.8.
The second ingredient is a generalization of the “3XOR-principle” of [Fei02, FO07], which we

call the “kXOR-principle”. The kXOR principle, which we state below, reduces count certifica-
tion/refutation for a random kSAT formula to the same task on a random kXOR formula.

Lemma 1.9. Let I be a random kSAT formula on m = ∆n clauses. There is an efficient algorithm that
with high probability certifies that any (1 − η)-satisfying assignment of I must kXOR-satisfy at least(

1−O(η)− Õ
(√

n(k−3)/2

∆

))
m clauses.

4



We detail the proof in Section 3, which is close to the reduction from generic CSP refutation to
kXOR refutation in [AOW15] based on the Fourier expansion.

For the sake of a notationally simple sketch, let’s restrict ourselves to the case η = 0. We
can write kSAT(x1, . . . , xk) = (1− 2−k) + 2−kx1x2 · · · xk + q(x1, . . . , xk) where q is a degree-(k− 1)
polynomial without a constant term. Thus, given a random kSAT instance I and any satisfying
assignment x:

1 = I(x) = 1− 2−k + 2−k 1
|I | ∑

(c,S)∈I

k

∏
i=1

cixSi +
1
|I | ∑

c,S∈I
q(c1xS1 , . . . , ckxSk).

Once ∆ & n(k−3)/2 the refutation algorithm of [AOW15] can be employed to certify that the last
term is insignificantly small by virtue of the last term being a degree-(k− 1) polynomial with no
constant term. This would force 2−k 1

|I | ∑(c,S)∈I ∏k
i=1 cixSi to be near 1, which is the same as saying

x must kXOR-satisfy most clauses.
Our third ingredient for Theorem 1.7 is a count certification algorithm for kXOR, which we

prove in Section 4.

Theorem 1.10. For constant k > 3, consider a random kXOR instance with n variables and ∆n clauses.
For any constant ε > 0, there is a polynomial-time algorithm that certifies with high probability that the
number of (1− η)-satisfying assignments is at most

exp
(

Õ(ηn)
)
· exp

(
O
(

n1+ε

∆1/(k−2)

))
.

In fact, the certification algorithm only depends on the hypergraph structure of the kXOR in-
stance and not the signings of each clause. This is crucial since our algorithm recursively looks at
(k− 1)XOR subinstances with unknown signings. The stronger statement we prove is:

Theorem 1.11. For constant k > 2, consider a random k-uniform hypergraph H on n vertices and ∆n
hyperedges where ∆ � log n. For ε > 0, there is a polynomial-time algorithm that certifies with high
probability that the number of (1− η)-satisfying assignments to any kXOR instance on H is at most

exp
(

Õ(ηn)
)
·

1 if k = 2

exp
(

Õ
(

n1+ε

∆1/(k−2)

))
if k > 3.

Theorem 1.11 is of interest beyond algorithmic considerations as it gives a high-probability
bound on the number of approximate solutions for any kXOR formula on a random hypergraph.

Remark 1.12. Gaussian elimination is able to count exact solutions to an explicit kXOR instance
but fails for counting (1− η)-satisfying assignments or when the signings are unknown.

We now give a brief sketch of our proof of Theorem 1.11. Given a random k-uniform hy-
pergraph, we would like to certify that any kXOR instance on this hypergraph has no more than
exp

(
Õ(ηn)

)
· exp

(
Õ
(

n1+ε

∆1/(k−2)

))
approximate solutions. We will first present an overview in the

context of 2XOR as the “base case”, and then explain the algorithm for 3XOR to illustrate the “re-
cursive step”.
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2XOR sketch. Let’s consider a random graph G on n vertices and ∆n edges where ∆ � log n.
Then, its degrees concentrate and its normalized Laplacian has a large spectral gap (more precisely,
a spectral gap of 1−O

(
1√
∆

)
). As a consequence of Cheeger’s inequality, any set S containing

fewer than half the vertices has roughly half its edges leaving — which quantitatively would be
around ∆|S|. We prove that a large spectral gap and concentration of degrees is all that is necessary
for any 2XOR instance to have an appropriately bounded number of satisfying assignments.

Now let I be any 2XOR instance on G. The key observation is that if x and x′ are two (1− η)-
satisfying assignments for I , then the pointwise product y := x ◦ x′ is (1− 2η)-satisfying for I+,
the 2XOR instance on G obtained by setting the sign on all constraints to +1. The constraints
violated by y are the ones on the cut between S+ and S−, the positive and negative vertices in
y respectively. There are roughly ∆ ·min{|S+|, |S−|}, and consequently min{|S+|, |S−|} 6 2ηn
since y is (1− 2η)-satisfying. In particular, y either has at most 2ηn positive entries or 2ηn negative
entries. The upshot is the number of (1− η)-satisfying assignments of I is at most exp(Õ(ηn)).
This sketched argument is carefully carried out in Section 4.1.

3XOR sketch. Now, let H be a random hypergraph on n vertices and ∆n hyperedges. The ob-
servation here is that for any 3XOR instance I on H, any assignment x that (1 − η)-satisfies I
also approximately satisfies a particular induced 2XOR instance of a fixed subset of variables S (cf.
Definition 2.11). The induced 2XOR instance’s underlying graph G is fixed and distributed like a
random graph, and only the signings on the edges vary as we vary x. That lets us run the algo-
rithm for 2XOR on G to obtain an upper bound F on all induced instances on G, which then yields
a bound of 2|S| · F. This is where we use that our algorithm depends only on the underlying graph,
hence avoiding an enumeration of all assignments to variables in S.

We immediately see that for a fixed subset S, the above procedure throws away most of the
clauses (keeping only clauses that have 1 variable in S). Thus, it is clearly suboptimal to look at just
one subset S. To resolve this, we partition the variables into subsets S1, . . . , S`, run the algorithm
on each of them, and aggregate the results. This is explained in detail in the proofs of Lemma 4.6
and Theorem 4.4.

Clustering. Our next result is an algorithm to upper bound the number of clusters formed by
the solutions. Given x ∈ {±1}n, we call the Hamming ball B(x, r) a radius-r cluster or diameter-2r
cluster. For 3CSPs we prove in Corollary 5.2:

Theorem 1.13. Let P be any 3-ary predicate, and let I be a random instance of P on n variables and

∆n clauses. Let η ∈ [0, η0] where η0 is a universal constant, and let θ := 8η + O
(√

log5 n
∆

)
. There is

an algorithm that certifies with high probability that the (1− η)-satisfying assignments to I as a P-CSP
instance are covered by at most

exp(O(θ2 log(1/θ))n)

diameter-(θn) clusters.

Inspecting the proof of counting 2XOR (specifically the argument about I+), we see that it
additionally certifies that the approximate solutions form clusters. In a similar fashion, we certify
that any pair of (1− η)-satisfying assignments to a random 3SAT instance must have Hamming
distance close to 0 or roughly n

2 , i.e. the solutions form clusters where the clusters are roughly n
2

6



apart. The main ingredient is an efficient algorithm to certify an important structural result of
random 3-uniform hypergraphs (Lemma 5.4), allowing us to reason about the constraints violated
in I+. In fact, Lemma 5.4 will also be a crucial step in refuting CSPs under global cardinality
constraints in Section 6. The upshot is that we will be able to certify that any pair of solutions is
either ρ-close or 1−ρ

2 -far.
The second ingredient is a result in coding theory. Since the clusters are roughly 1±ρ

2 n apart
in Hamming distance, the number of clusters must be upper bounded by the cardinality of the
largest ρ-balanced binary error-correcting code. The best known upper bound is 2O(ρ2 log(1/ρ))n by
[MRRW77] (see also [Alo09]), which yields our final result. Complete details are in Section 5.

Balance. We observe that the idea of hypergraph expansion can be applied to the problem of
strongly refuting random CSPs with global cardinality constraints. This problem was first inves-
tigated by Kothari, O’Donnell, and Schramm [KOS18], where they proved that under the refu-
tation threshold nk/2, the polynomial-time regime of the Sum-of-Squares hierarchy cannot re-
fute the instance even with the global cardinality constraint ∑n

i=1 xi = B for any integer B ∈
[−O(

√
n), O(

√
n)] (here we assume x ∈ {±1}n). On the other hand, they proved once that

|B| > n3/4, Sum-of-Squares could indeed refute a random kXOR instance up to a factor of
√

n
under the refutation threshold.

We say an assignment x is ρ-biased if 1
n

∣∣∣∑i∈[n] xi

∣∣∣ > ρ. We give a strong refutation algorithm
for random instances of all Boolean CSPs under the constraint that the solution is “unbalanced”.

Theorem 1.14. Let P be any k-variable predicate and let I be a random CSP instance on m := n
k−1

2 +β

clauses where β > 0. For every constant ρ > 0, there is an efficient algorithm that certifies that I has no
2ρ-biased assignment which (1−O(ρk))-satisfies I as a P-CSP instance.

Remark 1.15. Compared to [KOS18], our result is a strong refutation algorithm for all CSPs,
whereas their algorithm is specific for kXOR and only a weak refutation (refuting only exactly sat-
isfying assignments). For k = 3 (Theorem 6.1), we match their cardinality constraint requirement
(see Remark 6.2). However, for k > 4 (Corollary 6.4), we require a slightly stronger cardinality
assumption.

The formal statements and proofs are detailed in Section 6. Akin to the case for counting
solutions, we employ the reduction of every kCSP to kSAT and the kXOR principle to reduce the
problem to strongly refuting kXOR under global cardinality constraints.

The first main insight is that given a graph G which is a sufficiently good spectral expander,
we can efficiently certify that any 2XOR instance on G, where the number of positive constraints is
roughly equal to the number of negative constraints, has no unbalanced approximately satisfying
assignments. The proof of this is based on using the expander mixing lemma to show that any
imbalanced assignment x must satisfy xuxv = +1 for� 1

2 of the edges, which then lets us lower
bound the number of negative constraints that are violated.

Then given a random kXOR instance I , we pick some set of ρn vertices S and consider all
clauses with exactly k − 2 vertices in S and 2 variables outside S. If we place an edge between
the two variables outside S for every clause, we get some random graph G. Now consider any
assignment y to the variables in S. For this chosen set of clauses to be (nearly) satisfied, the as-
signment to variables outside S must nearly satisfy the induced 2XOR instance on the graph G

7



whose signings are determined by y. The second insight is that we can efficiently certify that for
any assignment y the induced 2XOR instance has a roughly equal number of positive and negative
constraints. This is possible since the quantity #positive constraints(y)− #negative constraints(y)
is the objective value of a particular random (k− 2)XOR instance on assignment y, which we can
certify tight bounds on using the algorithm of [AOW15].

Certified counting for subspace problems. So far, we have developed certification algorithms
for CSPs mainly based on analyses of random hypergraphs. For other inherently different prob-
lems such as counting solutions to the SK model, we turn to a different technique. Our main in-
sight is that for several problems, the approximate solutions must lie close to a small-dimensional
linear subspace. Thus, we can reduce the problem to counting the number of (Boolean) vectors
close to a subspace. We name this technique dimension-based count certification since the algorithms
and their guarantees only depend on the dimension of the subspace.

Theorem 1.16. Let V be a linear subspace of dimension αn in Rn. For any ε ∈ (0, 1/4), the number of

Boolean vectors in
{
± 1√

n

}n
that are ε away from V is upper bounded by 2(H2(4ε2)+α log 3

ε )n.

We note that the upper bound is almost tight (see Remark 7.3 for more details).
We now give a brief overview of the proof of Theorem 1.16. First, we upper bound the max-

imum number of (normalized) Boolean vectors that can lie within any ε′-ball. Secondly, we take
an ε-net of the unit ball in the subspace V (i.e. B1(0) ∩V). We simply multiply the two quantities
to get the upper bound, which only depends on the dimension of V.

Next, we apply this technique to two problems: the Sherrington-Kirkpatrick model and the
independent sets in random d-regular graphs.

Sherrington-Kirkpatrick (SK). Given M sampled from GOE(n), the SK problem is to compute

OPT(M) = max
x∈{±1}n

x>Mx.

This problem can also be interpreted as finding the largest cut in a Gaussian-weighted graph. The
SK model arises from the spin-glass model studied in statistical physics [SK75]. Talagrand [Tal06]
famously proved that OPT(M) concentrates around 2P∗n3/2 ≈ 1.526n3/2, where P∗ is the Parisi
constant, first predicted by Parisi [Par79, Par80].

Recently, the problem of certifying an upper bound for OPT(M) has received wide attention.
A natural algorithm is the spectral refutation: OPT(M) 6 n · λmax(M). Since λmax(M) concentrates
around 2

√
n, the algorithm certifies that OPT(M) 6 (2 + o(1))n3/2, which we call the spectral

bound. Clearly, there is a gap between the spectral bound and the true value, and it is natural
to ask whether there is an algorithm that beats the spectral bound. Surprisingly, building on
works by [MS16, MRX20, KB20], Ghosh et. al. [GJJ+20] showed that even the powerful Sum-of-
Squares hierarchy cannot certify a bound better than (2− o(1))n3/2 in subexponential time. We
also mention an intriguing work by Montanari [Mon19] where he gave an efficient algorithm for
the search problem — to find a solution with objective value close to OPT(M) with high probability
(assuming a widely-believed conjecture from statistical physics). However, we emphasize that his
algorithm is not a certification algorithm (recall Definition 1.4).

In the spirit of this work, a natural question is to certify an upper bound on the number of
assignments x ∈ {±1}n such that x>Mx > 2(1− η)n3/2 for some η > 0.
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Theorem 1.17. Let M ∼ GOE(n). Given η ∈ (0, η0) for some universal constant η0, there is an algorithm
certifying that at most 2O(η3/5 log 1

η )n assignments x ∈ {±1}n satisfy x>Mx > 2(1− η)n3/2.

Our proof first looks at the eigenvalue distribution of M, which follows the semicircle law (The-
orem 2.21). This shows that any x that achieves close to the spectral bound must be close to the
top eigenspace of M (of dimension determined by the semicircle law). Then, we directly apply
Theorem 1.16. See Section 7.1 for complete details.

Independent sets in d-regular graphs. The largest independent set size (the independence num-
ber) in a random d-regular graph has been studied extensively. It is well-known that with high
probability, the independence number is 6 2n log d

d for a sufficiently large constant d (cf. [Bol81,
Wor99]). The current best known certifiable upper bound is via the smallest eigenvalue of the ad-
jacency matrix (often referred to as Hoffman’s bound, cf. [FO05, BH11]): Let A be the adjacency
matrix, and let λ := −λmin(A). Then, |S| 6 λ

d+λ n for all independent sets S. We give a proof for
completeness in Section 7.2.

It is also well-established that λ 6 2
√

d− 1 + o(1) with high probability (see Theorem 2.23).
Thus, we can certify that the independence number is at most Cdn where Cd := 2

√
d−1

d+2
√

d−1
.

The natural question for us is to certify an upper bound on the number of independent sets
larger than Cd(1− η)n for some η > 0.

Theorem 1.18. For a random d-regular graph on n vertices, given η ∈ (0, η0) for some universal constant
η0, there is an algorithm certifying that there are at most 2O(η3/5 log 1

η )n independent sets of size Cd(1− η)n.

The proof is very similar to the SK model. We first map each independent set S to a vector
yS ∈ Rn such that if S is large, then yS is close to the bottom eigenspace of A. Then, using a variant
of Theorem 1.16, we upper bound the number of such vectors that are close to the eigenspace. We
carry out the proof in full detail in Section 7.2.

Optimality for counting kCSP solutions. Finally, we give evidence suggesting that our algorith-
mic upper bounds are close to optimal. Our hardness results are built on the hypothesis that there
is no efficient strong refutation algorithm for random kXOR under the refutation threshold (in the
regime nε � ∆� nk/2−1). Although no NP-hardness results are known, this hypothesis is widely
believed to be true. In particular, the problem was shown to be hard for the Sum-of-Squares
semidefinite programming hierarchy [Gri01, Sch08, KMOW17], which is known to capture most
algorithmic techniques for average-case problems. Thus, improving our results would imply a
significant breakthrough.

We show that assuming this hypothesis is true, then we cannot certify an upper bound on the
number of (1− η)-satisfying assignments better than exp(O(ηn)).

Theorem 1.19. If there is an efficient algorithm that with high probability can certify a bound of exp( ηn
10k )

on the number of (1− η)-satisfying assignments to I , then there is an efficient algorithm that with high
probability can certify that I has no (1− η/2)-satisfying assignments.

This shows that the term exp(Õ(ηn)) in Theorem 1.7 and Theorem 1.10 is tight up to log factors
(see Remark 8.2). Our proof is simple: given a (1− η/2)-satisfying assignment and a small set S,
we can flip the assignments to S arbitrarily and still be (1− η)-satisfying. Hence the number of
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(1− η)-satisfying assignments is at least 2|S|. Thus, an upper bound better than this would imply
that there is no (1− η/2)-satisfying assignments. See Section 8.1 for complete details.

Surprisingly, the optimality of Theorem 1.7 suggests that there is a phase transition for certifi-
able counting at the refutation threshold. For concreteness, take random kSAT for example,

Remark 1.20. At m = Ω̃(nk/2), there is a strong refutation algorithm [AOW15] which certifies that
no (1− η)-satisfying assignment exists (even for constant η < 1/2). However, at m = nk/2−ε and
take η = n−

1
4+

ε
2 , we can at best certify that the number of (1− η)-satisfying assignments is at most

exp(O(n
3
4+

ε
2 )). See also Figure 1 for illustration.

Optimality for counting independent sets. We also show barriers to improving Theorem 1.18,
which can be viewed as a weak hardness evidence. Specifically, we show that improving the upper
bound of Theorem 1.18 to exp (O(η log(1/η)n)) would imply beating Hoffman’s bound by a factor
of 1− η/2 (for any small constant η), which would be an interesting algorithmic breakthrough.

Theorem 1.21. Let G be a random d-regular graph. Given constant η ∈ (0, 1/2), if there is an efficient
algorithm that with high probability certifies a bound of exp

(
Cd
4 η log(1/η)n

)
on the number of indepen-

dent sets of size Cd(1− η)n, then there is an algorithm that with high probability certifies that G has no
independent set of size (1− η/2)Cdn.

The proof is a simple observation that for any independent set S, all subsets of S are also
independent sets. Thus, if S is of size (1 − η/2)Cdn, then we can lower bound the number of
subsets of size (1 − η)Cdn. We give a short proof in Section 8.2. We note the interesting gap
between η3/5 and η in the exponent of the upper and lower bounds respectively, and we conjecture
that there may be an algorithm matching the lower bound.

1.2 Context and related work

Information-computation gaps in CSPs. This work is very closely related to the line of work
on information-computation gaps. In the context of certification in random CSPs, the most well-
understood information-gaps are in that of refutation of random CSPs. Feige’s random 3SAT
hypothesis was one of the earliest conjectured gaps. As discussed earlier, while unsatisfiability for
random 3SAT set in at constant density, it was conjectured by Feige that certifying this was hard at
all constant densities. Further, integrality gaps for the Sum-of-Squares hierarchy of [Gri01, Sch08]
seem to point to hardness up to density

√
n. The wide information-computation gap is a main

motivation for us to understand what an efficient algorithm can certify about the landscape of
solutions in the regime between the satisfiability threshold and the refutation threshold. We refer
the reader to the introduction of [AOW15] for a comprehensive treatment of the literature on
information-computation gaps for refuting random CSPs prior to their work, CSPs more broadly,
as well as connections to other areas of theoretical computer science.

The situation for general constraint satisfaction problems beyond XOR and SAT was consid-
ered in the work of [AOW15], which gave algorithms to refute all CSPs at density nt/2−1 where t is
the smallest integer such that there is no t-wise uniform distribution supported on the predicate’s
satisfying assignments. Then somewhat surprisingly, the work of [RRS17] gave algorithms for
refuting random CSPs between constant density and the nt/2−1 threshold from [AOW15], whose
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running time smoothly interpolated between exponential time at constant density to polynomial
time at the [AOW15] threshold, with a (steadily improving) subexponential running time in the
intermediate regime. The algorithms of [AOW15, RRS17] are spectral, and can be captured within
the Sum-of-Squares hierarchy. Finally the work of [KMOW17] (presaged by [BCK15]) established
that the algorithm of [RRS17] was tight for Sum-of-Squares in all regimes, thereby nailing a char-
acterization for the exact gaps (up to logarithmic factors) for all random CSPs.

Solution geometry in random CSPs. One of the earlier predictions using nonrigorous physics
techniques was the location of the 3SAT satisfiability threshold in the works of [MZ02, MPZ02].
In particular, they conjectured that there is a sharp threshold at a constant αSAT ≈ 4.267. These
works put forth the “1-step replica symmetry breaking hypothesis” (a conjectured property of the
solution space in random kSAT; we refer the reader to the introduction of [DSS15] for a descrip-
tion), which was the starting point for several subsequent works. These techniques were used to
precisely predict the kSAT satisfiability threshold for all values of k [MMZ06], proved for large k
in a line of work culminating in [DSS15] and building on [AM02, AP03, COP13, COP16].

Eventually, the works of [KMRT+07, MRTS08] predicted that besides the satisfiability thresh-
old, random kSAT goes through other phase transitions too, and gave conjectures for their loca-
tions. A notable one connected to this work is the clustering threshold, for which there has been
rigorous evidence given in the works of [MMZ05, ART06, ACO08]. Above the clustering thresh-
old, the solution space is predicted to break into exponentially many exponential-sized clusters far
away from each other in Hamming distance. More precisely, there is some function Σ for which
there are exp(Σ(s, ∆)n) clusters of size approximately exp(sn) each. In particular, this leads to
the prediction that the number of solutions at density ∆ is roughly maxs{exp((s + Σ(s, ∆))n)}.
Another phase transition of interest is the condensation threshold, where the number of clusters of
solutions drops to a constant.

Approximate Counting for CSPs. Approximate counting of solutions in CSPs has attracted
much attention in recent years. There have been numerous positive algorithmic results for ap-
proximately counting solutions in (i) sparse CSPs in the worst case, (ii) sparse random CSPs well
under the satisfiability threshold. The takeaway here is that even though the problems we con-
sider get harder as we approach the satisfiability threshold, if one goes well under the threshold
the algorithmic problems once again become tractable.

One exciting line of research for worst-case CSPs is the problem of approximately count-
ing satisfying assignments of a kSAT formula under conditions similar to those of the Lovász
Local Lemma (LLL) [EL73]. A direct application of the LLL shows that if the maximum de-
gree D of the dependency graph is 6 2k/e, then the formula is satisfiable. Building on works of
[Moi19, FGYZ20, FHY20, JPV20], Jain, Pham, and Vuong [JPV21] recently showed that there is
an algorithm for approximate counting well under the LLL thresholds, i.e. when D . 2k/5.741

(hiding factors polynomial in k), using techniques similar to an algorithmic version of the LLL.
Further, the algorithms of [Moi19, JPV20] are deterministic, which may suggest their techniques
are amenable to obtaining certifiable counts. However, it was shown that the problem of approx-
imately counting solutions to a kSAT formula is NP-hard when D & 2k/2 by [BGG+19], well in
the sparse regime, which suggests a hard phase between the highly sparse setting and the dense
setting we are concerned with.
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For random kSAT, the exact satisfiability threshold that was established by Ding, Sly, and Sun
[DSS15] takes on value αSAT = 2k ln 2 − 1

2 (1 + ln 2) + ok(1). And similarly, well below the sat-
isfiability threshold, Galanis, Goldberg, Guo, and Yang [GGGY19] adapted Moitra’s techniques
[Moi19] to the random setting and developed a polynomial-time algorithm when the density
∆ 6 2k/301 and k sufficiently large.

Closely related to the counting problem is approximating the partition function of random
kSAT, for which there have also been positive algorithmic results. Specifically, given a random
kSAT instance I , the partition function is defined as Z(I , β) := ∑σ e−βH(σ), where H(σ) is the
number of unsatisfied clauses under assignment σ. The partition function can be viewed as a
weighted (or “permissive”) version of the counting problem. Montanari and Shah [MS06] first
showed that the Belief Propagation algorithm approximately computes the partition function at
∆ ∼ 2 log k

k ; their analysis is based on correlation decay (or the Gibbs uniqueness property). Recently,
[COMR20] further showed that Belief Propagation succeeds as long as the random kSAT model
satisfies a replica symmetry condition, conjectured to hold up to ∆ ∼ 2k ln k/k. See also the works
of [KMRT+07, Pan13, CO17] for further details of this matter.

Counting independent sets and related problems. Another counting problem that has been the
subject of active study is that of counting independent sets, especially in the statistical physics
community. For a graph G with maximum degree d, let IS(G) be the set of independent sets in
G. The task is to estimate the independence polynomial ZG(λ) = ∑I∈IS(G) λ|I|, also known as the
partition function of the hard-core model with fugacity λ in the physics literature. Earlier works by
[DG00, Vig01] developed randomized algorithms based on Glauber dynamics to estimate ZG(λ)

when λ 6 2
d−2 . In a major breakthrough, Weitz [Wei06] showed a deterministic algorithm, based

on correlation decay, that approximates ZG(λ) when 0 6 λ < λc, where λc := (d−1)d−1

(d−2)d . Sly and
Sun [SS12] later proved that this is tight: no efficient approximate algorithm for ZG(λ) exists for
λ > λc unless NP = RP.

Recently, Barvinok initiated a line of research on estimating partition functions using the in-
terpolation method (see Barvinok’s recent book [Bar16]). The main idea is to estimate the low-order
Taylor approximation of log ZG(λ) provided that the polynomial ZG(λ) does not vanish in some
region in C. This approach led to deterministic algorithms that match Weitz’s result and work even
for negative or complex λ’s [PR17, PR19]. These polynomial-based approaches were also used to
obtain deterministic algorithms for counting colorings in bounded degree graphs [LSS19a], esti-
mating the Ising model partition function [LSS19b], and algorithms for a counting version of the
Unique Games problem [CDK+19].

There has also been works on worst-case upper bounds of ZG(λ) for d-regular graphs. Zhao
proved that for any d-regular graph G and any λ > 0, ZG(λ) 6 (2(1 + λ)d − 1)n/2d [Zha10]. In
particular, setting λ = 1, this shows that the total number of independent sets is bounded by
(2d+1 − 1)n/2d, settling a conjecture by Alon [Alo91] and Kahn [Kah01].

Certifying bounds on partition functions and free energy. A recent line of work [Ris16, RL16,
JKR19] is focused on an approach based on a convex programming relaxation of entropy to certify
upper bounds on the free energy of the Ising model (weighted 2XOR), both in the worst case and
in the average case. While on the surface level, these approaches differ significantly from ours, an
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interesting direction is to investigate if these entropy-based convex programming relaxations can
achieve our algorithmic results.

1.3 Table of results

We include a table to have a succinct snapshot of our results.

Problem Theorem Upper bound Randomness

Counts

2XOR 4.1 exp(Õ(ηn)) Hypergraph

kXOR 4.4 exp(Õ(ηn)) · exp
(

O
(

n1+ε

∆1/(k−2)

))
Hypergraph

kCSP 4.8
exp(Õ(ηn)) · exp

(
O
(

n1+ε

∆1/(k−2)

))
· exp

(
Õ
(√

n(k+1)/2

∆

)) Hypergraph

+ signings

SK model 7.5 exp(O(η3/5 log 1
η )n) M ∼ GOE(n)

Independent set 7.7 exp(O(η3/5 log 1
η )n) d-regular graph

Clusters
3XOR 5.1

exp(O(θ2 log(1/θ))n),

for θ = max(2η, ∆−
1
2 log n)

Hypergraph

3CSP 5.2
exp(O(θ2 log(1/θ))n),

for θ = 8η + Õ(∆−1/2)

Hypergraph

+ signings

Balance
3CSP 6.1

bias 6 ρ for ρ�
√

log n
∆ ,

η = ρ/16

Hypergraph

+ signings

kCSP 6.4
bias 6 ρ for any constant ρ > 0,

η = ρk/2k+1

Hypergraph

+ signings

Table 1: A summary of our results.
(1) kCSP counts: given I ∼ Hn

k (m) where m = ∆n, we upper bound the number of (1− η)-
satisfying assignments.
(2) SK counts: given M ∼ GOE(n), we upper bound the number of x ∈ {±1}n such that
x>Mx > 2(1− η)n3/2.
(3) Independent set counts: given a random d-regular graph for constant d > 3, we upper bound
the number of independent sets of size > Cdn(1− η).
(4) 3CSP clusters: given I ∼ Hn

3 (m) where m = ∆n, we upper bound the number of diameter-
(θn) clusters of (1− η)-satisfying assignments.
(5) Balance: given I ∼ Hn

k (m) where m = ∆n, we certify that any (1− η)-satisfying assignment

must have bias 1
n

∣∣∣∑i∈[n] xi

∣∣∣ 6 ρ.
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1.4 Open directions

In this section we suggest a couple of avenues for further investigation on the themes related to
this work.

Worst-case complexity of certified counting. In this work, we deal mostly with random CSPs.
Here we present a worst-case version of the problem, specialized to 3SAT. A classic result due
to [Hås01] is that it is NP-hard to distinguish between a (7/8 + ε)-satisfiable 3SAT formula from
a fully satisfiable 3SAT formula. However, it is unclear what the complexity of a version of this
question is when there is a stronger promise on the satisfiable 3SAT formula.

Question 1.22. Consider the following algorithmic task:

Given a 3SAT formula I under the promise that it is either (7/8 + ε)-satisfiable, or has
at least T fully satisfying assignments, decide which of the two categories I falls into.

What is the complexity of the above problem?

We remark that this problem is similar to counting-3SAT, but subtly different.

Certifying optimal bounds on number of exactly satisfying kSAT solutions. In the context of
kSAT, while our algorithms can certify subexponential bounds for both exactly satisfying assign-
ments and approximately satisfying assignments, the matching evidence of hardness is only for
the approximate version of the problem. Thus, it is still possible that there is an algorithm to cer-
tify an even tighter bound than ours for the problem of counting exactly satisfying assignments to
a random kSAT formula. This motivates the following question:

Question 1.23. What is the tightest bound an efficient algorithm can certify on the number of
solutions to a random kSAT instance?

We conjecture that the algorithms presented in this paper are indeed optimal. An approach
to providing hardness evidence for this is to construct a hard planted distribution, and prove it is
hard within the low-degree likelihood ratio framework of [HS17]. We outline a possible approach in
Section 8.3 to construct a planted distribution for readers interested in this problem.

Properties of arbitrary CSP instances on random hypergraphs. In the context of approximate
kXOR, our certification algorithms for solution counts and cluster counts depend only on the hy-
pergraph structure and not the random negations. Hence, they also prove nontrivial statements
about the solution space of any XOR instance on a random hypergraph, which are potentially use-
ful in the context of quiet planting or semi-random models of CSPs. However, our certification
algorithms for other CSPs, such as kSAT, heavily make use of the random signings in the reduction
to kXOR.

Question 1.24. Can all the results related to certifying bounds on number of solutions/clusters
in this work for random kSAT instances be generalized to arbitrary kSAT instances on random
hypergraphs?
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2 Preliminaries

2.1 Graph theory

Given a graph G, we use V(G) to denote its vertex set, E(G) to denote its edge set, and degG(u)
to denote the degree of a vertex u. For S ⊆ V(G) and T ⊆ V(G), we use e(S, T) to denote the
number of tuples (u, v) such that u ∈ S, v ∈ T and {u, v} ∈ E(G).

We will be concerned with its normalized Laplacian matrix, denoted LG, defined as:

LG := 1− D−1/2
G AGD−1/2

G ,

where AG is the adjacency matrix of G and DG is the diagonal matrix of vertex degrees in G. Since
LG is a self-adjoint matrix, it has n real eigenvalues, which we sort in increasing order and denote
as:

0 = λ1(G) 6 λ2(G) 6 . . . 6 λn(G).

Of particular interest to us is λ2(G), which we call the spectral gap.
A combinatorial quantity we will be concerned with is the conductance of G. For a subset S ⊆ V,

we define the volume of S as vol(S) := ∑u∈S deg(u) and let φG(S) := e(S,S)
vol(S) . The conductance of G

is then defined as:
φG := min

S⊆V(G)
vol(S)6vol(V)/2

φG(S).

The well-known Cheeger’s inequality on graphs, first proved in [AM85], relates the conductance
and the spectral gap. We refer the reader to [Tre17] for a good exposition of the proof.

Theorem 2.1 (Cheeger’s inequality). For any graph G,

λ2(G)

2
6 φG 6

√
2λ2(G).

It is well-known that dense Erdős-Rényi random graphs have large spectral gaps (cf. [CO07,
HKP19]).

Theorem 2.2 ([HKP19, Theorem 1.1]). Let G be an Erdős-Rényi random graph with p = ω
(

log n
n

)
, and

let d = p(n− 1) denote the average degree. Then, there is a constant C such that

λ2(G) > 1− C√
d

with probability at least 1− Cn exp(−d)− C exp(−d1/4 log n).

Closely related to Cheeger’s inequality is the expander mixing lemma, which roughly states that
the edges of an expander graph are well distributed. Here, we consider the adjacency matrix A and
the “de-meaned” matrix A := A− d

n J, where J is the all-ones matrix. We include a short proof for
completeness.

Theorem 2.3 (Expander Mixing Lemma [AC88]). Let G be a graph with n vertices and average degree
d, and let A be the de-meaned adjacency matrix. Then, for any S, T ⊆ V(G),∣∣∣∣e(S, T)− d

n
|S| · |T|

∣∣∣∣ 6 ‖A‖
√
|S| · |T|.
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Proof. Let 1S, 1T ∈ {0, 1}n be the indicator vectors for subsets S, T. Clearly, we have 1>S A1T =

e(S, T) and 1>S J1T = |S| · |T|. Moreover, ‖1S‖2 =
√
|S| and ‖1T‖2 =

√
|T|. Thus,

e(S, T)− d
n
|S| · |T| = 1>S

(
A− d

n
J
)

1T

⇒
∣∣∣∣e(S, T)− d

n
|S| · |T|

∣∣∣∣ 6 ∥∥A
∥∥ · ‖1S‖2 · ‖1T‖2.

2.2 Fourier analysis of Boolean functions

We refer the reader to [O’D14] for an elaborate treatment of the subject. The functions {∏i∈T xi}T⊆[k]
form an orthogonal basis for the space of functions from {±1}k to R, and hence any function
f : {±1}k → R can be expressed as a multilinear polynomial:

f (x) = ∑
T⊆[n]

f̂ (T)∏
i∈T

xi.

Further, the coefficients f̂ (T), which are called Fourier coefficients, can be obtained via the formula:

f̂ (T) = E
z∼{±1}k

[
f (z)∏

i∈T
zi

]
.

A key property, called Plancherel’s theorem, is the following:

Fact 2.4. Let f , g be functions from {±1}k to R. Then:

〈 f , g〉 := E
z∼{±1}k

f (z)g(z) = ∑
T⊆[k]

f̂ (T)ĝ(T).

Given a probability distribution D on {±1}k, following the notation of [AOW15], we use D
to denote the function equal to its probability density function multiplied by 2k. This leads to the
notational convenience that for any function f : {±1}k → R,

E
z∼D

f (z) = E
z∼{±1}k

f (z)D(z).

2.3 Random hypergraphs and CSPs

In this work, we will deal with random CSPs defined as signed k-uniform hypergraphs.

Definition 2.5 (Signed k-uniform hypergraph). A signed k-uniform hypergraph I on universe [n] is
a collection of pairs {(c, U)}where for each (c, U), c ∈ {±1}k and U is in [n]k. Each pair (c, U) ∈ I
is also called a hyperedge in I .

The distribution over signed k-uniform hypergraphs we work with is:

Definition 2.6. We use Hn
k (m) to denote the distribution on signed k-uniform hypergraphs on

universe [n] where a sample I ∼ Hn
k (m) is obtained by independently including each of the 2knk

potential hyperedges with probability m
2knk . Moreover, we use Hn

k,+(m) to denote the distribution
of (unsigned) k-uniform hypergraphs, which is the same asHn

k (m) but with the signs removed.
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Given a tuple U ∈ [n]k and x ∈ {±1}n, we use xU to denote the tuple (xU[1], . . . , xU[k]). And for
a pair of k-tuples a, b we use a ◦ b to denote the entrywise product of the tuples (a1 · b1, . . . , ak · bk).

Definition 2.7. A constraint satisfaction problem instance (CSP instance) on variable set [n] is a signed
hypergraph I along with a function P : {±1}k → R, called a predicate. Given x ∈ {±1}n, we use
PI (x) to denote the objective value on x:

PI (x) :=
1
|I| ∑

(c,U)∈I
P(c ◦ xU).

Definition 2.8. Given a signed k-uniform hypergraph I on [n] and any x ∈ {±1}n, we defineDI ,x

to be the distribution on {±1}k with density (scaled by 2k):

DI ,x(z) :=
2k

|I| · |{(c, U) ∈ I|c ◦ xU = z}| .

Note that D̂I ,x(∅) = Ez∼{±1}k [DI ,x(z)] = 1 for all x ∈ {±1}n. A simple but important obser-
vation is the following.

Observation 2.9. If I is a signed k-uniform hypergraph and P : {±1}k → R is some predicate,
then:

PI (x) =
1
|I| ∑

(c,U)∈I
P(c ◦ xU)

= E
z∼{±1}k

[P(z)DI ,x(z)]

= ∑
T⊆[k]

P̂(T)D̂I ,x(T).

Definition 2.10 (Biased assignment). We say x ∈ {±1}n is η-biased if 1
n |∑

n
i=1 xi| > η.

Next, we focus on kXOR. Given a pair (c, U) ∈ I , P(c ◦ xU) = 1 if and only if ∏k
i=1 xU[i] =

∏k
i=1 ci, thus in the case of kXOR we will also write (b, U) as a constraint (or clause) of I , where

b = ∏k
i=1 ci ∈ {±1} is the signing of the constraint. We call a constraint (b, U) positive if b = +1

and negative if b = −1. We say an instance I is p-positive if the fraction of its constraints that are
positive is at most p. Moreover, we will need the notion of induced XOR and truncated XOR, which
we define below.

Definition 2.11 (Induced tXOR and truncated (k − t)XOR). Given a kXOR instance I , an integer
1 6 t 6 k− 1, a subset of variables S ⊆ [n], and an assignment σ ∈ {±1}S, we define the induced
tXOR instance IS,σ,t on variables S as follows: for each clause (b, U) ∈ I where all variables in U[1 :
k− t] are in S and all variables in U[k− t + 1 : k] are in S, add a tXOR clause (b′, U[k− t + 1 : k])
where b′ = b ·∏k−t

i=1 σi. Similarly, we define the truncated (k− t)XOR instance I|S,k−t on variables S
as follows: for each clause (b, U) ∈ I where all variables in U[1 : k− t] are in S and all variables
in U[k− t + 1 : k] are in S, add a (k− t)XOR clause (b, U[1 : k− t]).

For example, consider a 4XOR instance and a constraint xaxbxcxd = +1. Suppose a, b ∈ S,
c, d /∈ S, and σa = +1, σb = −1. Then for t = 2, the induced instance IS,σ,2 will have a constraint
xcxd = −1, and the truncated instance I|S,2 will have a constraint xaxb = +1. Note that the
truncated instance does not depend on the assignments to S.
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Observation 2.12. Given a kXOR instance I , subset S ⊆ [n] and σ ∈ {±1}S, the following are use-
ful relationships between the induced tXOR instance IS,σ,t and the truncated (k− t)XOR instance
I|S,k−t:

1. |IS,σ,t| =
∣∣∣I|S,k−t

∣∣∣.
2. ∑

(b,U)∈IS,σ,t

b = ∑
(b,U)∈I|S,k−t

b ∏
i∈U

σi.

Definition 2.13 (Induced hypergraph). Given a kXOR instance I , an integer 1 6 t 6 k− 1, and a
subset of variables S ⊆ [n], we define the induced t-uniform hypergraph HS,t on n− |S| variables as
the underlying t-uniform hypergraph of the induced tXOR of S. Note that the hypergraph only
depends on S, t and not the assignment σ to S.

For simplicity, we denote IS,σ to be IS,σ,k−1 and HS to be HS,k−1.

Definition 2.14 (Primal graph). Given a hypergraph H, we define the primal graph of H on the
same vertex set, denoted HP, as follows: for every hyperedge e ∈ H and every pair (u, v) ∈ e, add
(u, v) to HP. Parallel edges are allowed.

2.4 Refuting random CSPs

We will need the refutation algorithm for random CSPs of [AOW15]. A crucial notion in [AOW15]
is that of approximate t-wise uniformity.

Definition 2.15 ((ε, t)-wise uniform). A distribution D is (ε, t)-wise uniform if for all T ⊆ [k] such
that 0 < |T| 6 t, |D̂(T)| 6 ε.

Definition 2.16. We say a signed k-uniform hypergraph I on [n] is (ε, t)-quasirandom if for every
x ∈ {±1}n the distribution DI ,x is (ε, t)-wise uniform.

Now we are ready to state the key statement we use from [AOW15].

Theorem 2.17. Let I ∼ Hn
k (m) with m > αnt/2. Then there is an efficient algorithm that with probability

1− o(1) certifies that I is
(

2O(t) log5/2 n√
α

, t
)

-quasirandom.

Another statement we use from [AOW15] is their algorithm to refute random polynomials on
the hypercube.

Theorem 2.18. For k > 2, let {wT}T∈[n]k be independent centered random variables on [−1, 1] such that:

Pr[wT 6= 0] 6 p ∀T ∈ [n]k.

Then there is an efficient algorithm which certifies with high probability:

∑
T∈[n]k

wTxT 6 2O(k) max{√pn3k/4, nk/2} log3/2 n

for all x ∈ {±1}n.
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2.5 Random matrix theory

We will need the matrix Bernstein inequality for proving spectral norm bounds as stated in [Tro15,
Theorem 6.1.1].

Theorem 2.19 (Matrix Bernstein inequality (special case of [Tro15, Theorem 6.1.1])). Let S1, . . . , S`

be a collection of independent random symmetric matrices of dimension d× d. Assume that E Si = 0 and
‖Si‖ 6 1 for all i ∈ [`]. Let Z = ∑i∈[`] Si. Define:

v =

∥∥∥∥∥∑
i∈[`]

E[S2
i ]

∥∥∥∥∥ .

Then, for any t > 0,

Pr[‖Z‖ > t] 6 2d exp
(
−t2

v + t/3

)
.

We will also need the eigenvalue distribution of random matrices (in Section 7). We first con-
sider Gaussian matrices. Let W be a random n× n matrix with independent standard Gaussian
entries, and let M := 1√

2
(W + W>). We say that M is sampled from the Gaussian Orthogonal

Ensemble, denoted GOE(n). We recall the following results in random matrix theory,

Fact 2.20. The spectral norm λmax(M) 6 (2 + t)
√

n with probability 1− 2 exp(−nt2/2).

Theorem 2.21 (Semicircle law [Erd11]). The empirical distribution of eigenvalues of M ∼ GOE(n)
follows a universal pattern, the Wigner semicircle law. For any fixed real numbers a < b, with probability
1− o(1),

1
n

∣∣∣∣{i :
1√
n

λi(M) ∈ [a, b]
}∣∣∣∣ = (1± o(1))

∫ b

a
ρsc(x)dx, ρsc(x) :=

1
2π

√
(4− x2)+,

where (a)+ = max(a, 0).

Lemma 2.22. For M ∼ GOE(n) and any ε ∈ (0, 2), with probability 1− o(1),

1
n
∣∣{i : λi(M) > (2− ε)

√
n
}∣∣ 6 ε3/2

π
(1± o(1)).

Proof. We apply Theorem 2.21 directly. The area under the semicircle between 2− ε and 2 can be
upper bounded by a rectangle of width ε and height

√
4ε− ε2 6 2

√
ε. Dividing by 2π completes

the proof.

Next, we look at the adjacency matrix A of a random d-regular graph. It is a standard result that
the largest eigenvalue of A is d, and the all-ones vector~1 is the top eigenvector. Thus, it is common
to look at the “de-meaned” matrix A := A− d

n J (removing the top eigenvector component). The
eigenvalue bounds for A were conjectured by Alon [Alo86] and later proved by Friedman [Fri08].
The following quantitative statement is by Bordenave [Bor15].

Theorem 2.23. Let d > 3 be an integer and let A be the adjacency matrix of a random d-regular graph on n
vertices. With probability 1− 1

poly(n) , all eigenvalues of A− d
n J lie within [−2

√
d− 1− εn, 2

√
d− 1+ εn],

where εn = c
(

log log n
log n

)2
for some constant c.
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For constant d (fixed as n grows), the empirical eigenvalue distribution is given by the Kesten–
McKay law [Kes59, McK81]. The eigenvalues of A and A − d

n J interlace by Cauchy’s interlacing
theorem, and hence the limiting eigenvalue distributions are the same for both matrices.

Theorem 2.24 (Kesten–McKay law [McK81]). Let d > 3 be a fixed integer. Let A be the adjacency
matrix of a random d-regular graph, and let A = A − d

n J. For any fixed real numbers a < b, with
probability 1− o(1),

1
n
∣∣{i : λi(A) ∈ [a, b]

}∣∣ = (1± o(1))
∫ b

a
ρd(x)dx,

ρd(x) :=
d
√

4(d− 1)− x2

2π(d2 − x2)
for |x| 6 2

√
d− 1.

Lemma 2.25. Let d > 3 be a fixed integer. Let A be the adjacency matrix of a random d-regular graph, and
let A = A− d

n J. For any ε ∈ (0, 1), with probability 1− o(1),

1
n

∣∣∣{i : λi(A) 6 −2
√

d− 1(1− ε)
}∣∣∣ 6 12

√
2

π
ε3/2(1± o(1)).

Proof. We apply Theorem 2.24 directly. The Kesten–McKay density ρd can be upper bounded by
d

2π(d2−4(d−1))

√
4(d− 1)− x2, a scaled semicircle of radius 2

√
d− 1. Let xε = 2

√
d− 1(1− ε). Then,

ρd(xε) 6 d
√

d−1
π(d−2)2

√
2ε. This upper bound is increasing with ε. Thus, we can bound the area under

ρd between 2
√

d− 1(1− ε) and 2
√

d− 1 by 2
√

2
π ·

d(d−1)
(d−2)2 ε3/2. The term d(d−1)

(d−2)2 is decreasing for d > 3
and the maximum is 6. This completes the proof.

3 The kXOR principle

A crucial ingredient in our algorithms is that we can efficiently certify with high probability that
any assignment that approximately satisfies a random kSAT formula I must also approximately
satisfy the formula as kXOR. This generalizes the k = 3 case that appears in [Fei02, FO07] under
the name “3XOR-principle”.

Concretely, we show:

Lemma 3.1. Let I be a random kSAT formula on m = αn(k−1)/2 clauses. There is an algorithm that with
high probability certifies:

Any (1− η)-satisfying assignment of I must kXOR-satisfy at least (1− 2k−1η)m− 2O(k)
√

α log5 n ·
n(k−1)/2 clauses.

To prove Lemma 3.1, we will need the Fourier expansion of kSAT. Though this is well-known
and simple to derive, we present a proof for completeness.

Claim 3.2. kSAT(x1, . . . , xk) = 1− 2−k ∑T⊆[k] ∏i∈T xi.

Proof. First note that kSAT(x1, . . . , xk) = 1− 1x=~1. It remains to verify that all the Fourier coeffi-
cients of 1x=~1 are equal to 2−k. Indeed, for any T ⊆ [k]:

1̂x=~1(T) = E
x∼{±1}k

χT(x)1x=~1(x) = 2−k,

which completes the proof.
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We are now ready to prove Lemma 3.1.

Proof of Lemma 3.1. If x is a (1− η)-satisfying assignment for I , then on one hand:

1
|I | ∑

(c,U)∈I
kSAT(c ◦ xU) > 1− η. (1)

On the other hand, by Theorem 2.17, with high probability we can certify that I is quasirandom,
specifically DI ,x is approximately (k − 1)-wise uniform for all x ∈ {±1}n (recall Definition 2.15
and Definition 2.16). Thus, we can certify:

1
|I | ∑

(c,U)∈I
kSAT(c ◦ xU) = E

z∼{±1}k
[kSAT(z)DI ,x(z)] (by Observation 2.9)

= (1− 2−k)D̂I ,x(∅) + 2−k ∑
T⊆[k]
T 6=∅

D̂I ,x(T) (by Claim 3.2)

= 1− 2−k + 2−kD̂I ,x([k]) + 2−k ∑
T⊆[k]

16|T|6k−1

D̂I ,x(T)

6 1− 2−k + 2−kD̂I ,x([k]) +
2O(k) log5/2 n√

α
. (by Theorem 2.17)

(2)

If the certification of the above inequality fails, then we halt the algorithm and output failure.
Otherwise, (1) and (2) together tell us that:

1− η 6 1− 2−k + 2−kD̂I ,x([k]) +
2O(k) log5/2 n√

α
,

which can be rearranged as:

D̂I ,x([k]) > 1− 2kη − 2O(k) log5/2 n√
α

. (3)

By Observation 2.9 and (3) the fraction of clauses of I that are kXOR-satisfied by x is:

1 + D̂I ,x([k])
2

> 1− 2k−1η − 2O(k) log5/2 n√
α

,

which completes the proof.

4 Count Certification for kCSPs

Thanks to the kXOR-principle, we can first focus on kXOR. For any kXOR instance, we can calculate
the number of exactly satisfying assignments by Gaussian elimination. However, the problem
becomes non-trivial when we turn to the number of approximate solutions. A priori, it is unclear
whether we can certify a bound better than a naive 2O(n) bound. In this section, we will show an
algorithm that certifies a subexponential upper bound when the underlying graph is random and
sufficiently dense.
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4.1 Count certification for 2XOR

As a warmup, we start with 2XOR.

Theorem 4.1. Let G ∼ Hn
2,+(m) be a random graph where m = ∆n and ∆ = nδ (for some constant

δ > 0). For any η ∈ [0, 1], there is a polynomial-time algorithm certifying that the number of (1− η)-
satisfying assignments to any 2XOR instance on G is

• at most 2 if η 6 1
3n ,

• at most 2e3ηn log n if η > 1
3n ,

with probability at least 1− exp(−nΩ(δ)) over the randomness of G.

Remark 4.2. Given a random graph, the algorithm simultaneously certifies an upper bound for
all instances on this graph with arbitrary signings. The simultaneous certification will be crucial
in the subsequent sections.

Our first observation is that if the graph has large expansion, then given an approximate satis-
fying assignment, we cannot flip too many variables without violating many constraints. Specifi-
cally, if we flip S ⊆ [n] (|S| < n/2), then the number of clauses negated is e(S, S), and this is large
if the graph is an expander. In fact, Theorem 4.1 holds for any instance with an expanding graph.
Our second observation is the following (which holds for all k > 2).

Observation 4.3. Let I be a kXOR instance with arbitrary signings, and let x, x′ ∈ {±1}n be two
(1− η)-satisfying assignments. If a clause (b, U) ∈ I is satisfied by both, then xU · x′U = b2 = 1.
Thus, the entry-wise product x ◦ x′ ∈ {±1}n is a (1− 2η)-satisfying assignment for the all-positive
instance I+ (changing all signings to +1).

We now proceed to prove Theorem 4.1.

Proof of Theorem 4.1. The algorithm is as follows: given a graph with n vertices and m = ∆n = n1+δ

edges, and a parameter η ∈ [0, 1].

(1) Check that all vertex degrees are within 2∆
(

1± 1
∆1/3

)
.

(2) Compute λ2(L) where L is the normalized Laplacian matrix. Check that λ2(L) > 1− 1
∆1/4 .

(3) If the checks fail, output 2n. Otherwise, if η 6 1
3n , output 2; otherwise, output 2e3ηn log n.

The random graph G is an Erdős-Rényi random graph sampled from G(n, p) with p = 2m
n2 =

2n−1+δ (removing parallel edges and self-loops allowed by the random model). It is a standard
result in random graph theory that at this density, all vertex degrees concentrate around np = 2∆;
specifically, the check in step (1) will succeed with probability 1 − exp(−Ω(∆1/3)) by a simple
Chernoff bound (cf. [FK16]). Furthermore, the check in step (2) will succeed with probability
1 − exp(−Ω(∆1/4)) due to Theorem 2.2. Note that for any instance where the checks fail, the
output 2n is still a valid (trivial) upper bound.

Consider a maximum satisfying assignment x (assume it is (1− η)-satisfying, otherwise our
bound trivially holds), and let x′ be any (1− η)-satisfying assignment. By Observation 4.3, y :=
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x ◦ x′ is a (1− 2η)-satisfying assignment to the all-positive instance I+ on G. Clearly, the all-ones
vector~1 and its negation are exactly satisfying assignments to I+. We will show that y must be
close to~1 or −~1, meaning that x′ must be close to x or −x in Hamming distance.

Suppose (without loss of generality) that y is closer to ~1, and let S = {i : yi = −1} where
|S| 6 n

2 . Then, the constraints of I+ between S and S will be violated. By Cheeger’s inequality
(Theorem 2.1), e(S, S) > λ2

2 vol(S), and by the degree concentration, vol(S) > |S| · 2∆(1− o(1)).
Thus, the spectral gap λ2 > 1− o(1) and the degree bounds together certify that

e(S, S) > ∆|S|(1− o(1)).

If |S| > 3ηn, then e(S, S) > 2η∆n = 2ηm, contradicting that y is a (1 − 2η)-satisfying as-
signment of I+. Thus, any (1 − η)-satisfying assignment x′ must be b3ηnc-close to x or −x in
Hamming distance. Note that if η 6 1

3n , then x′ can only be ±x.
For the η > 1

3n case, the number of assignments b3ηnc away from ±x is upper bounded by

2
min(b3ηnc,n)

∑
`=0

(
n
`

)
6 2e3ηn log n.

Note that if η = O(1), then the upper bound trivially holds. For η = o(1), we use the fact that
( n

3ηn) 6
n3ηn

(3ηn)! .

4.2 Count certification for kXOR

For k > 3, we can obtain subexponential upper bounds by a recursive algorithm. Same as The-
orem 4.1, our algorithm simultaneously certifies an upper bound for all kXOR instances on the
given random hypergraph.

Theorem 4.4. For constant k > 3, let H ∼ Hn
k,+(m) be a random k-uniform hypergraph with m = ∆n

and ∆ = nδ (for some constant δ ∈ (0, k− 1)). For any η ∈ [0, 1] and ε > 0, there is a polynomial-time
algorithm certifying that the number of (1− η)-satisfying assignments to any kXOR instance on H is at
most

2(2n)k−2 · exp (O(ηn log n)) · exp
(

O
(

n1− δ
k−2+ε

))
with probability at least 1− nk exp(−nΩ(ε)) over the randomness of H.

Remark 4.5. The (2n)k−2 in the upper bound is there to handle the case when η = o(1/n) and
δ > k− 2 (very dense instance). In this case, we get a poly(n) upper bound.

The main idea is that if we have a certification algorithm for (k− 1)XOR, then we can obtain
upper bounds for the induced (k− 1)XOR defined in Definition 2.11. At a high level, the algorithm
will do the following: 1) fix a set S ⊆ V of a certain size, 2) look at the induced (k− 1)-uniform
hypergraph HS (Definition 2.13), 3) run the certification algorithm for (k− 1)XOR on HS to obtain
an upper bound, and 4) multiply by 2|S|.

The intuition is that for every assignment σS ∈ {±1}S, we get an induced (k− 1)XOR instance
with a random hypergraph and arbitrary signings (determined by σS). Here we crucially use the
fact that our algorithm simultaneously certifies a bound for all signing patterns, hence we avoid
enumerating every assignment σS. Once we have an upper bound on approximate solutions to
the induced instances, we simply multiply it by 2|S| to get the final upper bound.
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We immediately see that for a fixed subset S, the above procedure throws away most of the
clauses (keeping only clauses that have 1 variable in S). Thus, it is clearly suboptimal to look at
just one subset S. To resolve this, we partition V into subsets S1, . . . , S`, run the algorithm on each
of them, and aggregate the results via the following lemma.

Lemma 4.6. Given a kXOR instance I , a partition of vertices S1, . . . , S`, and a threshold t. Suppose for
each i ∈ [`] and each induced (k− 1)XOR instance ISi ,σSi

, the number of assignments (on variables [n] \ Si)
that violate at most b kt

` c constraints is upper bounded by ui, then the number of assignments violating at
most t constraints in I is upper bounded by ∑`

i=1 2|Si |ui.

Proof. Let H be the underlying k-uniform hypergraph. Consider the induced (k − 1)-uniform
hypergraphs HS1 , . . . HS`

. Each hyperedge in H contributes at most k hyperedges in the induced
hypergraphs (i.e. the union of HS1 , . . . , HS`

will have at most k copies of the same hyperedge).
Thus, for any assignment σ that violates 6 t constraints in I , there must be an i ∈ [`] such that
6 b kt

` c constraints are violated in the induced (k− 1)XOR instance ISi ,σSi
.

Next, we bound the number of assignments violating at most t constraints.

∑
σ∈{±1}n

1(σ violates 6 t constraints in I) 6 ∑
σ∈{±1}n

`

∑
i=1

1
(

σ violates 6
⌊

kt
`

⌋
constraints in ISi ,σSi

)

6
`

∑
i=1

∣∣∣∣{σ : σ violates 6
⌊

kt
`

⌋
constraints in ISi ,σSi

}∣∣∣∣
6

`

∑
i=1

2|Si |ui.

The second inequality follows by switching the two summations, and the final inequality holds
because an upper bound ui for the induced (k− 1)XOR instance implies an upper bound of 2|Si |ui

by enumerating all possible assignments to Si.

In the proof of Theorem 4.4, we will partition [n] into ` = n1−c subsets of size nc for some c < 1
chosen later. The upper bounds u1, . . . , u` will be obtained recursively and will roughly be the
same with high probability. Thus, by Lemma 4.6, we get an upper bound of `2nc

u, where we can
choose c to obtain the optimal result.

Proof of Theorem 4.4. First, we can assume without loss of generality that ε < δ
k−2 , otherwise the

upper bound trivially holds. Our algorithm is the exact same procedure as Lemma 4.6.

Certification Algorithm for kXOR
Input: k-uniform hypergraph with n variables and m = ∆n = n1+δ edges, parameters η ∈
[0, 1], ε ∈ (0, δ

k−2 ).

(1) If δ < k− 2, choose c = 1− δ
k−2 + ε for 0 < ε < δ

k−2 ; if δ > k− 2, choose c = 0. Partition the
vertices into ` = n1−c subsets S1, . . . , S` of size nc, and extract the induced (k− 1)-uniform
hypergraphs HS1 , . . . , HS`

(removing duplicate hyperedges).

(2) Run the (k − 1)XOR certification algorithm with η′m′ = k
`ηm on each HSi , where m′ is the

number of hyperedges in HSi . Let ui be the upper bound.
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(3) Output ∑`
i=1 2|Si |ui.

We will prove the correctness of the algorithm by induction on k. The base case is k = 2,
and our 2XOR algorithm from Theorem 4.1 achieves the same guarantees (we assume in this case
n1− δ

k−2+ε = 0). Now, suppose k > 3 and we have a (k − 1)XOR algorithm with performance as
stated in Theorem 4.4. Then, by Lemma 4.6, the output is a valid upper bound on the number
of assignments violating at most ηm constraints. Theorem 4.4 requires the number of hyperedges
m = n1+δ for some constant δ ∈ (0, k − 1), and thus it suffices to prove that the induced hyper-
graphs HS1 , . . . , HS`

have the required density, which we can control by choosing c.
For each Si, the induced (k − 1)XOR is a random (k − 1)-uniform hypergraph where each

(k− 1)-tuple is included with probability q := 1− (1− p)|Si |, where p = m
nk = n1+δ−k (recall that

we treat hyperedges as tuples; removing duplicates will not affect the upper bound). Here we
split into two cases,

• δ 6 k − 2: we set c = 1− δ
k−2 + ε < 1. Then, p|Si| = n1+δ−k · nc < n−1+c = o(1). Thus,

q = p|Si|(1± o(1)) = pnc(1± o(1)).

• δ > k− 2: we set c = 0, thus q = p = pnc.

In both cases, the number of hyperedges in the induced hypergraph is concentrated around

m′ = qnk−1 =
m
nk nc(1± o(1)) · nk−1 = nδ+c(1± o(1)).

Thus, the density ∆′ = m′
n−nc ∼ nδ+c−1. Let δ′ := δ + c− 1. Again, we split into the two cases,

• δ 6 k − 2: we have δ′ = δ + (1− δ
k−2 + ε)− 1 = (1− 1

k−2 )δ + ε > ε > 0 since ε > 0, and
δ′ 6 (k− 2) + c− 1 < k− 2 since c < 1. Further, δ′

k−3 > δ
k−2 +

ε
k−3 > δ

k−2 .

• δ > k − 2: we have δ′ = δ − 1 > k − 3 > 0 since k > 3, and δ′ < k − 2 since δ < k − 1.
Further, δ′

k−3 = δ−1
k−3 > δ

k−2 .

In both cases, the induced (k− 1)XOR instance has the required density ∆′ = nδ′ with δ′ ∈ (0, k−
2), which means we can apply the (k− 1)XOR algorithm. The parameter η′ is set to 1

m′ ·
k
`ηm ∼ kη

(capped at 1), and set ε′ = ε.
The (k− 1)XOR algorithm on the induced instance will certify an upper bound of

ui 6 2(2n)k−3 exp
(
O(η′n log n)

)
· exp

(
O
(

n1− δ′
k−3+ε′

))
.

Since η′ = O(η), ε′ = ε, and δ′

k−3 > δ
k−2 , our final upper bound is

`

∑
i=1

2|Si |ui 6 2(2n)k−2 · exp (O(ηn log n)) · exp
(

O
(

n1− δ
k−2+ε

))
.

Finally, we bound the failure probability. The (k − 1)XOR algorithm fails with probability
< nk−1 exp(−nΩ(ε′)) = nk−1 exp(−nΩ(ε)). We union bound over the ` induced hypergraphs, we
get the failure probability < nk exp(−nΩ(ε)).
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4.3 Count certification for all kCSPs

First, observe that as an immediate consequence of Theorem 4.4 and Lemma 3.1, we have:

Corollary 4.7. For constant k > 3, let I ∼ Hm
k (n) be a random signed hypergraph where m = ∆n =

n1+δ. For every constant ε > 0, there is an algorithm that certifies with high probability that the number of
(1− η)-satisfying assignments to I as an instance of kSAT is at most

exp
(

Õ(ηn)
)
· exp

(
Õ
(

n
k+1

4 −
δ
2

))
· exp

(
O
(

n1− δ
k−2+ε

))
.

It is simple to upgrade the statement of Corollary 4.7 from the case of kSAT to all kCSPs.

Corollary 4.8. Let P be any predicate not equal to the constant-1 function. For constant k > 3, let
I ∼ Hm

k (n) be a random signed hypergraph where m = ∆n = n1+δ. For every constant ε > 0 there is an
algorithm that certifies with high probability that the number of (1− η)-satisfying assignments to I as an
instance of P is at most

exp
(

Õ(ηn)
)
· exp

(
Õ
(

n
k+1

4 −
δ
2

))
· exp

(
O
(

n1− δ
k−2+ε

))
.

Proof. Let z ∈ {±1}k be any string not in the support of P. Construct a new signed hypergraph
I ′ := {(c ◦ z, U) : (c, U) ∈ I}. If x is a (1 − η)-satisfying assignment to I as an instance of
P, then x is also a (1− η)-satisfying assignment to I ′ as an instance of kSAT. Further, it is easy
to see that I ′ is also distributed as Hm

k (n), so we can apply the algorithm from Corollary 4.7 to
certify a bound on the number of (1 − η)-satisfying assignments to I ′ as an instance of kSAT.
Consequently, we get the desired statement.

5 Count certification of Solution Clusters

In this section, we bound the number of clusters of satisfying assignments. Due to the 3XOR-
principle, we first focus on clusters of (1− η)-satisfying assignments to random 3XOR instances.

Theorem 5.1. Consider a random 3-uniform hypergraph H ∼ Hn
3,+(m) where m = ∆n and ∆ = nδ for

some constant δ ∈ (0, 2). Let η ∈ [0, η0] where η0 is a universal constant, and let θ := max(2η, ∆−
1
2 log n).

There is a polynomial-time algorithm certifying that the (1− η)-satisfying assignments to any 3XOR in-
stance on H are covered by at most

exp(O(θ2 log(1/θ))n)

diameter-(θn) clusters, with probability at least 1− 1
poly(n) over the randomness of H.

As an immediate corollary of Theorem 5.1, Lemma 3.1, and the reduction in the proof of Corol-
lary 4.8 we have:

Corollary 5.2. Let P be any 3-ary predicate not equal to the constant-1 predicate. Let I ∼ Hm
3 (n) be a

random signed hypergraph where m = ∆n = n1+δ for some constant δ ∈ (0, 2). Let η ∈ [0, η0] where

η0 is a universal constant, and let θ := 8η + O(

√
log5 n

∆ ). There is an algorithm that certifies with high
probability that the (1− η)-satisfying assignments to I as a P-CSP instance are covered by at most

exp(O(θ2 log(1/θ))n)

diameter-(θn) clusters.
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Inspecting the proof of Theorem 4.1, we see that it actually proves a stronger statement: for
any pair of (1− η)-satisfying assignments x, x′ to the 2XOR instance I , x′ must be (3ηn)-close to
x or −x in Hamming distance. The proof looks at the instance I+ (where all signs are set to +1)
and the expansion of the graph.

The proof of Theorem 5.1 will follow a similar path. On a high level, we will first prove that
y := x ◦ x′ must be either close to~1 or be roughly balanced, i.e. x and x′ must have Hamming dis-
tance close to 0 or roughly n

2 . The main ingredient is Lemma 5.4 which lets us certify an important
structural result of random 3-uniform hypergraphs, allowing us to reason about the constraints
violated by y in I+. Lemma 5.4 will be a crucial step in Section 6 as well.

The second ingredient is a result in coding theory. Since the clusters are roughly n
2 apart, the

number of clusters must be upper bounded by the cardinality of the largest ε-balanced binary
error-correcting code. The best known upper bound is 2O(ε2 log(1/ε))n, obtained by [MRRW77] us-
ing linear programming techniques and also by [Alo09] using an analysis of perturbed identity
matrices. This gives our final result.

We begin by proving an eigenvalue bound for the primal graph of a random 3-uniform hy-
pergraph (the graph obtained by adding a 3-clique for each hyperedge; see Definition 2.14). For
simplicity, we will implicitly assume that all hyperedges with repeated vertices (allowed in our
random model) are removed; this will not affect the results.

Lemma 5.3. Let H ∼ Hn
3,+(m) be a random 3-uniform hypergraph where m = ∆n and ∆ = nδ (for

constant δ ∈ (0, 2)), and let A be the adjacency graph of the primal graph HP. Then, there is a constant C
such that with probability 1− 1

poly(n) , ∥∥∥∥A− 6∆
n

J
∥∥∥∥ 6 C

√
∆ log n.

Proof. The primal graph is a random graph such that for each tuple U = (a, b, c) ∈ [n]3 (no re-
peated vertices), edges (a, b), (b, c), (c, a) are included with probability p := m

n3 = ∆
n2 . Let AU

be the adjacency matrix of the graph containing just the 3 edges. Then, the adjacency matrix
A = ∑U∈[n]3 1(U ∈ H)AU .

Define SU := (1(U ∈ H)− p)AU and

S := ∑
U∈[n]3

SU = A− p · 6(n− 2)(J − 1).

Clearly, E[S] = 0 since E[SU ] = 0, and E[S2
U ] = p(1− p)A2

U . Further, ∑U A2
U = 6(n− 2)(J +

(n− 2)1), thus

v :=

∥∥∥∥∥∥ ∑
U∈[n]3

E[S2
U ]

∥∥∥∥∥∥ = p(1− p)

∥∥∥∥∥∥ ∑
U∈[n]3

A2
U

∥∥∥∥∥∥ = p(1− p) · 6(n− 1)(2n− 2) 6 12∆.

Moreover, ‖SU‖ 6 ‖AU‖ 6 2. Thus, by the matrix Bernstein inequality (Theorem 2.19) and
assuming ∆ = ω(log n), for a large enough constant C,

Pr
[
‖S‖ > C

√
∆ log n

]
6

1
poly(n)

.
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Next, S = A− 6∆(n−2)
n2 (J−1) = (A− 6∆

n J) + 12∆
n2 J− 6∆(n−2)

n2 1. The second and third terms have
norm O(∆

n ), negligible compared to
√

∆ log n when ∆� n2 log n. Thus, by the triangle inequality,∥∥∥∥A− 6∆
n

J
∥∥∥∥ 6 C

√
∆ log n.

Lemma 5.3 allows us to apply the expander mixing lemma on the primal graph and prove the
following structural result for random hypergraphs.

Lemma 5.4. Let H ∼ Hn
3,+(m) be a random 3-uniform hypergraph where m = ∆n and ∆ = nδ (for

constant δ ∈ (0, 2)). There is an algorithm certifying that for all subsets S ⊆ [n] such that |S| = ( 1
2 + γ)n

and γ ∈ (0, 1
2 ),

1. the number of hyperedges with 2 variables in S and 1 in S is at least 3m(γ− 2γ2)−O(n
√

∆ log n),

2. the number of hyperedges fully contained in S is at least m(γ + 2γ2)−O(n
√

∆ log n),

with probability 1− 1
poly(n) over the randomness of H.

Proof. We first look at the primal graph HP. The average degree is 6m
n = 6∆. Let A be the adjacency

matrix, and let A = A− 6∆
n J. The certification algorithm is simply checking that ‖A‖ 6 C

√
∆ log n

for some constant C. By Lemma 5.3, this will succeed with high probability. We proceed to prove
that this is a valid certificate.

We categorize the hyperedges of H into 4 groups T0, T1, T2, T3, where Ti is the set of hyperedges
with i variables in S and 3− i in S. We first lower bound |T2|.

By the expander mixing lemma (Theorem 2.3), the number of edges (of HP) between S and S
is

e(S, S) =
6∆
n
|S|(n− |S|)± C

√
∆ log n

√
|S|(n− |S|).

Moreover, the number of edges within S (note that e(S, S) double counts the edges)

1
2

e(S, S) =
3∆
n
|S|2 ± C

√
∆ log n|S|.

Observe that the edges between S and S must come from T1 and T2, each hyperedge contribut-
ing 2 edges: 2|T1|+ 2|T2| = e(S, S). On the other hand, the the edges within S come from T0, T1,
each hyperedge contributing 3 and 1 edges respectively: 3|T0|+ |T1| = 1

2 e(S, S). Thus, we have
|T2| > 1

2 e(S, S)− 1
2 e(S, S). For |S| = ( 1

2 + γ)n,

|T2| >
3∆
n
·
((

1
2
− γ

)(
1
2
+ γ

)
−
(

1
2
− γ

)2
)

n2 −O(n
√

∆ log n)

= 3m(γ− 2γ2)−O(n
√

∆ log n).

Next, we lower bound |T3|. Similar to the derivations for |T2|, we observe that 3|T3|+ |T2| =
1
2 e(S, S) and |T2| 6 1

2 e(S, S), hence |T3| > 1
6 (e(S, S)− e(S, S)). Similar calculations show that

|T3| > m(γ + 2γ2)−O(n
√

∆ log n).
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Note that for small γ, the error term O(n
√

∆ log n) is negligible compared to m(γ ± 2γ2) as

long as γ�
√

log n
∆ . Moreover, in the first claim, for γ close to 1

2 (say γ = 1
2 − γ′, |S| = (1− γ′)n),

the error term is negligible as long as γ′ �
√

log n
∆ .

Next, we state a result by [Alo09], which was proved using an elegant argument about rank
lower bounds of perturbed identity matrices. Towards doing so, we define an ε-balanced code of
length-n as a subset L of {±1}n such that every pair of distinct x, y ∈ L have Hamming distance in
1±ε

2 n.

Lemma 5.5 ([Alo09, Proposition 4.1]). For any 1√
n 6 ε < 1

2 , the cardinality of any ε-balanced code of

length n is at most 2cε2 log(1/ε)n for some absolute constant c.

Finally, we are ready to prove Theorem 5.1.

Proof of Theorem 5.1. Similar to the proof of Theorem 4.1, we consider the instance I+. By Observa-
tion 4.3, for any (1− η)-satisfying assignments x, x′, the product y := x ◦ x′ is a (1− 2η)-satisfying
assignment for I+.

Let S+ = {i : yi = +1} and S− = S+. Assume |S+| = ( 1
2 + γ)n for γ > 0 (x, x′ agree on more

than half). Since all 3XOR clauses have sign +1 in I+, the clauses that have 2 variables in S+ and
1 in S− must be violated. By Lemma 5.4, we can certify a lower bound of 3m(γ− 2γ2)(1− o(1))

of such clauses when ω(
√

log n
∆ ) 6 γ 6 1

2 − ω(
√

log n
∆ ). Thus, we take θ := max(2η, ∆−

1
2 log n).

For a small enough η (η < 1/6 suffices), we can certify that the number of violated constraints
3m(γ− 2γ2)(1− o(1)) > 2ηm for all γ ∈ [θ, 1

2 − θ]. This shows that |S+|must be either > (1− θ)n
or 6 ( 1

2 + θ)n.
On the other hand, suppose |S−| = ( 1

2 + γ)n for γ > 0 (x, x′ agree on less than half). The
clauses contained in S− must be violated. Again, Lemma 5.4 allows us to lower bound such
clauses by m(γ+ 2γ2)(1− o(1)) > 2ηm for all γ ∈ [θ, 1

2 ]. This shows that |S−|must be 6 ( 1
2 + θ)n.

Combining the results, we can certify that x, x′ must have Hamming distance 6 θn or between
[( 1

2 − θ)n, ( 1
2 + θ)n]. Thus, the (1− η)-satisfying solutions form clusters of diameter θn, and the

distance between any two clusters is ( 1
2 ± θ)n. If we pick one assignment from each cluster, this

gives a (2θ)-balanced code. Thus, by Lemma 5.5, we can upper bound the number of clusters by

exp(O(θ2 log(1/θ))n).

This completes the proof.

6 Refuting CSPs under global cardinality constraints

In this section, we give an algorithm to strongly refute random CSPs with global cardinality con-
straints, i.e., constraints of the form ∑i xi > B well under the refutation threshold for appropriate
values of B.

6.1 Refuting 3CSPs under global cardinality constraints

For 3SAT, there is a strong refutation algorithm using the random hypergraph structure result of
Lemma 5.4, without requiring the 3XOR-principle. Via an identical reduction as the one in the
proof of Corollary 4.8 the below statement extends to all 3CSPs.
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Theorem 6.1. Given a 3SAT instance I ∼ Hn
3 (m) where m = ∆n = n1+δ for constant δ > 0, there

is an efficient algorithm that certifies with high probability that I has no ρ-biased assignment which is

(1− η)-satisfying where ρ�
√

log n
∆ and η = ρ/32.

Proof. Given a random 3SAT instance I , we extract sub-instances I |+ and I |− consisting of
clauses with no negations and fully-negated clauses, respectively. Each sub-instance is a random
3-uniform hypergraph with density 1

8 ∆. Consider an assignment x ∈ {±1}n, and let S+ = {i :
xi = 1} and S− = {i : xi = −1}. Our main insight is that all hyperedges of I |− contained in S+

must be violated, and similarly all hyperedges of I |+ contained in S− must be violated.

First, we consider the case when |S+| = 1+ρ
2 n for ρ �

√
log n

∆ . By Lemma 5.4, we can certify
with high probability that there must be more than 1

8 m · ρ
4 hyperedges of I |− contained in S+.

Thus, for η = ρ/16, any assignment x such that |S+| > 1+ρ
2 n cannot be (1− η)-satisfying.

Similarly, consider the case when |S−| = 1+ρ
2 n for ρ �

√
log n

∆ . Again by Lemma 5.4, we can
certify with high probability that there must be more than 1

8 m · ρ
4 hyperedges of I+ contained in

S−. Thus, any assignment x such that |S−| > 1+ρ
2 n cannot be (1− η)-satisfying.

Therefore, this certifies that any ρ-biased assignment x cannot be (1− η)-satisfying.

Remark 6.2. We compare our result to the result of [KOS18, Corollary C.2]. For random 3XOR with
m = n

3
2−ε (under the refutation threshold), they showed that the Sum-of-Squares algorithm can

certify that there is no ρ-biased exactly satisfying assignment when ρ = Ω̃(n−
1
4+

ε
2 ). Our algorithm

matches this cardinality condition for ρ, and further extends to (1−Θ(ρ))-satisfying assignments
and to arbitrary 3CSPs.

6.2 The case of kCSPs when k > 4

In this section we give an algorithm to refute kCSPs under global cardinality constraint when
k > 4. Our approach yields quantitatively weaker guarantees so we make no effort to optimize
the tradeoff between refutation quality and the imbalance in the global cardinality constraint.
Akin to our certified counting algorithms, we begin by first giving strong refutation algorithms
for kXOR, then use the kXOR-principle to extend the algorithm to kSAT, which then implies a
strong refutation algorithm for every kCSP. For kXOR we prove:

Theorem 6.3. Let k > 4. Given a kXOR instance I ∼ Hn
k (m) where m := n

k−2
2 +β, there is an efficient

algorithm that certifies with high probability that I has no 2ρ-biased assignment which is (1− η)-satisfying

where ρ� log6 n
nβ/(k−2) and

η = ρk−2
(

ρ2

2
− Õ

(
1

ρ(k−2)/2n(k−4)/4nβ/2

)
− Õ

(
1

ρ(k−2)/4nβ/2

)
− 2

n

)
.

Via the kXOR principle (Lemma 3.1), and the arbitrary kCSP-to-kSAT reduction in the proof
of Corollary 4.8, we get the following statement for refutation of kCSPs under global cardinality
constraints.

Corollary 6.4. Let I ∼ Hn
k (m) where m := n

k−1
2 +β and β > 0. For any predicate P not equal to the

constant-1 function and any constant ρ > 0, there is an efficient algorithm that certifies that I has no
2ρ-biased assignment which (1− ρk/2)-satisfies I as a P-CSP instance.
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While a quantitatively stronger statement than the above is true, we present the simplified
version for ease of exposition.

Now we turn our attention to proving Theorem 6.3, and in service of which we prove two
other lemmas as ingredients.

The high level idea for our kXOR strong-refutation algorithm is to pick some set of vertices
S ⊆ [n] of size nc where 0 < c < 1 is an appropriately chosen constant. Then for any assignment
y to the variables in S, there is an induced 2XOR instance IS,y,2 on [n] \ S that must be approxi-
mately satisfied (recall the definition of induced instances in Definition 2.11). The two steps of the
algorithm are then to:

1. Certify that for any y the induced 2XOR instance is (1/2 + ε)-positive for some small ε.

2. Simultaneously strongly-refute the family of all 2XOR instances that are (1/2 + ε)-positive
under a global cardinality constraint.

We first describe the algorithm that certifies that the induced 2XOR instance is (1/2 + ε)-
positive.

Lemma 6.5. Given a kXOR instance I ∼ Hn
k (m) where m := n

k−2
2 +β, constant c satisfying c > 1− 2β

k−2 ,
and a fixed set of vertices S of cardinality nc, there is an efficient algorithm to certify with high probability:

For any y ∈ {±1}S the instance IS,y,2 is
( 1

2 + ε6.5
)
-positive for the following choice of ε6.5.

ε6.5 = Õ

max
{

1, n
β
2−

k−2
4

}√n(1−c) k−2
2

nβ

 .

Proof. To put the statement we want to certify in a different way, we would like an algorithm that
certifies:

1∣∣IS,y,2
∣∣ ∑
(b,U)∈IS,y,2

b 6 2ε.

By Observation 2.12, this is equivalent to certifying the following for the truncated instance:

1∣∣∣I |S,k−2

∣∣∣ ∑
(b,U)∈I |S,k−2

b ∏
i∈U

yi 6 2ε,

whose LHS can then be rewritten as:

1∣∣∣I |S,k−2

∣∣∣ ∑
U∈Sk−2

∏
i∈U

yi ∑
(b,U)∈I |S,k−2

b.

We write wU to denote ∑(b,U)∈I |S,k−2
b. Each wU is distributed as the sum of O(n2) random vari-

ables which are independent, bounded, centered and each nonzero with probability O(nβ−1−k/2).
Denote α as the expected number of nonzero terms in the sum defining wU ; its value is Cnβ+1−k/2

for some constant C > 0. By standard binomial concentration and Hoeffding’s inequality, we
know that with high probability |wU | 6 B := max{log n,

√
α log n} for all U ∈ Sk−2. Further,

the probability that a given wU is nonzero is at most p := min{α, 1}. Define w̃U as the random
variable wU1[|wU | 6 B].
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1. w̃U is a centered random variable since wU is symmetric around 0.

2. w̃U is supported on [−B, B].

3. The probability that w̃U is nonzero is at most p.

Hence by the certification algorithm of [AOW15] (Theorem 2.18), we can certify with high proba-
bility that for any y ∈ {±1}S:

∑
U∈Sk−2

w̃U ∏
i∈U

yi 6 2O(k)B max{√p|S|3(k−2)/4, |S|(k−2)/2} log3/2 |S|.

Since wU = w̃U for all U ∈ Sk−2 with high probability, our algorithm can verify this and also
certify an identical upper bound on:

∑
U∈Sk−2

wU ∏
i∈U

yi 6 2O(k)B max{√p|S|3(k−2)/4, |S|(k−2)/2} log3/2 |S|. (4)

Plugging |S| = nc and p = min{Cnβ+1−k/2, 1} into (4) with c > 1− 2β
k−2 , we have

√
p|S|3(k−2)/4 >

|S|(k−2)/2. Moreover, since
∣∣∣I |S,k−2

∣∣∣ concentrates around (1± o(1))( |S|n )k−2m, we can certify with
high probability that:

1∣∣∣I |S,k−2

∣∣∣ ∑
U∈Sk−2

wU ∏
i∈U

yi 6 2O(k)B

√
n(1−c) k−2

2

nβ
log3 n

6 2O(k) max
{

1, n
β
2−

k−2
4

}√n(1−c) k−2
2

nβ
log5/2 n,

since B = max{1,
√

α} log n = O(max{1, n
β
2−

k−2
4 } log n).

We now describe the algorithm to simultaneously refute the relevant family of 2XOR instances.
The following definition more concretely describes the family of instances we are interested in.

Definition 6.6. Given a multi-graph G, let F (G, ε) be the collection of all 2XOR instances on G that
are

( 1
2 + ε

)
-positive.

Lemma 6.7. Let G be an n-vertex random multi-graph with average degree ∆ > log2 n obtained by
independently adding Binom

(
r, ∆

nr

)
edges between i and j for every pair of distinct i, j ∈ [n]. Further

assume r > 2∆
n . There is an efficient algorithm that takes in G as input and with high probability certifies

that every I ∈ F (G, ε) has no ρ-biased assignment that is
(

1− ρ2

2 + 8
√

log n
∆ + ε + 2

n

)
-satisfying.

Proof. Let x be a ρ-biased assignment and let Y = {v ∈ [n] : xv = +1} where |Y| = ( 1
2 + c)n

and |c| > ρ
2 . To prove the statement our algorithm will certify a lower bound on the fraction

of constraints that are violated in any I ∈ F (G, ε). Towards doing so, we will first certify some
lower bound γ on the fraction of constraints within Y or Y. Now, for every constraint {u, v}where
u, v ∈ Y or u, v ∈ Y, xuxv = +1. Since the fraction of constraints (b, {u, v}) for which b = +1 is
bounded by 1

2 + ε, the fraction of violated constraints must be at least γ−
( 1

2 + ε
)
.
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The certification of the lower bound is much like the proof of the expander mixing lemma. The
number of edges that are contained within Y or Y is accounted by:

2(|E(G[Y])|+ |E(G[Y])|) = 1>Y AG1Y + 1>Y AG1Y

= 1>Y E[AG]1Y + 1>Y E[AG]1Y + 1>Y (AG − E AG)1Y + 1>Y (AG − E AG)1Y

>
∆
n
(
|Y|2 + |Y|2

)
− ‖AG − E AG‖ · n− ∆.

With |Y| =
( 1

2 + c
)

n and |c| > ρ
2 , we can rewrite the above inequality as:

2(|E(G[Y])|+ |E(G[Y])|) > ∆n
(

1
2
+ 2c2

)
− ‖AG − E AG‖ · n− ∆

>
1
2

∆n
(
1 + ρ2)− ‖AG − E AG‖ · n− ∆

With the above bound in hand, our algorithm can certify a lower bound of γ−
( 1

2 + ε
)

where

γ =
1

2|E(G)|

(
1
2

∆n
(
1 + ρ2)− ‖AG − E AG‖ · n− ∆

)
.

Next, to treat the factor involving |E(G)| observe that:

2|E(G)| = 1> E AG1 + 1>(AG − E AG)1 6 ∆(n− 1) + ‖AG − E AG‖ · n.

To complete the proof, it suffices to give a high-probability upper bound on ‖AG − E AG‖. For
the bound on ‖AG − E AG‖ we use the matrix Bernstein inequality, as stated in Theorem 2.19. Let
r · Kn be the graph on [n] with r parallel edges between every pair of vertices. Then G can be
thought of as the graph obtained by sampling each e ∈ E(r · Kn) independently with probability
∆
rn . For e ∈ E(r · Kn) define Ae as the adjacency matrix of the single edge e. Then:

AG − E AG = ∑
e∈E(r·Kn)

Ae ·
(

1[e ∈ G]− ∆
rn

)
.

Then the v parameter from the statement of Theorem 2.19 for the above sum of random matrices
is then equal to: ∥∥∥∥∥ ∑

e∈E(r·Kn)

1e E

[(
1[e ∈ G]− ∆

rn

)2
]∥∥∥∥∥ 6

∥∥∥∥∆ ·
(

1− ∆
nr

)
· 1
∥∥∥∥ 6 ∆.

Thus, by Theorem 2.19:
‖AG − E AG‖ 6 4

√
∆ log n

except with probability at most 1/n2. When this holds for large enough n this implies:

γ >
1
2
+

ρ2

2
− 8

√
log n

∆
− 2

n
.

This in turn implies that the lower bound certified on the fraction of constraints violated by x is
with high probability at least:

ρ2

2
− 8

√
log n

∆
− 2

n
− ε

which completes the proof.
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Now we are ready to prove Theorem 6.3.

Proof of Theorem 6.3. If nβ > n log6 n, then we can use the algorithm of [AOW15] as stated in Theo-
rem 2.17 to prove our statement. Thus, we assume nβ 6 n log6 n. Let S be some set, say {1, . . . , `},
where ` := nc is chosen so that nc = ρn. Hence, when k > 4, the value of ε6.5 is Õ

(
1

ρ(k−2)/4nβ/2

)
.

By Lemma 6.5 we can certify with high probability that simultaneously for all assignments y to
variables in S, the induced 2XOR formula is IS,y,2 is

(
1
2 + Õ

(
1

ρ(k−2)/4nβ/2

))
-positive. The underly-

ing graph in IS,y,2 remains the same as we vary y. The expected number of edges in this graph
is ρk−2n

k−2
2 +β � n

k
2−1 log6 n and hence the number of edges concentrates around its expecta-

tion. And thus, the average degree ∆ is ρk−2n
k−4

2 +β � log6 n. Further, the underlying graph is
distributed exactly the same as in the hypothesis of Lemma 6.7. Thus, when k > 4, an applica-
tion of Lemma 6.7 tells us that we can certify with high probability that any ρ-biased assignment
x ∈ {±1}n\S must violate at least

ρ2

2
− Õ

(
1

ρ(k−2)/2n(k−4)/4nβ/2

)
− Õ

(
1

ρ(k−2)/4nβ/2

)
− 2

n

fraction of the constraints on the induced formula IS,xS,2, and consequently must violate at least

ρk−2
(

ρ2

2
− Õ

(
1

ρ(k−2)/2n(k−4)/4nβ/2

)
− Õ

(
1

ρ(k−2)/4nβ/2

)
− 2

n

)
fraction of the constraints in I . Thus, any assignment x that avoids violating at least the above
fraction of constraints must satisfy

∣∣∣∑i∈[n]\S xi

∣∣∣ 6 ρn. Since |S| = ρn, x must be 2ρ-biased.

7 Dimension-based count certification

We begin by upper bounding the number of Boolean vectors close to an arbitrary linear subspace.

Theorem 7.1. Let V be a linear subspace of dimension αn in Rn for some α ∈ (0, 1). For any ε ∈ (0, 1/4),

the number of Boolean vectors in
{
± 1√

n

}n
that are ε-close to V is upper bounded by 2(H2(4ε2)+α log 3

ε )n.

Proof. Let T be the set of vectors in
{
± 1√

n

}n
that are ε-close to V, and let BV := B1(0) ∩ V be the

unit ball in V. We take an ε-net Nε of BV . Every x ∈ T is ε-close to a point in BV (namely ΠV x), so
by the triangle inequality, every x ∈ T is 2ε-close to a point in Nε.

Next, we bound the number of vectors in any ε-ball.

Claim 7.2. For any ε ∈ (0, 1/
√

2) and vector u ∈ Rn, there can be at most 2H2(ε
2)n Boolean vectors

in
{
± 1√

n

}n
contained in the ε-ball Bε(u).

Proof. If there are no Boolean vectors in Bε(u) we are done. So assume there is a Boolean vector
x ∈ Bε(u). For any Boolean vector x′ at Hamming distance at least ε2n:

‖x− x′‖2 >

√
ε2n · 4

n
= 2ε,
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which means x′ /∈ Bε(u) and any Boolean vector in Bε(u) must be Hamming distance at most ε2n
from x, of which there are:

ε2n

∑
i=0

(
n
i

)
6 2H2(ε

2)n,

where the inequality follows from the assumption ε < 1/
√

2.

A standard volume argument shows that there exists an ε-net with cardinality |Nε| 6 ( 3
ε )

αn

(see, for example, [Ver18, Corollary 4.2.13]). Finally, we bound the cardinality of T. Since T ⊆⋃
u∈Nε

B2ε(u),
|T| 6 |Nε| · 2H2(4ε2)n 6 2(H2(4ε2)+α log 3

ε )n.

Remark 7.3. The upper bound of Theorem 7.1 is almost tight. For some small constants α, ε > 0,

consider the subcube T =
{
± 1√

n (
~1, y) : y ∈ {±1}αn

}
⊂
{
± 1√

n

}n
, and let V = span(T). Clearly,

|T| = 2αn+1 and dim(V) = αn + 1. For any x ∈ T, there are

ε2n
4

∑
i=1

(
(1− α)n

i

)
> 2H2(

ε2
4(1−α)

)(1−α)n−O(log n)

number of Boolean vectors ε-close to x and differ from x in the first (1− α)n coordinates. Multi-

plied by |T|, the number of Boolean vectors ε-close to V is at least 2(H2(
ε2

4(1−α)
)+Ω(α))n−O(log n). This

shows that the exponent in the upper bound of Theorem 7.1 is tight up to a log(1/ε) factor.

The idea of bounding the number of structured vectors close to a subspace will be the main
theme in the following sections. Specifically, for a matrix M ∈ Rn×n, if x>Mx ≈ λmax(M)‖x‖2

2,
then x must be close to the top eigenspace of M. This allows us to apply Theorem 7.1 (or a variant
of it for independent sets). For a linear subspace V, we denote ΠV⊥ as the projection matrix to the
orthogonal subspace V⊥, i.e. ‖ΠV⊥x‖2 is the distance from x to V. We will first prove the following
useful lemma.

Lemma 7.4. Let M be a symmetric n× n matrix with eigenvalues λ1 > λ2 > · · · > λn and orthonormal
eigenvectors v1, . . . , vn such that λ1 > 0. Further, let V := span{vi : λi > λ1(1− δ)} for some constant
δ ∈ (0, 1). Suppose x ∈ Rn satisfies x>Mx > λ1(1 − η)‖x‖2

2 for some η > 0, then ‖ΠV⊥x‖2 6√
η
δ ‖x‖2.

Proof. Let α := 1
n dim(V). Let x = ∑n

i=1 x̂ivi written in the eigenvector basis. Clearly, we have
∑n

i=1 x̂2
i = ‖x‖2

2 and ∑n
αn+1 x̂2

i = ‖ΠV⊥x‖2
2.

x>Mx =
n

∑
i=1

λi x̂2
i 6

αn

∑
i=1

λ1 x̂2
i +

n

∑
i=αn+1

λ1(1− δ)x̂2
i 6 λ1‖x‖2

2 − δλ1‖ΠV⊥x‖2
2.

Along with x>Mx > λ1(1− η)‖x‖2
2, we conclude ‖ΠV⊥x‖2

2 6
η
δ ‖x‖2

2.
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7.1 Sherrington-Kirkpatrick

Recall the Sherrington-Kirkpatrick (SK) problem: given M sampled from GOE(n), compute

OPT(M) = max
x∈{±1}n

x>Mx.

A simple spectral refutation algorithm gives a spectral bound of OPT(M) 6 (2 + o(1))n3/2. We
will certify an upper bound on the number of assignments achieving value close to the spectral
bound.

Theorem 7.5. Let M ∼ GOE(n). Given η ∈ (0, η0) for some universal constant η0, there is an algorithm
certifying with high probability that at most 2O(η3/5 log 1

η )n assignments x ∈ {±1}n satisfy x>Mx >
2(1− η)n3/2.

Proof. The algorithm is as follows.

(1) Choose δ = η2/5, and let ε =
√

η
δ = η3/10.

(2) Compute the eigenvalues λ1 > · · · > λn of M, and compute α = 1
n |{i : λi > 2(1− δ)

√
n}|.

Check that | λ1√
n − 2| < n−1/4; output 2n if this fails.

(3) Output 2(H2(16ε2)+α log 3
ε )n.

Let v1, . . . , vn be the corresponding eigenvectors of M, and let Vδ := span{vi : λi > 2(1 −
δ)
√

n} be the top eigenspace of dimension αn. By the semicircle law (Lemma 2.22), with high
probability α 6 O(δ3/2). Moreover, the check in step (2) will succeed with high probability due to
Fact 2.20, and thus λ1 6 (2 + o(1))

√
n.

Next, consider a normalized Boolean vector y ∈
{
± 1√

n

}n
such that y>My > 2(1− η)

√
n. By

Lemma 7.4, we have ‖ΠV⊥δ
y‖2 6

√
η
δ + o(1) = ε + o(1), i.e. y is 2ε-close to Vδ.

By Theorem 7.1, the number of y ∈
{
± 1√

n

}n
that are 2ε-close to a αn-dimensional subspace is

2(H2(16ε2)+α log 3
ε )n.

Finally, we use the fact that H2(p) 6 2p log2
1
p for p 6 1

2 . Thus, for small enough η < η0,

H2(16ε2) 6 O(ε2 log 1
ε ). Since α 6 O(δ3/2), our choice δ = η2/5 gives us an upper bound

2O(η3/5 log 1
η )n.

This completes the proof.

7.2 Independent sets

Recall that the best known certifiable upper bound of the largest independent set size (the indepen-
dence number) in a random d-regular graph is by the smallest eigenvalue of the adjacency matrix
(known as Hoffman’s bound). We first present a proof of the certification, which will give us some
insights for the counting problem.
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For a set S ⊆ V, let 1S ∈ {0, 1}n be the indicator vector of S. We will heavily use the “centered”
vector yS ∈ Rn defined as follows,

yS = 1S −
〈1S,~1〉

n
~1, yS(i) =

{
1− |S|n i ∈ S,

− |S|n i /∈ S.

In words, yS is the projection of 1S onto the subspace orthogonal to the all-ones vector. Crucially,
we have 〈yS,~1〉 = 0 and ‖yS‖2

2 = |S|(1− |S|n ).
For an adjacency matrix A, let A := A − d

n J be the “de-meaned” adjacency matrix, i.e., the
matrix obtained by projecting away the Perron eigenvector. We will mainly use A because its
eigenvalues are well-distributed, whereas A has an outlier eigenvalue d. However, note that they
have the same minimum eigenvalue: λmin(A) = λmin(A) > 0. The following lemma, widely
known as Hoffman’s bound (see also [FO05]), relates the independence number to −λmin(A).

Lemma 7.6 (Certifiable upper bound on independence number). Let G be a d-regular graph with n
vertices, let A be the adjacency matrix, and let λ := −λmin(A). Suppose S ⊆ [n] is an independent set,
then

|S| 6 λ

d + λ
n.

Proof. Since S is an independent set, 1>S A1S = 0. Further, we have 1>S J1S = |S|2. Thus,

1>S

(
d
n

J − A
)

1S =
d
n
|S|2.

Denote A = A− d
n J. Since~1 is in the kernel of A, by the definition of yS, we have 1>S (−A)1S =

y>S (−A)yS. Thus,
d
n
|S|2 = y>S (−A)yS 6 λ‖yS‖2

2 = λ · |S|(n− |S|)
n

, (5)

where λ = λmax(−A) = −λmin(A) since A and A have the same minimum eigenvalue. This gives
us the upper bound.

For random d-regular graphs, λ 6 2
√

d− 1+ o(1) due to Friedman’s Theorem (Theorem 2.23).
Denote rd := 2

√
d−1
d and Cd := rd

1+rd
. Note that for all d > 2, rd 6 1, thus Cd 6 1

2 . Lemma 7.6 allows
us to certify with high probability that all independent sets in a random d-regular graph have size
6 Cdn(1 + o(1)).

We then turn to the problem of counting large independent sets.

Theorem 7.7. Let d > 3 be a constant. For a random d-regular graph G on n vertices, given η ∈ (0, η0)

for some universal constant η0, there is an algorithm certifying with high probability that there are at most
2O(η3/5 log 1

η )n independent sets of size Cd(1− η)n.

Remark 7.8. A trivial upper bound is ( n
Cd(1−η)n) ≈ 2H2(Cd(1−η))n = 2Ωd(n) for small η. Thus, for

constant d and small η, our upper bound is significantly better than this trivial bound.

Let Sη(G) be the set of independent sets of size at least Cd(1− η)n in a d-regular graph G, and
let Yη(G) = {yS : S ∈ Sη(G)}. Clearly, we have |Sη(G)| = |Yη(G)|. To bound |Yη(G)| for a
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random d-regular graph G, we follow the same idea of bounding the number of vectors close to a
subspace. We first show that any yS ∈ Yη(G) is close to the top eigenspace of −A.

Let v1, . . . , vn be the eigenvectors of −A, and let λ1, . . . , λn be the eigenvalues. For a constant
δ ∈ (0, 1), let Vδ = span{vi : λi > drd(1− δ)}.

Lemma 7.9. Suppose λmax(−A) 6 drd(1+ o(1)). Let η ∈ (0, 1). Then, for any independent set S of size

Cd(1− η)n, the vector yS satisfies ‖ΠV⊥δ
yS‖2 6

√
2η
δ ‖yS‖2.

Proof. Recall that ‖yS‖2
2 = |S|

(
1− |S|n

)
and that y>S (−A)yS = d

n |S|2. Hence:

y>S (−A)yS

‖yS‖2
2

=
d|S|

n
(

1− |S|n

) =
dCd(1− η)

1− Cd(1− η)
=

drd(1− η)

1 + ηrd
> drd(1− 2η)

where the last inequality uses 1
1+t > 1− t for t ∈ (0, 1) and rd 6 1.

Since λmax(−A) 6 drd(1 + o(1)), the statement follows from Lemma 7.4.

Next, similar to Lemma 7.2, we upper bound the number of yS ∈ Yη(G) that can be in the
same ε

√
n-ball. Here, we have a factor of

√
n in the radius because each yS ∈ Yη(G) has norm

Θ(
√

n).

Lemma 7.10. Let ε > 0 such that ε < 1
4
√

2
, and let G be a d-regular graph whose maximum independent

set is bounded by n
2 . There can be at most 2(32ε2 log2

1
ε )n vectors in Yη(G) contained in any (ε

√
n)-ball.

Proof. For any sets S, T ⊆ [n] and |S|, |T| 6 n
2 , we have ‖yS − yT‖2

2 > |S∆T|/4 where S∆T is the
symmetric difference. Thus, if |S∆T| > 16ε2n, then they cannot be in the same ε

√
n-ball.

Pick any set S for which yS ∈ Yη(G) (if no such set exists we are trivially done). Then the
number of sets T such that |S∆T| 6 16ε2n is at most ( n

16ε2n), which is at most 2H2(16ε2)n, which is at
most 2(32ε2 log2

1
ε )n since H2(p) 6 2p log2

1
p when p 6 1

2 . This completes the proof.

Now, we are ready to prove Theorem 7.7.

Proof of Theorem 7.7. Recall that we defined rd := 2
√

d−1
d and Cd := rd

1+rd
, and the de-meaned adja-

cency matrix A = A− d
n J. Further, define cd :=

√
rd

1+rd
. Note that cd <

√
Cd < 1. The algorithm is as

follows.

(1) Choose δ = η2/5, ε =
√

2η
δ , and ε′d = 2εcd.

(2) Compute the eigenvalues λ1 > · · · > λn of −A, and compute α = 1
n |{i : λi > 2

√
d− 1(1−

δ)}|. Check that |λ1 − 2
√

d− 1| < log log n
log n ; output 2n if this fails.

(3) Output 2(32ε′2d log(1/ε′d)+α log(3/ε))n.

Let v1, . . . , vn be the eigenvectors of −A, and let Vδ := span{vi : λi > 2
√

d− 1(1 − δ)} be
the space spanned by the top αn eigenvectors. First, the check in step (2) will succeed with high
probability due to Friedman’s Theorem (Theorem 2.23). Thus, λmax(−A) = 2

√
d− 1(1 + o(1)) =

drd(1 + o(1)). Moreover, by the Kesten–McKay law (Lemma 2.25), α 6 O(δ3/2) with high proba-
bility.
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λmax(−A) certifies that the maximum independent set has size at most (1 + o(1))Cdn. Then,
we have that every yS ∈ Yη(G) has norm ‖yS‖2

2 6 (1 + o(1))nCd(1− Cd) = (1 + o(1))n rd
(1+rd)2 =

(1 + o(1))c2
dn. Since d > 3, (1 + o(1))Cd 6 1

2 and by Lemma 7.9, every yS ∈ Yη(G) satisfies

‖ΠV⊥δ
y‖2 6

√
2η

δ
‖yS‖2 6 ε(1 + o(1))cd

√
n.

Thus, Yη(G) is contained in the centered ball of radius 2cd
√

n in Rn, and is within distance 2εcd
√

n
from the subspace Vδ.

We take an ε-netNε of B1(0)∩Vδ, the unit ball within Vδ, and scale it by 2cd
√

n. Then Yη(G) ⊆⋃
u∈Nε

Bε′d
√

n(u). By Lemma 7.10, each (ε′d
√

n)-ball contains at most

2
(32ε′2d log 1

ε′d
)n

vectors in Yη(G), provided that ε′d < 1
4
√

2
, which holds as long as η < η0 for some universal

constant η0.
The cardinality of Nε is bounded by

( 3
ε

)αn
6 2(α log 3

ε )n. Since α 6 O(δ3/2) and cd < 1, our
choice δ = η2/5 gives us an overall upper bound of

2O(η3/5 log 1
η )n,

which completes the proof.

8 Hardness evidence

In this section, we provide hardness evidence for some of the algorithmic problems we consider.
In these cases, improving slightly or significantly on our bounds would also result in improved
algorithms for the refutation versions of these problems. While we don’t make confident claims of
improvements on the refutation problems being computationally intractable, algorithms for them
would certainly bypass several known barriers.

8.1 Refutation-to-certified-counting reduction for kXOR

We first address the problem of counting solutions to a random kXOR instance. Let I ∼ Hn
k (m)

be a random kXOR instance on m = ∆n clauses.

Theorem 8.1. If there is an efficient algorithm that with high probability certifies a bound of exp( ηn
10k )

on the number of (1− η)-satisfying assignments to I , then there is an efficient algorithm that with high
probability can certify that I has no (1− η/2)-satisfying assignments.

Proof. Assume we ran the algorithm from the hypothesis of the theorem statement on I , and
obtained a bound on the count of exp( ηn

10k ) 6 2
ηn
4k . Take any set S ⊆ [n] of size ` := ηn

3k , say
{1, . . . , `}. If the number of clauses with at least one variable in S is at most ηm

2 (which holds with
high probability), we output “I has no (1− η/2)-satisfying assignments”. Now, if there exists a
(1− η/2)-satisfying assignment x to I , then any x′ which differs from x on a subset of indices in
S must be (1− η)-satisfying. However, since there are 2

ηn
3k choices for x′ but a contradictory bound

of 2
ηn
4k on the number of such strings, there cannot be a (1− η/2) satisfying assignment.
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Remark 8.2. If nε � ∆� nk/2−1, and ηn = n1+ε

∆1/(k−2) for some ε > 0, we are in a regime where:

1. there are no known algorithms to certify that there are no (1− η/2)-satisfying assignments,
and

2. our algorithm from Theorem 4.4 certifies a bound of exp(O(ηn log n)).

Thus, beating our algorithm in the above regime of η by more than a logarithmic factor in the
exponent would break a long-standing algorithmic barrier.

8.2 Refutation-to-certified-counting reduction for Independent Set

In this section, we show evidence that our upper bound for independence number in a random
d-regular graph (Theorem 7.7) cannot be improved significantly.

First, recall that we defined rd := 2
√

d−1
d and Cd := rd

1+rd
. Moreover, the best known certifiable

upper bound (Hoffman’s bound) for the independence number of a random d-regular graph is
Cdn. It is widely believed that beating this bound (getting an upper bound of (1− ε)Cdn for some
constant ε) requires some new algorithmic ideas.

Theorem 8.3. Let G be a random d-regular graph. Given constant η ∈ (0, 1/2), if there is an efficient
algorithm that with high probability certifies a bound of exp

(
Cd
4 η log(1/η)n

)
on the number of indepen-

dent sets of size Cd(1− η)n, then there is an algorithm that with high probability certifies that G has no
independent set of size (1− η/2)Cdn.

Proof. Assume we have an algorithm that obtains a bound of exp
(

Cd
4 η log(1/η)n

)
. Further, as-

sume that there is an independent set S of size (1− η/2)Cdn. Then, by the fact that any subset of
S is also an independent set, the number of independent sets of size (1− η)Cdn must be at least(

(1− η
2 )Cdn

(1− η)Cdn

)
=

(
(1− η/2)Cdn

η
2 Cdn

)
> 2H2(

η/2
1−η/2 )(1−η/2)Cdn−O(log n) > exp

(
Cd

4
η log(1/η)n

)
,

using the fact that H2(p) > p log(1/p) and η < 1/2. This contradicts the upper bound.

Remark 8.4. For constant d > 3 and a small constant η > 0, Theorem 7.7 certifies a bound of
exp

(
O(η3/5 log(1/η)n)

)
. However, beating a bound of exp (O(η log(1/η)n)) would also beat the

Hoffman’s bound by a factor of (1− η/2). We conjecture that there is an efficient algorithm to
certify an upper bound matching the lower bound, but we leave that as an open direction.

8.3 Approach for proving low-degree hardness for certified counts in kSAT

We note that the counting hardness evidence for kXOR we provide is only evidence for optimality
of our algorithms for counting approximately satisfying assignments to CSPs. It is desirable to give
evidence suggesting that our algorithm’s guarantees for certifying bounds on, say, the number
of exactly satisfying assignments to a random kSAT formula are tight. One approach for doing
so is to construct a planted distribution with an appropriately large number of kSAT assignments,
and prove that it is impossible for low-degree polynomials to distinguish this planted distribu-
tion from random kSAT instances. Here, we provide a blueprint for constructing such a planted
distribution:
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1. Sample a random k-uniform hypergraph with a planted independent set S (where S is an
independent set if no hyperedge contains > 2 vertices in S).

2. Sample a random assignment x on variables outside S.

3. Place random negations c so the clauses completely outside S are satisfied by x as 3XOR, and
for hyperedges U = (u, v, w) with u ∈ U, the clause (cU,vv, cU,ww) is satisfied as 2XOR.

One of the challenges is in planting an independent set that doesn’t “stand out” to spectral or
low-degree polynomial distinguishers. To this end we suspect that the techniques from [BBK+20]
might be useful.
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