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Abstract

Consider a random geometric 2-dimensional simplicial complex X sampled as follows: first,

sample n vectors u1, . . . ,un uniformly at random on S
d−1; then, for each triple i, j,k ∈ [n], add

{i, j,k} and all of its subsets to X if and only if
〈
ui ,u j

〉
Ê τ,〈ui ,uk〉 Ê τ, and

〈
u j ,uk

〉
Ê τ. We

prove that for every ε > 0, there exists a choice of d = Θ(logn) and τ = τ(ε,d) so that with high

probability, X is a high-dimensional expander of average degree nε in which each 1-link has

spectral gap bounded away from 1
2
.

To our knowledge, this is the first demonstration of a natural distribution over 2-dimensional

expanders of arbitrarily small polynomial average degree and spectral link expansion better than
1
2

. All previously known constructions are algebraic. This distribution also furnishes an example

of simplicial complexes for which the trickle-down theorem is nearly tight.

En route, we prove general bounds on the spectral expansion of random induced subgraphs

of arbitrary vertex transitive graphs, which may be of independent interest. For example, one

consequence is an almost-sharp bound on the second eigenvalue of random n-vertex geometric

graphs on S
d−1, which was previously unknown for most n,d pairs.
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1 Introduction

A graph G is called a spectral λ-expander if the second eigenvalue of its normalized adjacency ma-

trix, λ2(G), is at most λ. More generally, a sequence of graphs of increasing size (Gn)n∈N is said to

be a family of (1-dimensional) spectral λ-expanders if λ2(Gn)Éλ< 1 as n →∞, and importantly, this

implies that no vertex cut of Gn has sub-constant sparsity. Expanders are an indispensible tool in

theoretical computer science and mathematics, underlying advances in pseudorandomness, coding

theory, routing algorithms, and more (e.g. [INW94, SS96, Pin73], see also the survey [HLW06]);

similarly, the phenomenon of expansion has enabled the analysis of approximation algorithms, prob-

abilistically checkable proofs, embeddability of metric spaces (e.g. [ABS15, Din07, LLR95]), as well

as numerous results in number theory, group theory, and other areas of pure mathematics (see e.g.

the survey [Lub12]).

Sparse expander graphs were first shown to exist via the probabilistic method [KB93, Pin73]. In

fact, even the most extreme version of expansion is ubiquitous: The best possible spectral expansion

for a d-regular graph is the Ramanujan bound λ = 2
p

d−1
d

, and this bound is achieved (up to an

additive on(1)) by a random d-regular graph with high probability [Alo86, Nil91, Fri93, Fri08].1

Even an Erdős–Rényi graph G(n, p) forms a “decorated expander” for any p > 1
n

, which is to say

the graph is an expander when one omits small isolated connected components and dangling trees

[FR08, BKW14]. The sampling of these graphs may be derandomized [BL06, MOP20], so that in

addition to several known explicit constructions (see [Mar73, GG81, LPS88, Mar88], and others) we

have a wealth of algorithmic constructions of expander graphs to use in applications.

Higher-dimensional spectral expansion is a generalization of expansion to simplicial complexes.

For simplicity, we will for the moment limit ourselves to 2-dimensional spectral expansion, which can

be stated easily in terms of simple graphs. A graph G = (V ,E) is said to be a 2-dimensional spectral

expander if G itself is an expander, and further for every vertex v ∈ V , the induced graph on v’s

neighbors G[N(v)] (called the “link” of v) is a λ-expander for λ< 1
2
. The significance of 1

2
is that when

the local expansion is λ < 1
2
, this is enough to trigger a “trickling down” phenomenon that ensures

that G in its entirety is an expander! Hence, higher-dimensional expanders have the remarkable

property that global expansion is witnessed by local expansion. This local-to-global phenomenon has

led to a number of recent breakthroughs in theoretical computer science: objects inspired by high-

dimensional expanders are crucial in explicit constructions of locally testable codes [DEL+22, LH22]

and quantum LDPC codes [PK22, LZ22, DHLV22], and the local-to-global phenomenon has been

essential in analyzing Markov chains for a wide variety of sampling problems [ALOV19].

The simplest example of a 2-dimensional expander is the complete complex, based on the com-

plete graph Kn. Sparse examples are known as well (e.g. [CSŻ03, Li04, LSV05a, LSV05b, KKL14]),

though at first their existence may seem remarkable: such graphs must be globally sparse, and yet

the O(1)-sized local neighborhood of every vertex must be densely connected to ensure sufficient

expansion. This is a delicate balance, and indeed given the state of our knowledge today the phe-

nomenon of sparse high-dimensional expansion seems “rare,” in sharp contrast with the ubiquity of

1-dimensional expansion. Only a few sparse constructions are currently known, and many of these

constructions are algebraic, inheriting their expansion properties from the groups used to define

them (as discussed further in Section 1.3).

1Though even in [Alo86] it is conjectured that random graphs achieve the Ramanujan bound, the first graphs proven

achieve this bound were explicit algebraic constructions [LPS88, Mar88].
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A prominent open problem in the area is to identify natural distributions over sparse higher-

dimensional expanders [Lub18, Lin, Lub]; this would be highly beneficial, both for a deeper math-

ematical understanding and for applications in algorithms and complexity. The simplest distribu-

tions immediately fail: random d-regular graphs are locally treelike, and so with high probability

G[N(v)] will be an independent set (with λ = 1) for most v ∈ V . The same is true for an Erdős-

Rényi graph G(n, p) when p ≪ 1p
n

. Though a number of distributions have been shown to have some

higher-dimensional expansion properties [LM06, FGL+12, Con19, CTZ20, LMY20, Gol21], they all

fall short in some sense: either they are quite dense (degree Ω(
p

n)) or fail to satisfy the spectral

conditon λ< 1
2
. In this work, our primary question is the following:

Are there natural, high-entropy distributions over 2-dimensional expanders of average degree ≪
p

n?

We answer this question in the affirmative. We prove that for any ε > 0 and any large enough

n ∈ N, there exists a choice of d ∈ N such that a random n-vertex geometric graph on S
d−1 with

average degree nε is a 2-dimensional expander with high probability.

1.1 Our results

In order to state our results, we first give some formal definitions.

Definition 1.1 (Simplicial complex). A k-dimensional simplicial complex X is a downward-closed

collection of subsets of size at most k+1 over some ground set X0, with a downward-closed weight

function w.2 Any S ∈ X is called a (|S|−1)-face, and the restriction of X to sets of size at most ℓ+1É k

is called the ℓ-skeleton of X . The degree of v ∈ X0 is the number of top-level faces that contain it.

For example, the set of all cliques of size at most k+1 in a graph G, where the weight of each clique is

proportional to the number of (k+1)-cliques it occurs in, defines a k-dimensional simplicial complex.

Definition 1.2 (Link). Let X be a simplicial complex. For any face S, the link of S in X is the

simplicial complex XS with weight function wS , consisting of all sets in X which contain S, minus S:

XS = {T \ S | T ⊇ S, T ∈ X }, wS(T \ S)= w(T) ∀T ∈ XS

For example, in the simplicial complex whose highest order faces are the triangles in a graph G, the

link of a vertex v is the induced graph on the neighbors of v with its isolated vertices removed.

We are interested in simplicial complexes where the links expand enough to trigger a “local-to-

global phenomenon” via the trickling-down theorem, stated below in the 2-dimensional case.3

Theorem 1.3 (Trickling-down theorem [Opp18]). Let X be a 2-dimensional simplicial complex. If its

1-skeleton is connected, and the second eigenvalue of every link’s random walk matrix is at most λ,

then the second absolute eigenvalue of the random walk matrix of the 1-skeleton of X is at most λ
1−λ .

This theorem explains the significance of λ= 1
2
, since when λ< 1

2
, local expansion “trickles down” to

imply global expansion. We will show that random geometric graphs, in a carefully-chosen parameter

regime, have sufficient link expansion.

2Recall that X is called downward-closed if S ⊆ T and T ∈ X imply S ∈ X , and w is called downward-closed if weights

are assigned to maximal faces, and for each non-maximal S ∈ X , we recursively define w(S) =
∑

x∈X0
w(S∪ {x}).

3The trickling-down theorem also generalizes to higher dimensions: sufficiently strong local spectral expansion of only

the highest-order links implies global spectral expansion.
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Definition 1.4 (Random geometric graph). A random geometric graph G ∼ Geod(n, p) is sampled

as follows: for each i ∈ [n], a vector ui is drawn independently from the uniform distribution over

S
d−1 and identified with vertex i. Then, each edge {i, j} is included if and only if

〈
ui, u j

〉
Ê τ where

τ= τ(p, d) is chosen so that PrGeod (n,p)[(i, j)∈G]= p.

Definition 1.5 (Random geometric complex). The random geometric k-complex Geo(k)
d

(n, p) is the

distribution defined by sampling G ∼ Geod(n, p) and taking the downward-closure of the complex

whose k-faces are the cliques of size (k+1) in G.

Our main result proves that there are conditions under which random geometric 2-complexes of

degree nε are high-dimensional expanders enjoying the trickling-down phenomenon:

Theorem 1.6. For every 0 < ε < 1, there exist constants Cε and δ = exp(−O(1/ε)) such that when

H ∼Geo(2)
d

(n, n−1+ε) for d = Cε logn, with high probability every vertex link of H is a (1
2
−δ)-expander,

and hence its 1-skeleton is a (1− 4δ
1+2δ)-expander.

Along the way, we also analyze the spectrum of G ∼Geod(n, p) directly and obtain sharper control

of its second eigenvalue in a more general setting, giving bounds on the spectral norm of random

geometric graphs in the full high-dimensional (d →n ∞) regime. To our knowledge, previous results

in this vein are only for d ∼ n1/k for fixed integers k [EK10, CS13, DV13, Bor13, FM19, LY22].

Theorem 1.7. Let G ∼ Geod(n, p) and τ := τ(p, d). Then with high probability G is a µ-expander,

where

µ := (1+ o(1)) ·max

{
(1+ odτ2 (1)) ·τ,

log4 n
p

pn

}
,

where odτ2(1) denotes a function that goes to 0 as d ·τ(p, d)2 →∞.

In Section 8 we show that an eigenvalue close to τ is achieved (for some p, d), so Theorem 1.7 is

close to sharp. Since in Theorem 1.6 we show that the vertex links of G have eigenvalue λÉ τ
1+τ , this

implies that the trickling-down theorem is tight

Proposition 1.8 (Trickling-down theorem is tight). For each λ ∈ (0, 1
2
] and η > 0 there exists a 2-

dimensional expander in which all vertex link eigenvalues are at most λ for which the 1-skeleton is

connected with eigenvalue at least λ
1−λ −η.

1.2 Spectra of random restrictions

Theorem 1.7 (and morally Theorem 1.6) is a consequence of a more general theorem that we prove

concerning the spectral properties of random restrictions of graphs. We describe this result here,

both because it may be of independent interest, and because it may help demystify Theorem 1.6.

Random restriction is a procedure for approximating a large graph X by a smaller graph G: one

selects a random subset of vertices S, and then takes G to be the induced graph X [S]. The random

restriction G is now a smaller (and often sparser) approximation to X ; this idea has been useful in

a number of contexts in theoretical computer science (e.g. [GGR98, AdlVKK03, BHHS11, LRS15,

HKP+17]). The core question is: to what extent do random restrictions actually inherit properties

of the original graph? We will show that if random walks on X mix rapidly enough, then random

restrictions inherit the spectral properties of the original graph.

3



To see the relevance of this result in our context, notice that a random geometric graph on the

sphere is a random restriction of the (infinite) graph with vertex set Sd−1 and edge set {(u,v) | 〈u,v〉 Ê
τ}. Theorem 1.6 is then a consequence of the fact that the sphere is itself a 2-dimensional expander.

We state the theorem precisely below.

Definition 1.9 (Random restriction). Suppose X is a (possibly infinite) graph, and that the simple

random walk on X has unique stationary distribution ρ. We define an n-vertex random restriction of

X to be a graph G ∼RRn(X ) sampled by sampling n vertices independently according to ρ, S ∼ ρ⊗n,

then taking G = X [S] to be the graph induced on those vertices.

We show that if the average degree in G is not too small, λ2(G) reflects the rapid mixing of the

random walk on X .

Theorem 1.10. Let X be a (possibly infinite) vertex-transitive graph on which the associated simple

random walk has a unique stationary distribution ρ, and let p = PrG∼RRn(X )[(i, j) ∈ E(G)] be the

marginal edge probability of a n-vertex random restriction of X. Suppose there exist C Ê 1 and λ ∈
[(np)−1/2,1] such that for any k ∈N, k-step walks on X satisfy the following mixing property: for any

distribution α over V (X ),

dTV

(
X kα,ρ

)
É C ·λk,

where X k denotes the k-step random walk operator on X, and furthermore suppose pn ≫ C6 log4 n.

Then for any constant γ> 0,

Pr
G∼RRn(X )

[∣∣λ2(ÂG)
∣∣ ,

∣∣λn(ÂG)
∣∣É (1+ o(1)) ·max

(
λ,

log4 n
p

pn

)]
Ê 1−n−γ,

where ÂG is the (normalized) adjacency matrix of G.

Remark 1.11. It is likely that some of the conditions of Theorem 1.10 could be weakened. The decay

of total variation could plausibly be replaced with a (much weaker) assumption about the spectral gap

of X ; this would not impact our results for Sd−1, but may be useful in other applications. Transitivity

is assumed mostly to make the proof of Theorem 1.10 go through at this level of generality; to prove

Theorem 1.6 we re-prove a version of Theorem 1.10 for the specific non-transitive case where X is a

link of a vector in the sphere (a spherical cap).

1.3 Related work

We give a brief overview of related work. While so far we have focused on a spectral notion of high-

dimensional expanders (HDX), there are two additional notions: coboundary and cosystolic expan-

sion. These are meant to generalize the Cheeger constant, a cut-based measure of graph expansion.

Distributions over high-dimensional expanders. The existence of natural distributions over

sparse HDXs has been a question of interest since sparse HDX were first shown to exist (and this

was highlighted as an important open problem in e.g. [Lub18, Lub]).

The early work of Linial and Meshulam [LM06] considered the distribution over 2-dimensional

complexes in which all edges
([n]

2

)
are included, and each triangle is included independently with

probability p; they identified the phase transition at p for coboundary connectivity for this distribu-

tion (see also the follow-ups [BHK11, MW09, LP16]). This distribution has the drawback that the

1-skeleton of these complexes is Kn, and so the resulting complex is far from sparse.
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In [FGL+12], the authors show that a union of d random partitions of [n] into sets of size k+1

with high probability produces a geometric expander [Gro10], which is a notion of expansion which

measures how much the faces must intersect when the complex is embedded into R
k. The resulting

complexes have disconnected links when d ≪
p

n, and so they fail to be spectral HDXs.

The work of [LMY20] introduces a distribution over spectral expanders with expansion exactly 1
2

by taking a tensor product of a random graph and a HDX; the authors show that down-up walks on

these expanders mix rapidly, and [Gol21] introduces a reweighing of these complexes which yields

improved mixing time bounds. However, the links in these complexes fail to satisfy λ< 1
2
, and so fall

outside of the range of the trickling-down theorem. The same drawback applies to [Con19, CTZ20]:

they show that up-down walks mix on random polylogarithmic-degree graphs given by subsampling

a random set of generators of a Cayley graph. However, these graphs do not satisfy the conditions of

the trickling-down theorem.

Explicit constructions. One of the first constructions of sparse high-dimensional spectral ex-

panders was the Ramanujan complex of [CSŻ03, Li04, LSV05a, LSV05b], which generalize the Ra-

manujan expander graphs of [LPS88]. Not only are these spectral expanders, but [KKL14, EK16]

also show that they are co-systolic expanders. These Ramanujan complexes are algebraic by na-

ture, constructed from the Cayley graphs of PSLd(Fq). Other algebraic constructions include that of

[KO18]; the authors analyze the expansion properties of coset complexes for various matrix groups.

They achieve sparse spectral expanders, with local expansion arbitrarily close to 0. More recently,

[OP22] extend the coset complex construction to the more general family of Chevalley groups.

A few combinatorial constructions for HDX are also known. [CLP20] prove that objects called

(a, b)-expanders are two-dimensional spectral expanders; they give a graph-product-inspired con-

struction of a family of such expanders, and show that other known complexes [CSŻ03, Li04, LSV05a,

LSV05b, KO18] are also (a, b)-expanders. Their work is extended by [FI20] to higher dimensions.

Applications of HDX. The local-to-global phenomenon in HDX has already been useful in many set-

tings. [DK17] use high-dimensional spectral expanders to construct “agreement expanders,” whose

links give rise to local agreement tests: given “shards” of a function that pass a large fraction of the

local agreement tests, the authors can conclude the presence of a “global” function g that stitches

the shards together. In coding theory, the locally testable codes of [DEL+22] and quantum LDPCs of

[PK22, LZ22, DHLV22] utilize a common simplicial-complex-like structure called the square Cayley

complex, whose local-to-global properties are essential in the analysis of these codes.

The local-to-global phenomenon also implies that “down-up” walks on the associated simplicial

complex mix (as made formal in [AL20]). A k-down-up walk is supported k-faces of the simplicial

complex, and transitions occur by dropping down into a random (k−1)-face, then transitioning up to a

random k-face (one can also define the “up-down” walk analagously). This local-to-global analysis has

recently been influential in the study of mixing times of Markov chains. Several well-studied Markov

chains can be recast as the k-down-up random walk of a carefully designed simplicial complex. One

notable example is the matroid basis exchange walk, which is an algorithm for sampling independent

sets of a matroid (e.g. spanning trees in the graphical matroid). [ALOV19] were able to obtain an

improved mixing time bound for the basis exchange walk–a significant breakthrough that, due to the

local-to-global property, was achieved through the analysis of simple, “local” view of the matroids.

Random geometric graphs and random kernel matrices. Random restrictions of metric spaces

such as S
d−1 and [−1,1]d are well-studied in the fixed-dimensional regime, where d = O(1) and

5



n →∞ (see the survey of Penrose [Pen03]). In our work we are interested in the high-dimensional

setting, where d →∞ with n. The high-dimensional setting was first studied only recently, initiated

by [DGLU11, BDER16], and many mysteries remain in this young area of study.

Our Theorem 1.7 is related to the study of kernel random matrices: random n×n matrices whose

(i, j)-th entry is given by fd

(〈
ui, u j

〉)
, for fd : R → R and u1, . . . , un sampled independently from

some distribution over R
d. The special case of ui ∼ Unif(Sd−1) and fd(x) = 1[x Ê τ(p, d)] yields the

adjacency matrix of Geod(n, p). A line of work initiated by [KG00] studies the spectrum of kernel

random matrices [EK10, CS13, DV13, Bor13, FM19], and the most recent work [LY22] characterizes

the limiting empirical spectral distribution when d = Θ(n1/k) for k a fixed constant and f can be

“reasonably” approximated by polynomials (in a sense that is flexible enough to capture the indicator

fd(x)= 1[xÊ τ(p, d)]). In comparison with our results, they characterize the entire empirical spectral

distribution, but we do not need to restrict d ∼ n1/k for integer k, which is crucial for our applications.

1.4 Discussion and open questions

Sparser high-dimensional expanders from random restrictions? As hinted in Section 1.2

the random geometric complex fits in the broader framework of random restrictions of simplicial

complexes: starting with a dense high-dimensional expander X , we sample a subset of vertices S of

X to produce the sparser induced complex X [S].

We have shown in Theorem 1.10 that X [S] (to some extent) inherits the spectral properties of X

itself, and we’ve leveraged this to show that for any polynomial average degree, one can produce a

2-dimensional expander by taking a random restriction of X the sphere in a particular dimension

and with a particular connectivity distance. We hope that Theorem 1.10 (or a strengthening thereof,

see Remark 1.11) might help us identify additional natural distributions over sparser and/or higher-

dimensional complexes. More specifically,

Is there a simplicial complex X whose random restrictions yield high-dimensional ex-

panders whose links have eigenvalue < 1
2
, of sub-polynomial or polylogarithmic degree4?

As a starting point, we remark that geometric graphs on the unit sphere work because the corre-

sponding X itself has link expansion better than 1
2
, witnessing that Sd−1 itself is an expander. Some

simpler-to-analyze metric spaces do not have this property; for example:

Shortest path metric in a graph. Starting with a connected, locally-treelike d-regular graph G,

consider the geometric graph given by connecting pairs of vertices at distance É 2 in G. The

triangle complex on the resulting graph has links which are connected, and further the 1-

skeleton is an expander if G is an expander.5 However, the links cannot identify whether G is

an expander, and so link expansion cannot be better than 1
2
. To see why, consider a first case

where G is a random d-regular graph (expanding), and a second case where G consists of two

random d-regular graphs connected by a bridge (non-expanding); because G is locally treelike

in both cases, the links in these two cases will be identical.

4We note that constant average degree would likely require additional work; this is not just because of the polyloga-

rithmic factors appearing in the statement of Theorem 1.10, but because in a random restriction the degree distribution

of each vertex is Binom(n, p) and so when p =Θ(1/n) one will have isolated vertices; this is the same as the phenomenon

wherein Erdős-Rényi graphs of degree O(1) are not expanders until one restricts to the giant component.
5Technically, we require this of a reweighting of G where each edge is weighted according to the number of triangles it

participates in; concentration phenomena ensure that the expansion of G and this weighted graph are similar.
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The d-dimensional torus with ℓ∞ metric. Consider the geometric graph X on the d-dimensional

torus [−R,R]d with “wraparound” (so that −R is identified with R), in which we connect u,v if

‖u−v‖∞ É τ. This space is simple to analyze because of its product structure; the expansion is

dictated by the ratio of τ to the side length R, worsening as R grows relative to τ.6 Each link

is simply the box [−τ,τ]d with the same ℓ∞-edge condition, regardless of the value of R. Since

R dictates the global expansion, the link expansion cannot be better than 1
2
.

By way of contrast, it is not possible to plant the links of the geometric graph on S
d−1 in a nonex-

panding graph: for instance, it is possible to determine the radius R of a sphere of unknown scale

given only a link in its geometric graph.

We also remark that Theorem 1.10 could be used to obtain expanders of dimension k > 2; indeed,

it seems that this is within reach even using Geo(k)
d

(n, p). A direct approach, in the case of the sphere,

is to perform the conditioning from Section 5 not only for spherical caps, but for intersections of k−1

spherical caps as well; perhaps there is a more elegant alternative approach?

How faithfully do random geometric graphs discretize continuous manifolds? One inter-

pretation of Theorem 1.7 is that the random geometric graph Geod(n, p) offers a good approximation

(in spectral norm) for the corresponding metric on S
d−1 when pn is large enough relative to d. A

natural question is to extend this to other properties of S
d−1; for example, do random geometric

graphs offer a good approximation on the rest of the spectrum? Numerical experiments suggest the

following (informal) conjecture.

Conjecture 1.12. For G ∼ Geod(n, p), the spectrum of the normalized adjacency matrix AG breaks

into a “bulk” portion and an “outlier” portion where every bulk eigenvalue is at most O(1/
p

pn) in

magnitude, and every outlier eigenvalue is “close” to an eigenvalue of the graph on the sphere with an

edge between every u,v with 〈u,v〉 Ê τ(p, d).

A proof of the above conjecture, and an investigation of whether an analogous phenomenon holds

on general manifolds, would be very interesting.

Spectral algorithms for random geometric graphs. Here, we have given some of the first

analyses of the spectral radius of random geometric graphs on the sphere. One appeal of random

geometric graphs on the sphere, or in Gaussian space, is that they offer a more natural model for

networks arising from data than, e.g., Erdős-Rényi graphs. The idea is that in modern networks, we

often think of each node as being representable by a latent feature vector, with nearby nodes having

similar features. Hence, geometric graphs are promising as an alternative testbed for rigorous anal-

ysis of algorithms. Yet currently, they have not been studied much in such a context, in part because

of the absence of tools for their analysis.

A natural question is whether one could build on our work to analyze spectral clustering algo-

rithms in “random geometric block model” graphs.

Question 1.13. Suppose G ∼ RRn(1
2
N (0,Σ1)+ 1

2
N (µ,Σ2)); that is, n points u1, . . ., un are sampled

from the uniform mixture over the d-dimensional Gaussian distributions N (0,Σ1) and N (µ,Σ2),

then (i, j) ∈ E(G) if and only if ‖ui −u j‖ É ε. Does spectral clustering recover the component mem-

bership of the datapoints?

6This can be seen by analogy to the spectrum of a d-tensor-power of the discrete Rτ−1-cycle.
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This question is a more accurate representation of clustering problems arising from real data

than, say, the question of applying spectral clustering to recover cluster memberships in the stochas-

tic block model; it would be interesting to understand the conditions (on n, d, δ, µ, and Σ1,Σ2) which

guarantee that spectral clustering succeeds.

1.5 Overview of the proof

We now explain how we prove our main theorem, Theorem 1.6, which states that for a complex

sampled from H ∼ Geo(2)
d

(n, p) for p = n−1+ε with 0 < ε < 1 and d = Cε logn, with high probability

every link of H is a
(

1
2
−δ

)
-expander for some δ = exp(−O(1/ε)), and its 1-skeleton is a

(
1− 4δ

1+2δ

)
-

expander. By the trickling-down theorem, it suffices for us to prove:

1. All n vertices’ corresponding links in H are
(

1
2
−δ

)
-expanders with high probability.

2. The 1-skeleton of H is connected with high probability.

To show Item 2, it is enough to show that some reweighting of the 1-skeleton expands; Item 1

implies that every edge (i, j) must participate in at least one triangle (otherwise the link would

contain isolated vertices), so the unweighted 1-skeleton is just the adjacency matrix of an unweighted

graph from Geod(n, p). En route to proving Item 1 we’ll prove that unweighted random geometric

graphs expand, by this logic yielding Item 2 a consequence.

Analyzing link expansion. We establish Item 1 by showing that that each of the n links is a(
1
2
−δ

)
-expander with probability 1− o(1/n), then applying a union bound. We can think of sampling

the link of vertex iw in H by first choosing the number of neighbors r ∼Binom(n−1, p), then sampling

r points v1, . . . ,vr independently and uniformly from a measure-p cap in S
d−1 centered at some point

w (corresponding to the vector of the link vertex iw), placing an edge between every i, j such that〈
vi,v j

〉
Ê τ(p, d). Finally, we remove any isolated vertices; here, we’ll show that the graph expands

with high probability before removing these isolated vertices, which implies that no isolated vertices

have to be removed. For the remainder of the overview, let τ= τ(p, d). We’ll show that:

Theorem 1.14 (Informal version of Theorem 5.1). Let G be the link of some point w ∼S
d−1 induced

by v1, . . . ,vm ∼ capp(w) . Then with high probability G is a µ-expander where

µ := (1+ o(1)) ·max

{
τ

τ+1
,

log4 m
p

qm

}
+ od(1).

Here q =Pru,v∼Sd−2

[
〈u,v〉Ê τ

τ+1

]
.

Links are essentially random geometric graphs in one lower dimension. Since most of

the measure of the cap lies close to its boundary, intuitively the link is distributed almost like a

random geometric graph with points drawn independently from the cap boundary, i.e. the shell

shellp(w) := {x : 〈x,w〉 = τ}. Our proof of Theorem 1.14 must pay attention to the fluctuations in

〈vi,w〉−τ, but to simplify our current discussion we assume each link is in fact a random geometric

graph on shellp(w), and address the fluctuations later in the overview.

Observe that a uniformly random v from shellp(w) is distributed as τ ·w+
p

1−τ2 ·u where u is

a uniformly random unit vector orthogonal to w. Using this decomposition, we see that
〈
vi,v j

〉
Ê τ
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if and only if
〈
ui, u j

〉
Ê τ

1+τ . Thus, under our simplifying assumption, the link is distributed exactly

like a random geometric graph on S
d−2 with inner product threshold τ

1+τ . Hence (up to the difference

between capp(w) and shellp(w)), to understand link expansion we can study the second eigenvalue

of a random geometric graph on the sphere.

Remark 1.15 (Requiring d =Θ(logn)). In light of Theorem 1.14 (and even the heuristic discussion

above), it turns out that d =Θ(log n) is the only regime for which the links can be connected while

the 1-skeleton has average degree ≪
p

n. To see this, we consider the relationship between p,τ, and

d; we have that

p = Pr
v,v′∼Sd−1

[
〈v,v′〉 Ê τ

]
=Θ

(
1
τd

)
·
(
1−τ2

) d−1
2 ≈ exp(−dτ2/2). (1)

See Lemma 2.8 for a formal argument.7 Note that the arguments above in conjunction with (1) imply

that the probability that two vertices within the link are connected is also roughly

q = Pr
u,u′∼Sd−2

[
〈u, u′〉 Ê τ

1+τ
]
=Θ

(
1
τd

)
·
(
1− τ2

(1+τ)2

) d−2
2

,

since the link is like a random geometric graph on shellp(w).

Connectivity within the links in conjunction with sparsity now requires us to have d ∈Θ(log n):

The number of vertices inside each link concentrates around m = np, so the average degree inside

the link is qm ≈ qpn; we must have the average link degree qpn Ê 1, otherwise the link is likely

disconnected. Now, if τ= o(1), then τ≈ τ
1+τ and p ≈ q, so qpn Ê 1 =⇒ p2n ' 1 =⇒ p ' n−1/2, ruling

out a 1-skeleton with average degree ≪
p

n. Hence we need τ=Ω(1). Given that τ=Ω(1), (1) implies

that to have the average 1-skeleton degree
p

n Ê pn Ê 1 we need d ∈Θ(logn).

Spectral expansion in random geometric graphs. We now explain how to prove near-sharp

second eigenvalue bounds for random geometric graphs.

Theorem (Restatement of Theorem 1.7). Let G ∼Geod(n, p) and τ := τ(p, d). Then with high proba-

bility G is a µ-expander, where

µ := (1+ o(1)) ·max

{
(1+ odτ2 (1)) ·τ,

log4 n
p

pn

}
,

where odτ2(1) denotes a function that goes to 0 as d ·τ(p, d)2 →∞.

As mentioned above, Theorem 1.7 is a consequence of the more general Theorem 1.10 about the

second eigenvalue of random restrictions of vertex-transitive graphs, and the inner product threshold

τ = τ(p, d) appears as the mixing rate of the random walk on S
d−1 where a step originating at v

walks to a random vector in capp(v). Via standard concentration arguments applied to the vertex

degrees, to prove the above it suffices to bound ‖AG −E AG‖Éµ ·pn, where AG is the (unnormalized)

adjacency matrix of G. We’ll focus on the regime where pn ≫polylogn, so that µ≈ τ.

Trace method for random geometric graphs. To bound ‖AG −E AG‖, we employ the trace

method, bounding the expected trace of a power of AG −E AG . This is sufficient for the following

7Heuristically, it makes sense that p =Pr[〈v,v′〉 Ê τ]≈ exp(−Θ(τ2d)), because 〈v,v′〉 is approximately N (0, 1
d

).
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reason: for convenience, let AG = AG −E AG, and let ℓ be any non-negative, even integer. Since ℓ is

even, ∥∥∥AG

∥∥∥
ℓ
=

∥∥∥A
ℓ

G

∥∥∥É tr
(
A

ℓ

G

)
,

And so applying Markov’s inequality,

Pr

(∥∥∥AG

∥∥∥Ê eε
(
Etr

(
A

ℓ

G

))1/ℓ
)
=Pr

(∥∥∥AG

∥∥∥
ℓ
Ê eεℓEtr

(
A

ℓ

G

))
É exp(−εℓ).

Thus, our goal reduces to bounding the expectation of tr(A
ℓ

G) for a sufficiently large even ℓ; in par-

ticular, if we choose ℓ≫ logn, then since AG has n eigenvalues, tr(A
ℓ

G)1/ℓ is a good “soft-max” proxy

for ‖AG‖, and we will obtain high-probability bounds.

We now explain why properties of random walks on S
d−1 naturally arise when applying the trace

method. Concretely, tr(A
ℓ

G) is a sum over products of entries of AG corresponding to closed walks of

length ℓ in the complete graph Kn on n vertices:

tr
(
A

ℓ

G

)
=

∑

i0,...,iℓ−1∈[n]

ℓ−1∏

t=0

(AG)i t i t+1 modℓ
,

The walk i0, i2, . . . , iℓ−1, i0 can be represented as a directed graph. When we take the expectation,

the symmetry of the distribution means that all sequences i0, . . . , iℓ−1 which result in the same graph

(up to relabeling) give the same value. That is, letting Wℓ be the set of all such graphs, and for each

W ∈Wℓ letting NW be the number of ways it can arise in the sum above,

Etr
(
A

ℓ

G

)
=

∑

W∈Wℓ

NW ·E
∏

(i, j)∈W

(AG)i j . (2)

To bound this sum, we must bound the expectation contributed by each W ∈ Wℓ. For the sake of

this overview we will consider only the case when W = Cℓ, the cycle on ℓ vertices, as it requires less

accounting than the other cases; however it is reasonable to restrict our attention to this case for

now, as bounding it already demonstrates our main ideas, and because this term roughly dominates

the sum with NCℓ
≫ NW ′ for all other W ′ ∈Wℓ at ℓ= polylogn and pn ≫ polylog n.8

We now bound the expectation for the case W = Cℓ; readers uninterested in the finer details may

skip to the conclusion in (4). We expand the product using that (AG )i j = A i j − p (since E[A i j]= p):

E
ℓ∏

i=1

(A i,i+1 − p)=
∑

T⊆[ℓ]

(−p)ℓ−|T|E
∏

i∈T

A i,i+1 =
∑

T⊆[ℓ]

(−p)ℓ−|T|Pr[{(i, i+1) : i ∈ T} is subgraph of G]. (3)

and thus our focus is to understand subgraph probabilities in a random geometric graph. It is not

too hard to see that when the edges specified by T form a forest, its subgraph probability is p|T|,

identical to its counterpart in an Erdős–Rényi graph; the nontrivial correlations introduced by the

geometry only play a role when T has cycles. Hence, the sum (3) simplifies,

E
ℓ∏

i=1

(AG)i,i+1 =
∑

T([ℓ]

(−p)ℓ−|T|p|T|+Pr[Cℓ is subgraph of G]=Pr[Cℓ is subgraph of G]− pℓ, (4)

where we used that the binomial sum is equal to (p− p)ℓ = 0.

Hence it remains to estimate the subgraph probability of a length-ℓ cycle. We will now see how

subgraph probabilities are related to the mixing rate of a random walk on S
d−1.

8Briefly, this is because whenever i0, . . . , iℓ−1 are all distinct elements of [n], the resulting walk’s graph is a cycle, and

when ℓ= polylogn, ℓ indices sampled at random from [n] are all distinct with high probability.
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Subgraph probability of a cycle in a random geometric graph. For the cycle Cℓ = 0,1, . . .,ℓ−
1,0, by Bayes’ rule:

Pr[Cℓ ∈G]=
ℓ−1∏

i=0

Pr[(i, i+1)∈G | ∀ j < i, ( j, j+1)∈G]= pℓ−1 ·Pr[(ℓ−1,0) ∈G | 0,1, . . .ℓ−1 ∈G],

since in all but the step i+1 = ℓ, the graph in question is a forest. Identifying each i with a point xi

on S
d−1, for any choice of x0 the above probability can equivalently be written as

pℓ−1 ·Pr[〈xℓ−1, x0〉 Ê τ | 〈xi, xi+1〉 Ê τ : 0É i É ℓ−2].

Denoting with P the transition kernel of the random walk we alluded to earlier, where in one step

we walk from a point x to a uniformly random point in capp(x), we can write the distribution of xℓ |
{x0,〈xi, xi+1〉 Ê τ : 0É i É ℓ−2} as Pℓ−1δx0

where δx0
refers to the point mass probability distribution

supported at x0. In turn, we can write the subgraph probability as:

pℓ−1 · Pr
xℓ−1∼Pℓ−1δx0

[
xℓ−1 ∈ capp(x0)

]
.

If xℓ−1 were sampled from the uniform distribution ρ on S
d−1 then the probability of landing in

capp(x0) would be p, which lets us upper bound the subgraph probability by:

pℓ−1 ·
(
p+dTV

(
Pℓ−1δx0

,ρ
))

.

The terms for more complicated subgraphs W ′ ∈Wℓ also similarly depend on the mixing properties of

P via subgraph probabilities. Our next goal then is to understand the mixing properties of P.

Remark 1.16. To prove Theorem 1.10 about random restrictions, the same strategy is used to relate

subgraph probabilities with mixing rate of the random walk on the original graph we start with.

Mixing properties of P. We show that the walk over S
d−1 with transition kernel P contracts

the TV distance by coupling this discrete walk with the continuous Brownian motion Ut over S
d−1.

Then via a known log-Sobolev inequality for Brownian motion on spheres, we can prove the following

contraction property for P.

Theorem 1.17 (Informal version of Theorem 4.6). For any probability measure α over S
d−1 and

integer k Ê 0,

dTV

(
Pk

pα,ρ
)
É

(
(1+ odτ2(1)) ·τ

)k−1 ·

√
1

2
log

1

p
,

where Pp denotes the transition kernel in which every x ∈S
d−1 walks to a uniformly random point in

the measure-p cap around it and odτ2(1) denotes a function that goes to 0 as dτ2 →∞.

We leave the details to Section 4, but in brief, the reason we are able to execute this coupling is

that the probability mass in Pδx0
concentrates around shell=τ(x0), and most of the ( 1

d−1
log 1

τ
)-step

Brownian motion starting from x0 concentrates at shell=τ(x0), so when t = 1
d−1

log 1
τ

the operators P

and Ut have similar action.

We can now apply Theorem 1.17 to bound dTV

(
Pℓ−1δx0

,ρ
)

with α= δx0
and k = ℓ−1:

dTV

(
Pℓ−1δx0

,ρ
)
É ((1+ o(1))τ)ℓ−2

√
1
2

log 1
p
.
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Spectral norm of random geometric graph. We now return to bounding the expected trace of

A
ℓ

G ; putting together the above, we have the bound

E
∏

(i, j)∈Cℓ

(AG)i j ÉPr[Cℓ ∈G]− pℓ É pℓ−1
(
p+dTV

(
Pℓ−1δx0

,ρ
))
− pℓ É pℓ−1((1+ o(1))τ)ℓ−2

√
1
2

log 1
p

.

The coefficient NCℓ
in front of the W = Cℓ term in (2) is the number of sequences i1, . . . , iℓ ∈ [n]

which yield an ℓ-cycle graph; this happens if and only if all of the indices are distinct, so NCℓ
=

ℓ! ·
(n
ℓ

)
É nℓ. Hence the contribution of the ℓ-cycle to the sum is at most ((1+ o(1))npτ)ℓ−2 ·poly(n)

when p > 1/n. By a careful accounting similar to the above for all graphs W ∈Wℓ, one can show that

in the parameter regime pn ≫polylog(n) and ℓ= polylogn, the term W = Cℓ contains (1−o(1)) of the

total value of this sum, so we obtain the bound

[
Etr(A

ℓ

G)
]1/ℓ

É
(
(1+ o(1)) · ((1+ o(1))npτ)ℓ−2 ·poly(n)

)1/ℓ
= (1+ o(1))npτ,

when we choose ℓ = ω(logn). Applying Markov’s inequality we conclude that ‖AG‖ É (1+ o(1))npτ

with high probability, and normalizing by the degrees (which concentrate well around np) we con-

clude our upper bound of τ in Theorem 1.7.

Adapting the spectral norm bound to links. Up until now, we have pretended that the link of

iw is a random geometric graph, where the vertices are identified with vectors in shell=τ(w), rather

than capÊτ(w). While it is true that most of the probability mass in capÊτ(w) is close to the boundary,

some 1
poly(m)

-fraction of the vertices j in the link will have
〈
v j,w

〉
=κ j > (1+δ)τ for some δ> 0. And

within the link, these vertices will have higher expected degree: for vi,v j having 〈vi,w〉 = κi and

〈v j,w〉 =κ j, following a similar calculation to the one above,

qi j :=Pr[i ∼ j]= Pr
ui ,u j∼Sd−2

[
〈ui, u j〉 Ê

τ−κiκ jp
(1−κ2

i
)(1−κ2

j
)

]
(5)

And this quantity is ≫ q = Prui ,u j∼Sd−2 [〈ui, u j〉 Ê τ
1+τ ] when κi > (1+δ)τ and κ j Ê τ. Hence, vertex

degrees are not as well concentrated within each link as they are (around pn) in the entire graph H.

As a result, if we let Gw now stand for the link and AGw
now stand for the adjacency matrix of

the link, it is no longer the case that ‖AGw
−E AGw

‖ is small: E AGw
still has every entry equal to q,

but the top eigenvector of AG will not be close to the all-1 vector.

To contend with this, we analyze the spectral norm of AG conditioned on the shells that the

points in capp(w) are in. Letting κ ∈ [τ,1]m be such that κi = 〈vi,w〉, vertex degrees concentrate in

Gw conditioned on κ, and we can readily bound the spectral norm of AGw
|κ= AGw

|κ−E[AGw
|κ].

The analysis of the spectral norm of AGw
is then not so different from that of AG for G a random

geometric graph; the main difference is that now, instead of working with the walk P in which we

walk from ui to a random point in capÊτ(ui), at each step of the walk we must adjust the volume

of the cap: when considering the probability that the edge i, j is present, we apply the operator Pqi j

for qi j(κi ,κ j) as defined in (5), which walks from ui to a random point in capqi j
(ui). This requires

some additional accounting, but one can show that the slowest mixing occurs when κi =κ j = τ and

qi j = τ
1+τ , from which we obtain the desired bound on ‖AGw

| κ‖. For details, see Section 5.

One additional complication is that E AGw
|κ is not a rank-1 matrix, so bounding ‖AGw

| κ‖ does

not directly imply a bound on the second eigenvalue of AGw
. However, it turns out that E AGw

| κ
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is sufficiently close to a rank-1 matrix RGw
(the matrix whose (i, j)th entry is the product of the

expected degrees conditioned on κ) that we can apply the triangle inequality:

∥∥(AGw
−RGw

) |κ
∥∥É

∥∥AGw
|κ−E[AGw

|κ]
∥∥+

∥∥E[AGw
|κ]−RGw

|κ
∥∥,

the first term we bound using the trace method as described above. The second term we bound

via more-or-less direct calculation: because all but an o(1) fraction of κi ≈ τ, when ignoring an o(1)

fraction of rows and columns, the rows of E AGw
|κ are almost constant multiples of each other, and

further these o(1) fraction of rows and columns represent an o(1) fraction of the total absolute value

of E[AGw
|κ]. (This is because the high-degree vertices in Gw represent an o(1) fraction of the total

edges in Gw.) Now, thinking of E[AGw
|κ] as a transition operator of a Markov chain, we are able to

use this to argue that the Markov chain mixes so rapidly that E[AGw
| κ] must be close to RGw

| κ,

yielding the desired bound. For details, see Section 6.

Organization

In Section 2 we give some technical preliminaries. In Section 3 we use the trace method prove the

spectral norm bound for random restrictions of arbitrary graphs, Theorem 1.10. To apply Theorem 1.10

to bound the spectrum of Geod(n, p) (and also to ultimately prove that Geo(2)
d

(n, p) is a 2-dimensional

expander), we must prove the total variation decay condition for a random walk on the sphere with

steps consisting of jumps to a random point in a spherical cap. We do this in Section 4 by relat-

ing this walk with discrete jumps to Brownian motion on S
d−1. The links of vertices in Geo(2)

d
(n, p)

do not conform to the requirements of Theorem 1.10 because they are random restrictions of graphs

which are not vertex-transitive, and so in Section 5 and Section 6 we prove a version of Theorem 1.10

specialized to these links; Section 5 contains the trace method and Section 6 addresses the fact that

the top eigenvector is not proportional to~1. Finally we put the pieces together in Section 7 to prove

Theorem 1.6. In Section 8, we show that the trickling-down theorem is tight.

2 Preliminaries

Notation. For a self-adjoint matrix M, we denote its eigenvalues in decreasing order as λ1(M) Ê
. . . Ê λn(M), the absolute values of its eigenvalues as |λ|1(M) Ê . . . Ê |λ|n(M), and λmax(M) and

|λ|max(M) to denote λ1(M) and |λ|1(M) respectively. Given a sequence of matrices M1, . . . , MT we

use
∏T

i=1
Mi to denote the matrix MT ·MT−1 · · ·M1.

For a graph G, we use V (G) to refer to its vertex set and E(G) to refer to its edge set. For a vertex

v ∈V (G), we use N(v) to denote the set of neighbors of v.

For a probability distribution D, we use ΦD(x) to denote the CDF of D at x, and ΦD(x) := 1−ΦD (x)

to denote the tail of D at x. For any point x, we use δx to denote the delta distribution at x .

2.1 Linear algebra

The following articulates how one gets a handle on the second eigenvalue of a matrix after subtract-

ing a rank-1 term, which will be used in Section 3 and Section 5.

Fact 2.1. For any n×n symmetric matrix M and rank-1 PSD matrix R, |λ|2(M)É ‖M−R‖.
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Proof. By Cauchy’s interlacing theorem, λ2(M) É λ1(M−R) É ‖M−R‖ and −λn(M) É −λn(M−R) É
‖M−R‖. The desired inequality is then true since |λ|2(M)Émax{λ2(M),−λn(M)}.

Establishing second eigenvalue bounds in Section 3 and Section 5 also involves bounding the

spectral norm of some matrices via the “trace method” articulated below.

Claim 2.2 (Trace Method). Let M be a symmetric (random) matrix. Then for any even integer ℓÊ 0,

Pr

[
‖M‖ Ê eε ·E

[
tr

(
(M)ℓ

)]1/ℓ
]
É exp(−εℓ).

Proof. By Markov’s inequality, Pr [‖M‖Ê t] É t−ℓE
(
‖M‖ℓ

)
. The claim then follows because for any

self-adjoint matrix M, λmax

(
Mℓ

)
É tr(Mℓ) when ℓ is even.

We will also require the following bound on the spectrum of a matrix, which is a special case of

the Gershgorin circle theorem.

Claim 2.3 (Row sum bound). For any matrix M, |λ|max(M)Émaxi‖M[i,∗]‖1.

Proof. Let v be the eigenvector achieving λ= |λ|max(M). Then letting k be the index maximizing |vk|,
we have

|λvk| = |(Mv)k| =

∣∣∣∣∣
∑

j

Mk jv j

∣∣∣∣∣É |vk|
∑

j

|Mk j| É |vk|max
i

‖M[i,∗]‖1,

and dividing through by |vk| gives the conclusion.

2.2 Probability

Definition 2.4. The total variation distance between probability distributions µ and ν is defined as:

dTV

(
µ,ν

)
:=max

E

∣∣µ(E )−ν(E )
∣∣.

Fact 2.5. When ρ is a nonnegative measure such that µ and ν are absolutely continuous with respect

to ρ, then:

dTV

(
µ,ν

)
=

1

2

∫∣∣∣∣
dµ

dρ
(x)−

dν

dρ
(x)

∣∣∣∣dρ(x)=
∫(

dµ

dρ
(x)−

dν

dρ
(x)

)
·1

[
dµ

dρ
(x)>

dν

dρ
(x)

]
dρ(x).

When µ and ν are supported on [n], then:

dTV

(
µ,ν

)
=

1

2

∥∥µ−ν
∥∥

1 =
n∑

i=1

(µ(i)−ν(i)) ·1[µ(i)> ν(i)]

where µ and ν are the vectors of probabilities.

We describe a Markov chain via its transition operator P where P(i, j) denotes the probability of

transitioning from state i to state j.

We call the joint distribution ω(µ,ν) a coupling between two distributions µ and ν if µ = ω(·,ν)

and µ=ω(µ, ·). In other words, the marginals of ω correspond to µ and ν.

Fact 2.6. Let x and y be two arbitrary states in a Markov chain over state space Ω with transition

operator P, and sample X ∼ P(x, ·) and Y ∼ P(y, ·), where P(z, ·) denotes the distribution over Ω given

by a single step of the walk starting from state z. Then, there exists a coupling of X and Y such that

X =Y with probability 1−ε if and only if dTV (P(x, ·),P(y, ·))É ε.
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2.3 The uniform distribution over the unit sphere

We use ρ to denote the uniform distribution on S
d−1.

Let v ∈S
d−1 and w ∼ ρ. Then the distribution Dip(d) of 〈w,v〉 is invariant under the choice of v,

is supported on [−1,1] and has probability density function:

ψd(x)=
Γ

(
d
2

)

Γ

(
d−1

2

)p
π
·
(
1− x2

)(d−3)/2
.

Henceforth, we use Zd to denote the normalizing constant
Γ
(

d
2

)

Γ
(

d−1
2

)p
π

.

Fact 2.7. Zd ÉO(
p

d).

In addition, we will rely heavily on the following sharp estimate of the tail of Dip(d).

Lemma 2.8. Let ΦDip(d)(t) :=PrX∼Dip(d)[X Ê t]. Then, when t Ê0:

Zd

t(d−1)
·
(
1− t2

)(d−1)/2 ·
(
1−

4log
(
1+d · t2

)

d · t2

)
ÉΦDip(d)(t)É

Zd

t(d−1)
·
(
1− t2

)(d−1)/2
.

Proof. It suffices to upper and lower bound
∫1

t (1− x2)(d−3)/2. We first obtain an upper bound.

∫1

t

(
1− x2

)(d−3)/2
dx=

1

t

∫1

t
t
(
1− x2

)(d−3)/2
dx

É
1

t

∫1

t
x
(
1− x2

)(d−3)/2
dx

=−
1

t(d−1)
·
(
1− x2

)(d−1)/2
∣∣∣∣
1

t

=
1

t(d−1)
·
(
1− t2

)(d−1)/2

Now we prove the lower bound. For any ε> 0 such that t ·
√

1−ε+ ε
t2 É 1, and defining δ := ε

t2 −ε, we

have the following.

∫1

t
(1− x2)(d−3)/2dxÊ

1

t
p

1+δ

∫t
p

1+δ

t

(
t
p

1+δ
)(

1− x2
)(d−3)/2

dx

Ê
1−δ

t

∫t
p

1+δ

t
x
(
1− x2

)(d−3)/2
dx

=−
1−δ

t(d−1)
·
(
1− x2

)(d−1)/2
∣∣∣∣
t
p

1+δ

t

=
1−δ

t(d−1)
·
(
1− t2

)(d−1)/2 ·
(
1− (1−ε)(d−1)/2

)

where the second inequality uses 1p
1+δ

Ê 1−δ and the last equality uses 1− t2(1+δ) = (1− t2)(1−ε).

Choosing ε= 2log(1+dt2)
d−1

yields:

∫1

t

(
1− x2

)(d−3)/2 Ê
1

t(d−1)
·
(
1− t2

)(d−1)/2 ·
(
1−

4log
(
1+dt2

)

dt2

)
.
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We use Dip(d)|Êτ to represent Dip(d) conditioned on lying in [τ,1].

Definition 2.9. For a vector y, we use capp(y) and capÊτ(p)(y) interchangeably to denote the measure-

p spherical cap around y:

capp(y)= capÊτ(p)(y) :=
{
u : 〈u, y〉 Ê τ(p), u ∈S

d−1
}

.

We use capp(y) and capÊτ(p)(y) to denote the uniform measure over the set capp(y). We denote the

boundary of capp(y) by shellp(y) or shell=τ(p)(y). That is,

shellp(y) :=
{
u : 〈u, y〉 = τ(p), u ∈S

d−1
}

.

3 The second eigenvalue of random restrictions

In this section we prove Theorem 1.10. Let X be a (possibly infinite) vertex-transitive graph with a

unique stationary measure ρ. Let G ∼RRn(X ) be a random restriction of X as defined in Definition 1.9,

and let p =PrG∼RRn(X )[(i, j)∈ E(G)] be the marginal edge probability in G. Suppose furthermore that

∃C,λ with C Ê 1 and
1

p
pn

ÉλÉ 1 s.t. for any distribution α on V (X ), dTV

(
X kα,ρ

)
ÉCλk. (6)

We overload notation and use X to denote the transition operator for the simple random walk on X ,

and for H ⊆V (X ) we also use H to denote the indicator vector of the set H.

We denote its adjacency matrix by AG , the diagonal degree matrix by DG , the centered adjacency

matrix by AG = AG −E AG, and the normalized adjacency matrix by ÂG = D−1/2
G

AGD−1/2
G

. Then we’ll

show the following.

Theorem 3.1. As long as pn ≫C6 log8 n, for any constant γ> 0, with probability at least 1−n−γ,

|λ|2
(
ÂG

)
É (1+ o(1)) ·max

(
λ,

log4 n
p

pn

)
.

Proof. By Fact 2.1, for any rank-1 PSD matrix R, |λ|2
(
ÂG

)
É

∥∥ÂG −R
∥∥. Thus we turn our attention to

bounding
∥∥ÂG −R

∥∥ for appropriately chosen R. Setting RG = pD−1/2
G

JD−1/2
G

where J is the all-ones

matrix and using submultiplicativity of the operator norm, we see:

∥∥ÂG −RG

∥∥É
∥∥∥D−1/2

G

∥∥∥
2
· ‖AG − pJ‖.

Now, observe that
∥∥D−1/2

G

∥∥2 =
∥∥D−1

G

∥∥. To bound this quantity, we’ll use the concentration of the vertex

degrees (the entries of the diagonal of DG). For every vertex, the marginal distribution of the degree

is Binom(n, p). So by Hoeffding’s inequality and the union bound, when pn ≫ log8 n, for any fixed

γ > 0, |(DG)ii − pn| É
√

pn log2 n for all i ∈ [n] with probability at least 1− nγ. So with probability

at least 1− n−γ, D−1
G

= 1
pn

I +∆ for ∆ a diagonal matrix with entries with absolute value of order
√

log2 n/(pn)3. Thus,
∥∥D−1

G

∥∥É 1
pn

·
(
1+ lognp

pn

)
.

Next, ‖AG − pJ‖ É
∥∥∥AG

∥∥∥+ p, where recall AG = AG −E AG . We will show:

∥∥∥AG

∥∥∥É (1+ o(1)) ·max
{
λpn,

p
pn log4 n

}
.
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Putting these bounds together gives:

|λ|2
(
ÂG

)
É (1+ o(1)) ·max

{
λ,

log4 n
p

pn

}
.

Finally, we devote the rest of the proof to bounding
∥∥∥AG

∥∥∥. By Claim 2.2, it suffices to bound

Etr((AG)ℓ) for a large enough even ℓ.

For an n×n matrix M, tr(Mℓ) can be written as a sum over length-ℓ closed walks on the complete

graph Kn, with each walk W weighted according to
∏

(i, j)∈W Mi j. The exchangeability of entries in AG

means that the walks can be partitioned into equivalence classes based on their topology as graphs,

where the members of each class contribute identically to the summation.

Definition 3.2. We use Wℓ to denote the collection of length-ℓ walks in Kn, the complete graph on

n vertices. For W ∈ Wℓ, we use G(W) = (V (W),E(W)) to denote the simple graph induced by edges

walked on in W. We let the multiplicity of e in W, m(e), be the number of times e occurs in W.

We can then write:

Etr
(
(AG −E AG)ℓ

)
=

∑

W∈Wℓ

E
∏

e∈E(W)

(1[e ∈G]− p)m(e) (7)

We now focus on understanding each term of the above summand in terms of the properties of G(W).

Our first step is to handle leaves.

Definition 3.3. We use G2(W) = (V2(W),E2(W)) to denote the 2-core of G(W), the graph obtained by

recursively deleting degree-1 vertices from G(W). We denote the graph induced on the edges deleted

in this process as G1(W).

Observation 3.4. We have G(W) = G1(W)∪G2(W). Further, every vertex in G2(W) has degree at

least 2, and G1(W) is a forest where each connected component has at most one vertex in G2(W).

Notice that if F is a forest, then Pr[F ∈ G] = p|E(F)|, and further if F is a forest sharing at most

one vertex with a graph H, then the events {H ∈ G} and {F ∈ G} are independent. Hence, with the

above decomposition in hand, we can “peel off” the one-core and for any W ∈Wℓ we can write:

(7)= E
ui

i∈V2(W)

E
u j

j∈V1(W)\V2(W)

∏

e∈E(W)

(1[e ∈G]− p)m(e)

=
∏

e∈E1(W)

E
(
(1[e ∈G]− p)m(e)

)
· E

ui

i∈V2(W)

∏

e∈E2(W)

(1[e ∈G]− p)m(e)

=
∏

e∈E1(W)

E
(
1[e ∈G]

(
(1− p)m(e) − (−p)m(e)

)
+ (−p)m(e)

)
· E

ui

i∈V2(W)

∏

e∈E2(W)

(1[e ∈G]− p)m(e)

É

∣∣∣∣∣
∏

e∈E1(W)

(
p(1− p)m(e) + (1− p)(−p)m(e)

)∣∣∣∣∣ ·
∣∣∣∣∣ E
ui :i∈V2(W)

∏

e∈E2(W)

(1[e ∈G]− p)m(e)

∣∣∣∣∣, (8)

where in the third line we’ve used that (1[e ∈G]− p)k = 1[e ∈G]((1− p)k − (−p)k)+ (−p)k.

It now remains to handle the 2-core G2(W). To simplify the expression, we’ll exploit the following

fact: if J is a subset of vertices in G2(W), conditional on an assignment of ui for all i ∈ J, the existence

of edges in regions of G2(W) separated by J are independent. We’ll take advantage of this fact by

splitting G2(W) into regions separated by the set of vertices in G2(W) of degree at least 3, leaving us

to bound a collection of paths and cycles.
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Definition 3.5 (Junction vertices). We use J(W) to denote the set of junction vertices of G2(W), which

are vertices with degree-Ê 3 in G2(W), or in the case that G2(W) only has vertices of degree-2, we

choose an arbitrary vertex ot G2(W) and add it to J(W). We use GJ(W) = (J(W),EJ (W)) to denote the

junction graph of G2(W), which is a multigraph obtained by starting with G2(W) and contracting to

an edge all walks γ= u0 . . .ut satisfying the following conditions:

1. u0 and ut are (possibly identical) junction vertices,

2. u1, . . . , ut−1 are distinct vertices with degree-2 in G2(W).

For an edge f ∈ EJ(W), we use γ( f )= u0, . . . , ut to identify the walk from which f arose in G2(W), s( f )

to denote the “start” vertex u0 of γ( f ), and t( f ) to denote the “terminal” vertex ut of γ( f ).

Then we can bound the contribution of the 2-core in terms of the contribution of the walk γ( f )

corresponding to each edge f in the junction graph:
∣∣∣∣∣∣

E
ui

i∈V2(W)

∏

e∈E2(W)

(1[e ∈G]− p)m(e)

∣∣∣∣∣∣
=

∣∣∣∣∣ E
ui :i∈J(W)

E
ui :i∉J(W)

∏

e∈E2(W)

(1[e ∈G]− p)m(e)

∣∣∣∣∣

=

∣∣∣∣∣ E
ui :i∈J(W)

∏

f ∈EJ(W)

E
ui :i∈γ( f )\J(W)

∏

e∈γ( f )

(1[e ∈G]− p)m(e)

∣∣∣∣∣

É E
ui :i∈J(W)

∏

f ∈EJ(W)

∣∣∣∣∣ E
ui :i∈γ( f )\J(W)

∏

e∈γ( f )

(1[e ∈G]− p)m(e)

∣∣∣∣∣. (9)

We now focus on understanding the innermost expected value, the expectation over the internal

vertices along a path, conditioned on the endpoints. Again using (1[e ∈G]− p)k = 1[e ∈G]((1− p)k −
(−p)k)+ (−p)k,

∣∣∣∣∣ E
ui :i∈γ( f )\J(W)

∏

e∈γ( f )

(1[e ∈G]− p)m(e)

∣∣∣∣∣

=

∣∣∣∣∣ E
ui :i∈γ( f )\J(W)

∏

e∈γ( f )

(
1[e ∈G] ·

(
(1− p)m(e) − (−p)m(e)

)
+ (−p)m(e)

)∣∣∣∣∣,

=

∣∣∣∣∣
∑

T⊆γ( f )

E
ui :i∈γ( f )\J(W)

∏

e∈T

1[e ∈G] ·
(
(1− p)m(e) − (−p)m(e)

) ∏

e∈γ( f )\T

(−p)m(e)

∣∣∣∣∣

Now, using the independence of edges in a forest, we can bound terms where T 6= γ( f ) simply, and the

term T = γ( f ) in terms of the probability that a |γ( f )|-length walk in X starting at us( f ) ends at ut( f )

(which is where properties of the random walk in X will enter into the bound):

=
∣∣∣∣

∑

T⊆γ( f )
T 6=γ( f )

∏

e∈T

p ·
(
(1− p)m(e) − (−p)m(e)

)
·

∏

e∈γ( f )\T

(−p)m(e)

+
∏

e∈γ( f )

(
(1− p)m(e) − (−p)m(e)

)
· p|γ( f )|−1 ·

〈
N(us( f )), X |γ( f )|−1δut(f )

〉∣∣∣∣,

where N(us( f )) is the neighborhood of us( f ) in X , and δut(f )
is the point mass at ut( f ). Now adding

and subtracting
∏

e∈γ( f )

((
(1− p)m(e) − (−p)m(e)

)
+ (−p)m(e)

)
· p|γ( f )|, we complete the first summation

and from the triangle inequality we obtain the bound

É

∣∣∣∣∣
∏

e∈γ( f )

(
p(1− p)m(e) + (1− p)(−p)m(e)

)∣∣∣∣∣
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+

∣∣∣∣∣
∏

e∈γ( f )

(
(1− p)m(e) − (−p)m(e)

)
· p|γ( f )|−1 ·

(〈
N(us( f )), X |γ( f )|−1δut(f )

〉
− p

)∣∣∣∣∣. (10)

We bound (10) based on the graphical properties of γ( f ).

Definition 3.6. We say an edge e is a singleton edge if m(e)= 1 and a duplicative edge otherwise.

If γ( f ) contains any singleton edges, then the first term of (10) is 0; otherwise it is bounded by

∏

e∈γ( f )

(p(1− p)2 + (1− p)p2)É
∏

e∈γ( f )

p(1− p)É p|γ( f )|.

The second term can always be bounded by

∏

e∈γ( f )

(
(1− p)m(e) + pm(e)

)
·p|γ( f )|−1·

∣∣∣
〈

N(us( f )), X |γ( f )|−1δut(f )

〉
− p

∣∣∣É p|γ( f )|−1·
∣∣∣
〈

N(us( f )), X |γ( f )|−1δut(f )

〉
− p

∣∣∣.

Using DJ(W) to denote the collection of edges f in GJ such that γ( f ) contains no singleton edges, and

SJ(W) to use the collection of edges f in GJ such that γ( f ) contains a singleton edge, and plugging

the above bounds into (9) tells us:

(9)É E
ui

i∈J(W)

∏

f ∈DJ (W)

p|γ( f )|−1 ·
(∣∣∣

〈
N(us( f )), X |γ( f )|−1δut(f )

〉
− p

∣∣∣+ p
)
·

∏

f ∈SJ (W)

p|γ( f )|−1 ·
∣∣∣
〈

N(us( f )), X |γ( f )|−1δut(f )

〉
− p

∣∣∣.

If GJ(W) were a tree, we could recursively take the expectation over leaf vertices to bound the quan-

tity above, as we did to get rid of G1. However, it is not a tree, so we’ll pick an arbitrary spanning

tree TJ(W) of GJ(W), and bound edges outside of the spanning tree directly. For f ∈ EJ(W)\ TJ (W),

we use Assumption 6 to conclude that dTV

(
X |γ( f )|−1δut(f )

,ρ
)
ÉCλ|γ( f )|−1, which thus implies that

∣∣∣
〈

N(us( f )), X |γ( f )|−1δut(f )

〉
− p

∣∣∣É Cλ|γ( f )|−1, (11)

because
〈
N(us( f )), X |γ( f )|−1δut(f )

〉
represents the probability that a point sampled at random from the

measure X |γ( f )|−1δut(f )
lands in N(us( f )), which is a set of measure p under ρ. We now prove the

following by induction.

Claim 3.7. We have the following bound on the contribution of f ∈ TJ(W):

E
ui :i∈J(W)

∏

f ∈TJ (W)

p|γ( f )|−1 ·
(∣∣∣

〈
N(us( f )), X |γ( f )|−1δut(f )

〉
− p

∣∣∣+ p ·1[ f ∈ DJ(W)]
)

É
∏

f ∈TJ (W)

p|γ( f )| ·
(
2Cλ|γ( f )|+1[ f ∈ DJ(W)]

)
.

Proof. We fix an order for i ∈ J(W), i0, . . . , i t such that i j is a leaf in T
( j)

J
(W), the graph obtained by

taking TJ(W) and deleting i j+1, . . . , i t. We use f j to denote the unique edge incident to i j in T
( j)

J
(W).

Then if we define

a j := E
ui :i∈V (T

( j)

J
(W))

∏

f ∈T
( j)

J
(W)

p|γ( f )|−1 ·
(∣∣∣

〈
N(us( f )), X |γ( f )|−1δut(f )

〉
− p

∣∣∣+ p ·1[ f ∈ DJ(W)]
)
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Because f j is independent of f j′ for j′ < j we can write:

a j := E
ui0

· · · E
ui j−1

∏

f ∈T
( j−1)

J
(W)

p|γ( f )|−1 ·
(∣∣∣

〈
N(us( f )), X |γ( f )|−1δut(f )

〉
− p

∣∣∣+ p ·1[ f ∈ DJ(W)]
)
·

E
ui j

p|γ( f j )|−1 ·
(∣∣∣

〈
N(us( f j )), X |γ( f j )|−1δut(f j )

〉
− p

∣∣∣+ p ·1[ f j ∈ DJ(W)]
)

Without loss of generality we can assume i j = t( f j), and because N(us( f j ))= pXδus(f j )
,

E
ui j

∣∣∣
〈

N(us( f j )), X |γ( f j )|−1δut(f j )

〉
− p

∣∣∣= E
ui j

∣∣∣
〈

N(us( f j )), X |γ( f j )|−1δui j

〉
− p

∣∣∣

= p E
ui j

∣∣∣
〈

X |γ( f j )|δus(f j )
,δui j

〉
−1

∣∣∣

= 2p ·dTV

(
X |γ( f j )|δus(f j )

,ρ
)

É p ·2Cλ|γ( f j )|.

This gives us the inequality:

α j Éα j−1 · p
(
2Cλ|γ( f j )|+1[ f j ∈ DJ(W)]

)
.

The above inequality combined with the fact that α0 = 1 yields the claim.

We use e(W) to denote |E(W)| and sing(W) to denote the number of singleton edges in G2(W),9.

For any graph H we use exc(H) to denote the excess of H, which is |E(H)|− |V (H)|+1, the number of

edges H has over a tree.

Observation 3.8. exc(G(W))= exc(G2(W))= exc(GJ(W)). Thus, we denote this quantity as exc(W).

Observation 3.9. |EJ(W)| É 3exc(W).

Proof. We use Observation 3.8 to write:

2exc(W)−2 = 2|EJ(W)|−2|VJ (W)| =
∑

v∈VJ

(degG(J)(v)−2)Ê |VJ (W)|−1,

where the degree a self-loop incurs on a vertex is 2, and the −1 on the right-hand side is to capture

the possibility that |J(W)| = 1 when G2(W) has no degree-3 vertices. Adding exc(W) to both sides

gives:

3exc(W) Ê |EJ(W)|.

Using the bound on the non-tree edges from (11) and Claim 3.7, we get:

(9)É
∏

f ∈TJ (W)

p|γ( f )| ·
(
2Cλ|γ( f )|+1[ f ∈ DJ(W)]

)
·

∏

f ∈EJ (W)\TJ (W)

p|γ( f )|−1 ·
(
Cλ|γ( f )|−1+ p ·1[ f ∈ DJ(W)]

)

9Note sing(W) is the same as the number of singleton edges in G(W) since G1(W) cannot have singleton edges, as it is

the multigraph induced by a closed walk of length ℓ.
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Now, we bound separately the contribution of singleton and duplicative edges. For each f ∈ SJ (W),

we pull out a factor of (pλ)|γ( f )|2C if the edge was in the tree, and a factor (pλ)|γ( f )|−1C if the edge

was not in the tree; this fully accounts for the contributions of singleton edges. For each f ∈ DJ(W),

we upper bound its contribution by p|γ( f )|3C if the edge was in the tree, and a factor p|γ( f )|−13C

otherwise; this is potentially loose because we don’t keep the factors of λ, but it is a valid upper

bound because C Ê 1 and p,λÉ 1. We thus have a factor of p from |E2(W)|−exc(W) edges, a factor of

λ from sing(W)−exc(W) edges, and a factor of at most 3C from each edge in EJ(W). Summarizing,

É p|E2(W)|−exc(W)λsing(W)−exc(W) · (3C)|EJ (W)|,

and by Observation 3.9, the above is bounded by:

É p|E2(W)|−exc(W)λsing(W)−exc(W) · (3C)3exc(W).

Since m(e)Ê 2 for every edge in e ∈E1 (otherwise the walk cannot be closed), by an analysis identical

to that of the first term of (10), we have:

(8)É p|E1(W)| · p|E2(W)|−exc(W)λsing(W)−exc(W) · (3C)3exc(W) = pe(W)−exc(W)λsing(W)

(
27C3

λ

)exc(W)

.

Finally, we can bound the trace power (7) as follows.

(7)É
∑

W∈Wℓ

pe(W)−exc(W)λsing(W)

(
27C3

λ

)exc(W)

=
ℓ∑

a=1

ℓ∑

b=1

ℓ∑

c=1

∑

W∈Wℓ

e(W)=a,sing(W)=b,exc(W)=c

pa−cλb

(
27C3

λ

)c

=
ℓ∑

a=1

ℓ∑

b=1

ℓ∑

c=1

pa−cλb

(
27C3

λ

)c

· |{W ∈Wℓ : e(W)= a, sing(W)= b, exc(W)= c}| (12)

To finish bounding the trace power, it remains to count length-ℓ closed walks with a specified number

of edges, excess edges, and singleton edges.

Claim 3.10. The number of walks W such that e(W)= a, sing(W) = b, and exc(W)= c is at most:

na−c+1 ·ℓ2(ℓ−b) ·ℓ2c.

Proof. Observe that W has a− c+1 vertices. Then the following information about W is sufficient to

reconstruct it:

• The labels of the visited vertices in [n] in the order in which they are visited. There are at most

na−c+1 labelings.

• The timestamps when the edge walked on is not a singleton edge. There are at most ℓℓ−b

possibilities.

• The timestamps when W takes a step uv such that the edge {u,v} has not been previously

covered by W, but v has been previously visited, along with the timestamp of when v was

visited for the first time. There are c such steps, and hence there are at most ℓ2c possibilities.
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• The timestamps when W takes a step uv such that the edge {u,v} has been previously covered

by W along with the timestamp of when {u,v} was covered the first time. There are at most ℓ−b
2

such steps, and hence there are at most ℓℓ−b possibilities.

Putting the above bounds together completes the proof.

Observation 3.11. Any walk with b singleton edges and c excess edges has at most ℓ+b
2

edges.

Proof. Each nonsingleton edge must be visited at least twice. There are at most ℓ− b non-singleton

steps. So, there are at most ℓ−b
2

nonsingleton edges, and the total number of edges is at most ℓ+b
2

.

Now we can continue bounding the trace power.

(12)É
ℓ∑

a=1

ℓ∑

b=1

ℓ∑

c=1

pa−cλb

(
27C3

λ

)c

·na−c+1 ·ℓ3(ℓ−b) ·ℓ2c

= n
ℓ∑

a=1

ℓ∑

b=1

ℓ∑

c=1

(pn)aλb

(
27C3ℓ2

λpn

)c

·ℓ2(ℓ−b)

É nℓ ·max

{
1,

(
27C3ℓ2

λpn

)ℓ}
·

ℓ∑

a=1

ℓ∑

b=1

(λpn)b · (pn)a−b ·ℓ2(ℓ−b)

By Observation 3.11 and the assumption on λ from Assumption 6, we can bound the total edges a

and hence the below.

É nℓ ·max

{
1,

(
27C3ℓ2

p
pn

)ℓ}
·

ℓ∑

a=1

ℓ∑

b=1

(λpn)b · (pn)
ℓ−b

2 ·ℓ2(ℓ−b)

É nℓ3 ·max

{
1,

(
27C3ℓ2

p
pn

)ℓ}
max

{
(λpn)ℓ, (pnℓ4)ℓ/2

}

By Claim 2.2,

Pr

[
‖AG‖Ê eε ·

(
n1/ℓℓ3/ℓ

)
max

{
1,

27C3ℓ2

p
pn

}
max

{
λpn,

p
pnℓ2

}]
É exp(−εℓ),

and choosing ℓ= log2 n, ε= loglog n/ logn, for any constant γ, we get:

‖AG −E AG‖É (1+ o(1)) ·
(
1+

27C3 log4 n
p

pn

)
·max

{
λpn,

p
pn log4 n

}
(13)

with probability at least 1− n−γ. Now, by the assumption of the theorem, pn ≫ C6 log8 n, so 1+
27C3 log4 np

pn
= 1+ o(1).

4 Analyzing the discrete walk with Brownian motion

In this section we quantify the extent to which convolving a measure α over Sd−1 with a spherical cap

of measure p brings α closer to uniform, provided that α satisfies a certain monotonicity property.

We now define this monotonicity property, establishing a couple of additional definitions along the

way.
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Definition 4.1. We say a distribution on S
d−1 with relative density α is symmetric about y ∈S

d−1 if

there exists a function ℓα : [−1,1] → R such that α(z) = ℓα(〈z, y〉). We note that ℓα is also the density

α projected onto the line defined by y relative to the projection of the uniform distribution, so that

ℓα(t)=
∫
Sd−1 1[〈z, y〉 = t] ·ℓα(t) dρ(z)∫

Sd−1 1[〈z, y〉 = t] dρ(z)
=

∫
Sd−1 1[〈z, y〉 = t] ·α(z) dρ(z)∫

Sd−1 1[〈z, y〉 = t] dρ(z)
.

Notice that ℓρ = 1.

Definition 4.2. A measure α over S
d−1 which is symmetric about some y ∈S

d−1 is said to be spher-

ically monotone if ℓα is monotone non-decreasing.

An alternate characterization of spherically monotone distributions is that their relative densi-

ties can be written as a non-negative combination of spherical caps. Recall that we use capp(y) and

capÊτ(p)(y) interchangeably to denote the uniform measure over capp(y).

Claim 4.3. A density α :Sd−1 →R which is symmetric about y ∈S
d−1 is spherically monotone if and

only if there is a distribution r on [−1,1] such that:

α=
∫

capÊθ dr(θ).

We call the above way of writing α as the cap decomposition of α. Further, ℓα =
∫
ℓcapÊθ

dr(θ).

We give the straightforward proof later. Notice that in writing the expression for ℓα we have

replaced ℓcapÊθ(y) with ℓcapÊθ
; this is because ℓcapÊθ(y) does not depend on y.

Definition 4.4. Given a measure µ over S
d−1 which is symmetric about some y ∈S

d−1, its spherical

kernel Pµ is the transition operator of the random walk on S
d−1 where a single step, starting from

x ∈S
d−1, samples a ∼ ℓµ and then walks from x to a uniformly random w ∈S

d−1 satisfying 〈w, x〉 = a.

Equivalently, the density of Pµα is µ∗α for ∗ denoting convolution.

Remark 4.5. For brevity, we will use Pp as a shorthand for Pcapp
.

The main result of this section, proved after developing some tools, is the following:

Theorem 4.6. If a probability distribution α over S
d−1 is symmetric and spherically monotone, then

for any integer k Ê 0,

dTV

(
Pk

pα,ρ
)
É

(
(1+ odτ2(1)) ·τ

)k ·
√

1
2
D(α‖ρ),

where odτ2(1) denotes a function that goes to 0 as dτ2 →∞.

As an immediate corollary, we obtain the following version which can be used in conjunction with

Theorem 1.10 to conclude a bound on the second eigenvalue of random geometric graphs.

Corollary 4.7. For any probability distribution α over S
d−1,

dTV

(
Pk

pα,ρ
)
É

((
1+ odτ2(1)

)
·τ

)k−1 ·

√
1

2
· log

1

p
.

Proof. We write α as a convex combination of (symmetric, spherically monotone) point masses δx.

Then we apply Theorem 4.6 in conjunction with the triangle inequality and the fact that Pk
pδx =

Pk−1
p capp(x) and D(capp(x)‖ρ)= log 1

p
.
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Our proof of Theorem 4.6 will relate the action of Pp to the action of the Brownian motion kernel.

Definition 4.8 (Brownian motion on S
d−1). Let (Bt)tÊ0 be standard Brownian motion in R

d. We

define Brownian motion on S
d−1 starting at some point V0 ∈ S

d−1 as the process (Vt)tÊ0 via the

following stochastic differential equation:

dVt =
p

2
(
1−VtV

⊤
t

)
dBt− (d−1)Vt dt.

Definition 4.9. For any t Ê 0, let the time-t Brownian motion kernel Ut be the transition operator of

a random walk on S
d−1 where a single step samples runs a time-t Brownian motion on the sphere.

Equivalently, Ut = Pβt
for βt the (spherically symmetric) density of a t-step Brownian motion.

For any y ∈S
d−1, Pp y is highly concentrated near the boundary of the cap of measure p around y.

As we will show in Section 4.1, the same is true for Ut y; it is highly concentrated near the boundary

of a cap of measure q = q(t) around y. So, choosing T > 0 so that q(T)≈ p, we will argue that UT and

Pp have similar action on spherically monotone measures.

We can then take advantage of the contractive properties of UT in order to prove that Pp is

contractive. The Brownian motion kernel satisfies the following mixing condition (which can be

obtained, e.g., as a corollary of [BGL+14, Theorem 5.2.1] and [DEKL14, Corollary 2]):

Theorem 4.10 (Mixing of Brownian motion on S
d−1). For any probability distribution φ on S

d−1,

D(Utφ‖ρ)É exp(−2(d−1)t) ·D(φ‖ρ)

As a corollary of the above and Pinsker’s inequality, for any t >0 and measure α over S
d−1,

2
(
dTV

(
Utα,ρ

))2 ÉD(Utα‖ρ)É exp(−2(d−1)t) ·D(α‖ρ). (14)

Armed with (14), we can pass to working exclusively with the 1-dimensional projection of the

measures in question onto the direction y.

Claim 4.11. For any spherically symmetric distribution with relative density γ, dTV

(
γ,ρ

)
= dTV

(
ℓγ,ℓρ

)
.

Proof. We express the total variation distance in terms of the ℓ1 norm:

2dTV

(
γ,ρ

)
=

∫

z∈Sd−1

∣∣γ(z)−1
∣∣ dρ(z)=

∫

z∈Sd−1

∣∣ℓγ(〈z, y〉)−1
∣∣ dρ(z)

=
∫

t∈[−1,1]

∣∣ℓγ(t)−1
∣∣ dℓρ(t)= 2dTV

(
ℓγ,ℓρ

)
.

Note that if α is spherically symmetric about y then so is Utα, by the rotational invariance of

Brownian Motion on the sphere. Hence combining Claim 4.11 with (14), we have that

dTV

(
ℓUtα,ℓρ

)
É

√
1

2
·exp(−(d−1)t) ·D(α‖ρ).

Now, we’ll show that for a well-chosen T > 0, ℓUTα nearly stochastically dominates ℓPpα, and that

Ppα and UTα are both spherically monotone, and that this furthermore implies that dTV

(
ℓUTα,ℓρ

)

and dTV

(
ℓPpα,ℓρ

)
are related. Specifically, we show the following lemmas:

24



Lemma 4.12. If ν and µ are spherically monotone densities and ℓν ¹st ℓµ, then10

dTV

(
ℓν,ℓρ

)
É dTV

(
ℓµ,ℓρ

)
.

We prove the lemma below, but intuitively, a spherically monotone distribution can be realized

as a non-negative combination of spherical caps; the uniform distribution has all of its mass on the

largest cap (of measure 1). If ℓν ¹st ℓµ, then the total probability mass within any radius θ of the

mode of µ exceeds that of ν, witnessing a larger total variation distance.

Lemma 4.13. Let µ,ν,α be spherically monotone densities over S
d−1, with ℓν ¹st ℓµ. Then

1. Pµα is spherically monotone (as is Pνα),

2. ℓPαν ¹st ℓPαµ, and

3. ℓPνα ¹st ℓPµα.

We will prove this lemma below as well; the crux of the proof of Part 1 is to realize that because

α,µ are spherically monotone, they can be decomposed as a non-negative combination of spherical

caps. Then, by linearity of Pµ and by the commutativity of convolution, Part 1 reduces to showing

that the convolution of two spherical caps is spherically monotone (this is a statement that we find

intuitive, and it is easy to verify by directly examining the expression for ℓPÊθcapÊψ
). To show Part 2,

we observe that by decomposing α in its cap decomposition, it is then enough to compare ℓPÊθν with

ℓPÊθµ for each θ. Here, when ℓµ ºst ℓν, a straightforward coupling demonstrates that ℓPÊθµ ºst ℓPÊθν.

Part 3 is a consequence of Part 2 and commutativity of convolution.

Our aim is to now apply these lemmas with ν ≈ capp(y) and µ = βT (note that Pνα = Ppα and

Pµα =UTα). We now verify that these densities meet the conditions above. The density capp(y) is

spherically monotone because it is the same as ρ conditoned on being closer to y; we now show that

βt is indeed spherically monotone.

Claim 4.14. The density of a time-t Brownian motion, βt, is spherically monotone.

Proof. Since Brownian motion on S
d−1 can be realized as a sequence of random steps within spheri-

cal caps of infintesimally small measure ds, the measure of a t-step Brownian motion starting from

y ∈S
d−1 is achieved by iteratively applying Pcapds

to the point mass at y. The proof is then complete

by noting that ℓcapp
is spherically monotone for every p, then applying Part 1 of Lemma 4.13.

Next, we argue that for T = T(p), there is some small δ for which (1−δ)ℓcapp
+δℓρ ¹st ℓβT

; that

is, the linear projection of the p-cap is almost stochastically dominated by the linear projection of

Brownian motion run for the proper amount of time. In order to do this, we first establish that

almost all of the probability mass of βT is in a cap of radius close to p. In Section 4.1, we’ll prove the

following lemma:

Lemma 4.15. Let (Vt)tÊ0 be a Brownian motion on S
d−1 starting at V0. Then for any time t Ê0,

Pr [|〈V0,Vt〉−exp(−(d−1)t)| Ê x]É 2exp

(
− d−1

2

x2

1− e−2(d−1)t

)
.

10As will be apparent from the proof, one may replace ℓν,ℓµ with any monotone non-decreasing densities on [−1,1].
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From this lemma, we can show that almost all of the mass of the cap decomposition of ℓβT
is

contained inside a (Ê τ)-cap:

Claim 4.16. Let ν> 0, T := 1
d−1

(
log 1

ν −2ε
)
, and ε ∈

[
0, 1

2
log 1

ν

]
. Then the total mass of ℓβT

outside of

capÊ(1+ε)ν(V0) for V0 the starting point of the Brownian motion is bounded:

∫(1+ε)τ

−1
dℓβT

(x)É δ(ε) := 2exp

(
−

(d−1)ε2ν2

2(1−ν2)

)
.

Proof. We let (Vt)tÊ0 be a Brownian motion on the sphere, A t = 〈Vt,V0〉, and A t = exp(−(d−1)t)+Rt.

At time T, we have

AT = exp(−(d−1) ·T)+RT = ν ·exp(2ε)+RT

Ê ν · (1+2ε)+RT Ê ν · (1+2ε)+RT .

The event that AT É ν · (1+ ε) implies RT < −εν, so it suffices to upper bound the probability that

|RT | > εν. Applying Lemma 4.15,

Pr[|RT | Ê εν]É 2exp

(
− d−1

2

ε2ν2

1− e−2(d−1)·T

)
= 2exp

(
−
ε2ν2(d−1)

2(1−ν2)

)

Now, we are ready to establish the stochastic domination of the combination.

Claim 4.17. Let p ∈
(
0, 1

2

)
and ν= τ(p)+ 4p

d
. For T = 1

d−1
(log 1

ν
−2ε) with ε∈

[
5

(d−1)ν2 , 1
2

log 1
ν

]
,

ℓβT
ºst (1−2δ(ε))ℓcapp

+2δ(ε)ℓρ ,

for δ(ε) as defined in the statement of Claim 4.16.

Proof. Using Claim 4.3, we write βT =
∫1
−1 cθ ·ℓcapÊθ

dθ, with
∫

cθdθ= 1. Let τ′ ∈ [−1,1] be such that

∫τ′

−1
cθdθ= 2δ(ε), and

∫1

τ′
cθdθ= 1−2δ(ε). (15)

The proof strategy is to show that the conclusion follows if τ′ Ê τ(p), and then establish that inequal-

ity.

First observe that if α and {γx}x∈X are measures satisfying γx ºst α for all x ∈ X , then a convex

combination
∫

cxγxdxºst α as well, from which the conclusion follows. Now, writing

βT =
∫τ′

−1
cθ ·ℓcapÊθ

dθ+
∫1

τ′
cθ ·ℓcapÊθ

dθ,

we see that the first term on the right-hand-side stochastically dominates 2δ(ε) ·ℓcapÊ−1
= 2δ(ε) ·ℓρ

since for every θ ∈ [−1,τ′], θ Ê −1 and therefore ℓcapÊθ
ºst ℓcapÊ−1

= ℓρ. By identical reasoning,

the second term stochastically dominates ℓcapÊτ(p)
since for every θ ∈ [τ′,1], θ Ê τ(p) and therefore

ℓcapÊθ
ºst ℓcapÊτ

= ℓcapp
.

We now show that the τ′ satisfying (15) is at least τ, for which it is sufficient to show τ′ Ê ν.

Let κ =
∫ν
−1 cθ dθ; τ′ Ê ν is equivalent to showing that κ É 2δ(ε). Using Claim 4.16, we know that

Prv∼βT
[v ∈ capÊ(1+ε)ν(V0)]Ê 1−δ(ε).

1−δ(ε) É Pr
v∼βT

[
v ∈ capÊ(1+ε)ν(V0)

]
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=
∫(1+ε)ν

−1
cθ · Pr

x∼ℓcapÊθ

[xÊ (1+ε)ν] dθ+
∫1

(1+ε)ν
cθ dθ

É
∫ν

−1
cθ · Pr

x∼ℓcapÊθ

[xÊ (1+ε)ν] dθ+
∫1

ν
cθ dθ

É
(

max
θ∈[−1,ν]

Pr
x∼ℓcapÊθ

[xÊ (1+ε)ν]

)
·κ+

∫1

ν
cθ dθ= Pr

x∼ℓcapÊν

[xÊ (1+ε)ν] ·κ+
∫1

ν
cθ dθ.

Using Lemma 2.8 and νÊ 4/
p

d,

Pr
x∼ℓcapÊν

[xÊ (1+ε)ν]=
ρ(capÊ(1+ε)ν)

ρ(capÊν)

É
3ν

(
1− ((1+ε)ν)2

)(d−1)/2

2ν(1+ε)
(
1−ν2

)(d−1)/2

É
3

2
·
(

1− (1+ε)2ν2

1−ν2

)(d−1)/2

=
3

2
·
(
1−

2εν2 +ε2ν2

1−ν2

)(d−1)/2

É
3

2
·
(
1−2εν2

)(d−1)/2 É
3

1+ (d−1)εν2
.

The final quantity is smaller than 1
2

given our lower bound on ε, and
∫1
τ cθ dθ = 1−κ. Plugging into

the above, we have that

1−δ(ε) É
1

2
κ+1−κ =⇒ κÉ 2δ(ε),

which completes the proof.

Finally, we will need the following claim to transfer the statement about the stochastic domina-

tion of a linear combination of ℓPpα and ℓρ to just ℓPpα:

Lemma 4.18. Suppose µ and ν are spherically monotone distributions, then for any η ∈ [0,1),

dTV

(
ℓµ,ℓρ

)
É

1

1−η
dTV

(
(1−η)ℓµ+ηℓν,ℓρ

)
.

Proof. Let s ∈ [−1,1] be such that:

dTV

(
ℓµ,ℓρ

)
=

∫1

s
(ℓµ(x)−1)dρ1D =

∫s

−1
(1−ℓµ(x))dρ1D,

where ρ1D is the density of the 1-dimensional projection of cap1(y). The choice of s satisfying the

above is the one satisfying ℓµ(s)= 1. If ℓν(s)Ê 1, by spherical monotonicity ℓν(x)Ê 1 on [s,1] and:

dTV

(
(1−η)ℓµ+ηℓν,ℓρ

)
Ê

∫1

s

(
(1−η)(ℓµ(x)−1)+η(ℓν(x)−1)

)
dρ1D

Ê (1−η)

∫1

s
(ℓµ(x)−1)dρ1D = (1−η) ·dTV

(
ℓµ,ℓρ

)
.

On the other hand, if ℓν(s)É 1, by an identical argument we know:

dTV

(
(1−η)ℓµ+ηℓν,ℓρ

)
Ê (1−η)

∫s

−1
(1−ℓµ(x))dρ1D = (1−η) ·dTV

(
ℓµ,ℓρ

)
.

The desired statement follows from rearranging the above inequality.
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We are now ready to prove Theorem 4.6, following the reasoning above, in combination with

induction on k, the number of applications of Pp. We state and prove a more refined version of

Theorem 4.6 below.

Theorem 4.19. If a probability distribution α over Sd−1 is symmetric and spherically monotone, then

for any integer k Ê 0 and for ν= τ(p, d)+ 4p
d

,

dTV

(
Pk

pα,ρ
)
É νk




exp
(

4
(d−1)1/4

p
ν

)

√
1−2exp(−ν

p
d−1)


.

Note that when τ2d →∞, the parenthesized term is 1+ o(1) and ν= τ · (1+ o(1)).

Proof. Suppose τ(p) Ê 1−1/(d −1)1/4, then the statement is vacuously true. Thus, we assume from

now on τ(p)< 1−1/(d−1)1/4.

Let ν= τ(p)+4/
p

d, let t = 1
d−1

(
log 1

ν −2ε
)
, and δ= 2exp

(
− (d−1)ε2ν2

2(1−ν2)

)
for ε=

p
2−2ν2

(d−1)1/4
p
ν
; note that for

d sufficiently large, ε ∈
[

5
(d−1)ν2 , 1

2
log 1

ν

]
. For convenience’s sake, define Pp,δ = (1−2δ)Pp +2δP1. We

will prove that

ℓPk
p,δ

α ¹st ℓUk
t α

, and Uk
t α, Pk

p,δα are spherically monotone. (16)

Given this, the proof of the theorem will follow: by the linearity of the projection onto the line defined

by y, and by the commutativity of convolution,

ℓPk
p,δ

α =
k∑

j=0

(1−2δ)k− j(2δ) j

(
k

j

)
ℓ

P
k− j
p P

j

1
α

,

So from Claim 4.11, Lemma 4.18, (16), and Lemma 4.12,

dTV

(
Pk

pα,ρ
)
= dTV

(
ℓPk

pα
,ℓρ

)
É

1

(1−2δ)k
dTV

(
ℓPk

p,δ
α,ℓρ

)
É

1

(1−2δ)k
dTV

(
ℓUk

t α
,ℓρ

)
. (17)

Then we can apply Claim 4.11 to get that

dTV

(
ℓUk

t α
,ℓρ

)
= dTV

(
Uk

t α,ρ
)
, (18)

and finally using that Uk
t =Uk·t in conjunction with Lemma 4.10, we have that

dTV

(
Uk

t α,ρ
)
= dTV

(
Uk·tα,ρ

)
É

√
1

2
exp(−2(d−1)tk) ·D(α‖ρ), (19)

So combining (17), (18), and (19), we have that

dTV

(
Pk

pα,ρ
)
É

√
1

2(1−2δ)k
exp(−2(d−1)tk) ·D(α‖ρ).

In our case, δ= exp(−ν
p

d−1), t = 1
d−1

(
log 1

ν −
p

2−2ν2

(d−1)1/4
p
ν

)
, so combining these estimates,

dTV

(
Pk

pα,ρ
)
É νk ·




exp
(

4
(d−1)1/4

p
ν

)

√
1−2exp(−ν

p
d−1)




k

·
√

1
2
D(α‖ρ),
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as desired.

Now we prove (16). The proof is by induction on k; when k = 0, there is nothing to prove. Suppose

now that the statement holds true for k; we shall prove it for k+1. By Claim 4.14, the density of

a time-t spherical Brownian motion βt is spherically monotone about its starting point, and clearly,

any convex combination of caps is spherically monotone. Hence we can apply Lemma 4.13, Part 1 in

conjunction with the induction hypothesis to conclude that both Pk+1
p,δ

α = Pp,δ(Pk
p,δ

α) and Uk+1
t α =

Ut(U
k
t α) are spherically monotone, giving the second part of the induction hypothesis.

By our induction hypothesis Uk
t α and Pk

p,δ
α are spherically monotone with ℓUk

t α
ºst ℓPk

p,δ
α, and so

we can apply Lemma 4.13, Part 2 in conjunction with Claim 4.14 to conclude that

ℓUk+1
t α = ℓPβt (Uk

t α) ºst ℓPβt (Pk
p,δ

α),

and then apply Lemma 4.13, Part 3 in conjunction with Claim 4.17 to conclude that

ℓPβt (Pk
p,δ

α) ºst ℓPp,δ(Pk
p,δ

α) = ℓPk
p,δ

α,

completing the proof.

Now, we fill in the proofs of the lemmas from above.

Claim (Restatement of Claim 4.3). A density α : Sd−1 → R which is symmetric about y ∈ S
d−1 is

spherically monotone if and only if there is a distribution r on [−1,1] such that:

α=
∫

capÊθ dr(θ).

We call the above way of writing α as the cap decomposition of α. Further, ℓα =
∫
ℓcapÊθ

dr(θ).

Proof of Claim 4.3. We first prove the “only if” direction. Since α is spherically symmetric about y,

α(v)= ℓα(〈v, y〉). Let dℓα be the distributional derivative of ℓα, and set dr(θ)= ρ(capÊθ(y)) dℓα(θ).

∫
(capÊθ(y))(v) dr(θ)=

∫
1[〈v, y〉 Ê θ]

ρ(capÊθ(y))
·ρ(capÊθ(y)) dℓα(θ) =

∫
1[〈v, y〉 Ê θ] dℓα(θ)=α(v).

To see that the measure dr indeed gives a probability distribution, first observe that dr(θ) Ê 0 for

every θ due to the monotonicity of ℓα, and next observe that

1=
∫

v∈Sd−1
α(v) dρ(v)=

∫

v∈Sd−1

∫1

−1
(capÊθ(y))(v) dr(θ) dρ(v)

=
∫1

−1

∫

v∈Sd−1
(capÊθ(y))(v) dρ(v) dr(θ)=

∫1

−1
dr(θ).

In summary, since r is a positive measure which integrates to 1, it is a probability distribution. The

claim regarding ℓα follows because the line projection onto y is a linear operation.

Now we prove the converse. Suppose α =
∫1
−1 capÊθ(y) dr(θ). By linearity of projection onto the

line defined by y, ℓα =
∫1
−1ℓcapÊθ

dr(θ). Since ℓcapÊθ
is monotone for every θ, and a non-negative

combination of monotone functions is monotone, ℓα is also monotone, concluding the proof.

Lemma (Restatement of Lemma 4.12). If ν and µ are spherically monotone densities and ℓν ¹st ℓµ,

then11

dTV

(
ℓν,ℓρ

)
É dTV

(
ℓµ,ℓρ

)
.

11As will be apparent from the proof, one may replace ℓν,ℓµ with any monotone non-decreasing densities on [−1,1].
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Proof of Lemma 4.12. First, observe that ℓν ºst ℓρ and ℓµ ºst ℓρ by the assumption that µ,ν are

spherically monotone. Thus, ℓµ ºst ℓν ºst ℓρ. Further, if measures a, b on [−1,1] satisfy a ºst b, then

their CDFs Ga and Gb satisfy Ga(s)ÉGb(s) for every s. Hence,

Gℓµ
(s)ÉGℓν

(s)ÉGℓρ
(s) ∀s ∈ [−1,1].

By definition of the total variation distance, for any non-decreasing density γ : [−1,1]→R,

dTV

(
γ,ℓρ

)
= max

s∈[−1,1]
Gℓρ

(s)−Gγ(s).

Thus,

dTV

(
ℓν,ℓρ

)
=Gℓρ

(s∗)−Gℓν
(s∗)ÉGℓρ

(s∗)−Gℓµ
(s∗)É dTV

(
ℓµ,ℓρ

)
,

which completes the proof.

We’ll now prove Lemma 4.13.

Lemma (Restatement of Lemma 4.13). Let µ,ν,α be spherically monotone densities over S
d−1, with

ℓν ¹st ℓµ. Then

1. Pµα is spherically monotone (as is Pνα),

2. ℓPαν ¹st ℓPαµ, and

3. ℓPνα ¹st ℓPµα.

Proof of Lemma 4.13. We first prove Part 1. We can write α and µ in terms of their cap decompo-

sitions as shown in Claim 4.3, α =
∫1
−1 capÊθ(y) dr(θ) and µ =

∫1
−1 capÊψ(z) ds(ψ) for some z ∈ S

d−1.

Pµ is a linear operator, so Pµα =
∫

PµcapÊθ(y) dr(θ). Further, by the commutativity of convolution,

PµcapÊθ(y) = PÊθµy, where µy denotes the version of µ centered at y. Hence,

Pµα=
∫

PµcapÊθ(y)dr(θ)=
∫

PÊθµy dr(θ)=
∫∫

PÊθcapÊψ(y) ds(ψ) dr(θ).

Each PÊθcapÊψ(y) is clearly spherically symmetric about y. Since the projection onto the line defined

by y is a linear operation, ℓPµα =
∫∫

ℓPÊθcapÊψ
ds(ψ)dr(θ), and because a non-negative combination of

monotone functions is monotone, it suffices to prove that for any θ,ψ ∈ [−1,1], ℓPÊθcapÊψ
is monotone.

By definition,

ℓPÊθcapÊψ(y)(t)= E
v∼ρ

[(
PÊθcapÊψ(y)

)
(v) | 〈v, y〉 = t

]

= E
v∼ρ

[
E

w∼capÊθ(v)

[(
capÊψ(y)

)
(w)

]
| 〈v, y〉 = t

]

= E
v∼ρ

[
E

w∼capÊθ(v)

[
1[〈w,y〉Êψ]

ρ(capÊψ)

]
| 〈v, y〉 = t

]
=

Prv,w∼ρ
[
〈w, y〉 Êψ | 〈w,v〉 Ê θ,〈v, y〉 = t

]

Prw∼ρ
[
〈w, y〉 Êψ

] .

This ratio is monotone increasing in t, completing the proof of (1).

Now we show Part 2. Claim 4.3 shows that by the spherical monotonicity of α, we can express α

in its cap decomposition,

α=
∫1

0
capq dr(q),
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and now by the linearity of convolution, Pα =
∫1

0 Pcapq
dr(q), and Pαµ=

∫
Pqµdr(q), Pαν=

∫
Pqνdr(q).

So, to show that ℓPαµ ºst ℓPαν, it suffices to argue “slice-by-slice” that for every q ∈ [0,1], ℓPqµ ºst ℓPqν.

This follows from the following coupling argument: we sample (x, y) from (ℓPqµ,ℓPqν) in a coupled

manner as follows: first, sample (aµ,aν) ∼ (ℓµ,ℓν) in a coupled manner so that aµ Ê aν; such a

coupling is guaranteed because ℓµ ºst ℓν. Next, choose (vµ,vν) at random in S
d−1 conditioned on〈

vµ, y
〉
= aµ and 〈vν, y〉 = aν. Now, let θµ be the random variable

〈
y, uµ

〉
for uµ ∼ capq(vµ), and

θν = 〈y, uν〉 for uν ∼ capq(vν). Note that the marginal over θµ is ℓPqµ and the marginal over θν is

ℓPqν. The probability Pr[θµ > t] is proportional to the measure of the intersection of capÊt(y) and

capq(uµ), and similarly the probability Pr[θν > t] is proportional to the measure of the intersection

of capÊt(y) and capq(uν). By our choice of coupling, the angle between uµ and y is smaller than the

angle between uν and y, so for every t ∈ [−1,1],

Pr[θµ > t]ÊPr[θν > t],

and hence we may couple θµ and θν so that θµ Ê θν always. Taking x= θµ and y= θν in this coupling

gives our conclusion.

Finally, observe that by the commutativity of convolution, Pµα = Pαµ and Pνα = Pαν, and so

Part 3 follows from Part 2.

4.1 Concentration of spherical Brownian Motion within a cap

In this section, we study the concentration of Brownian Motion on S
d−1 in the spherical cap around

its starting point.

Lemma (Restatement of Lemma 4.15). Let (Vt)tÊ0 be a Brownian motion on S
d−1 starting at V0.

Then for any time t Ê0,

Pr [|〈V0,Vt〉−exp(−(d−1)t)| Ê x]É 2exp

(
− d−1

2

x2

1− e−2(d−1)t

)
.

Proof of Lemma 4.15. Letting A t = 〈V0,Vt〉 be the correlation of the motion at step t with the starting

point, (Bt)tÊ0 be standard Brownian motion on R
d ,

(
B′

t

)
tÊ0

be standard Brownian motion on R, and

θ = d−1,

dA t = 〈V0, dVt〉 =−θ · A t dt+
p

2
〈
V0,

(
1−VtV

⊤
t

)
dBt

〉

=−θ · A t dt+
p

2
〈(
1−VtV

⊤
t

)
V0, dBt

〉

=−θ · A t dt+
p

2

√
1− A2

t dB′
t

The solution to the deterministic differential equation dxt =−θxt with initial condition x0 = 1 is

xt = exp(−θt). To this end, it’s convenient to split A t up into a deterministic and a random part:

A t = exp(−θt)+Rt,

with the initial condition R0 = 0. Then via calculation,

dRt =−θRtdt+
p

2

√
1− A2

t dB′
t. (20)
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We now relate Rt to a stochastic process without drift, as is done, for example, in the analysis of the

Ornstein-Uhlenbeck process. Consider Rt exp(θt). Note that

d(Rt exp(θt))= exp(θt) dRt+Rtθexp(θt) dt

=−Rtθexp(θt) dt+
p

2exp(θt)

√
1− A2

t dB′
t+Rtθexp(θt) dt

=
p

2exp(θt)

√
1− A2

t dB′
t,

a process without drift.

The following version of the Azuma–Hoeffding inequality will allow us to argue that this driftless

process concentrates.

Lemma 4.20. Let (X t)tÊ0 ⊂R be a stochastic process adapted to the filtration Ft with E[er dX t |Ft]<
exp

(
r2σ2

t dt
)
, for all t, r. Then for all s, x> 0,

Pr[|Xs −X0| Ê x]É 2exp

(
−x2

4
∫s

0 σ2
t dt

)
.

Versions of this lemma are known (c.f. [Dem96] and references therein), we include a proof in

Appendix A for completeness.

We apply Lemma 4.20 to prove that

Pr[|Rs| Ê x]É 2exp

(
−C′ ·

x2dθ

1−exp(−θs)

)
.

Indeed, Rt exp(θt) is a stochastic process without drift and satisfies that

E[exp(r d(Rt exp(θt)))]=E

[
exp

(p
2r exp(θt)

√
1− A2

t dB′
t

)]

É exp
(
r2 exp(2θt) ·

(
1− A2

t

)
dt

)

É exp
(
r2 exp(2θt) dt

)
,

Since A t is real-valued. So we can apply Lemma 4.20 to the process and derive that

Pr[|Rs| Ê x]=Pr[|Rs exp(θs)| Ê xexp(θs)]

É 2exp

(
−

x2 exp(2θs)

4
∫s

0 exp(2θt)dt

)

= 2exp

(
−

θx2

2 · (1−exp(−2θs))

)
,

and plugging in θ = d−1 concludes the proof.

5 The second eigenvalue of links

In this section we analyze the links of the random geometric complex. Each link is a random geo-

metric graph in a cap centered around some w ∈S
d−1 on m vertices where m ∼Binom(n, p). We are

interested in obtaining a high probability bound on the second eigenvalue of ÂG := D−1/2
G

AGD−1/2
G

,

the normalized adjacency matrix of link graph G, where AG and DG denote its adjacency matrix and
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diagonal degree matrix. Since the number of vertices m concentrates well in our setting, throughout

this section we treat the number of vertices m as fixed and handle the variation in m in Section 7.

We also specialize the parameters to the regime relevant in proving Theorem 1.6 in Section 7 — in

particular, the relationship between n, p and d is such that limn→∞τ(p, d) is a constant in (0,1), np

is a polynomially large function of n, and d =Ω(logn).

Theorem 5.1. Let 0< τ< 1 be a constant. Let v1, . . . ,vm ∼ capÊτ(w) and G := ggτ(v1, . . . ,vm). Then for

q :=ΦDip(d)

(
τ

1+τ
)
, suppose qm ≫ log8 m · log3/2 1

q
·
(

1+τ
τ

)3
and d Ê C · log m for any constant C > 0, then

for any constant γ> 0,

Pr
[
|λ|2

(
ÂG

)
>

τ

1+τ
+ od,m(1)

]
ÉO

(
m−γ).

To prove Theorem 5.1, by Fact 2.1 it suffices to bound
∥∥ÂG −R

∥∥ for any rank-1 PSD matrix R.

For a given G, the minimizing R for
∥∥ÂG −R

∥∥ is R = RG = D1/2
G

JD1/2
G

tr(DG)
where J is the all-ones matrix.

One challenge in directly performing the trace method on ÂG−RG is that the degree of any vertex

i is a random variable that depends on the locations of all the vectors, and hence introduces extra

correlations. In Section 3, this issue was resolved because the degrees concentrated very well, and

hence D−1/2
G

and D1/2
G

were close to scalar multiples of identity. However, in the links the degrees

of vertices in G no longer concentrate around a single value, and even the behavior of the expected

degree of vertex i depends on which “shell” vi is contained in around w, 〈vi,w〉. To better control the

degrees, we will study the spectral norm of ÂG−RG |κ conditioned on the shells κ := {κi := 〈w,vi〉}m
i=1

.

Let Dκ ∈ R
m×m be the conditional expected diagonal degree matrix with Dκ[i, i]= E[degG(i) |κ].

Then we define the new normalized matrix AG = Dκ
−1/2AGDκ

−1/2 and the new conditional rank-1

PSD matrix Rκ = Dκ
1/2 JDκ

1/2

tr(Dκ)
. Then by optimality of RG:

∥∥ÂG −RG

∥∥É
∥∥∥ÂG −

(
D−1/2

G Dκ
1/2

)
Rκ

(
Dκ

1/2D−1/2
G

)∥∥∥

=
∥∥∥
(
D−1/2

G Dκ
1/2

)(
AG −Rκ

)(
Dκ

1/2D−1/2
G

)∥∥∥

É
∥∥AG −Rκ

∥∥ ·
∥∥∥D−1/2

G Dκ
1/2

∥∥∥
2
.

Since
∥∥D−1/2

G
Dκ

1/2
∥∥2 =

∥∥D−1
G

Dκ

∥∥, this is equivalent to bounding

∥∥AG −Rκ

∥∥ ·
∥∥D−1

G Dκ

∥∥É
∥∥AG −Rκ

∥∥ ·max
i∈[m]

Dκ[i, i]

DG[i, i]

Now, in the trace method it is convenient to work with AG −E[AG] |κ, which is not a rank-1 matrix.

So, applying the triangle inequality,

É
(∥∥AG −E

[
AG |κ

]∥∥+
∥∥E

[
AG |κ

]
−Rκ

∥∥)
·max

i∈[m]

Dκ[i, i]

DG[i, i]
, (21)

It then suffices to bound
∥∥E

[
AG |κ

]
−Rκ

∥∥, maxi∈[m]
Dκ[i,i]
DG[i,i]

, and
∥∥AG −E

[
AG |κ

]∥∥ to complete the

proof of Theorem 5.1.

In Section 6 we’ll show that E[AG |κ] is close to RG in spectral norm:

Lemma 5.2. If d Ê C · log m for some constant C > 0 and the constant τ ∈ (0,1) satisfies qm ≫ log8 m,

then

∥∥E
[
AG |κ

]
−Rκ

∥∥ÉO



√

log2 d

d




with probability at least 1− o(m−γ) for any constant γ> 0.

33



And the remainder of this section will be devoted to bounding the other two quantities, as follows:

Lemma 5.3. For any 0<α< 1,

max
i∈[m]

Dκ[i, i]

DG[i, i]
É

1

1−α
,

with probability at least 1−m ·exp
(
−α2q(m−1)

4

)
.

Lemma 5.4. For any κ, q and m and qm ≫ log8 m · log3/2 1
q
·
(

1+τ
τ

)3

∥∥AG −E
[
AG | κ

]∥∥É (1+ om(1)) ·
τ

1+τ
.

In service of proving Lemma 5.2, Lemma 5.3 and Lemma 5.4, we need the following fact that

arises in studying random geometric graphs with shifted edge-connectivity thresholds.

Definition 5.5. We define the bivariate function T(x, y) := τ−xyp
(1−x2)(1−y2)

as the shifted threshold func-

tion, defined so that

Pr
x,y∼Sd−2

[〈x, y〉 Ê T(x, y)]= Pr
u,v∼Sd−1

[〈u,v〉 Ê τ | 〈u,w〉= x,〈v,w〉= y] .

Claim 5.6. The shifted threshold function T(x, y) := τ−xyp
(1−x2)(1−y2)

on the domain x, y ∈ [τ,1] is maxi-

mized when x= y= τ, and achieves value τ
1+τ . Additionally ∂xT(x, y) and ∂yT(x, y) are both negative.

Proof. The derivatives ∂yT(x, y)= τp
1−x2

· g(y)− xp
1−x2

·h(y) and ∂xT(x, y) = τp
1−y2

· g(x)− yp
1−y2

·h(x),

where g(z) := z
(1−z2)3/2 and h(z) := 1p

1−z2
+ z2

(1−z2)3/2 . Since g(z) < h(z) for z ∈ (0,1], then for x, y Ê τ we

deduce that ∂yT,∂xT < 0. Therefore, T achieves the maximum value τ−τ2

1−τ2 = τ
1+τ when x= y= τ.

Now we prove Lemma 5.3.

Proof of Lemma 5.3. For any α ∈ (0,1), consider the event that maxi∈[m]
Dκ[i,i]
DG[i,i]

> 1
1−α . We can bound

the probability that this event happens by union bound and Bernstein’s inequality:

Pr [∃i ∈ [m], DG[i, i]É (1−α)Dκ[i, i]]É
m∑

i=1

Pr[DG[i, i]É (1−α)Dκ[i, i]]

É m ·max
i

exp

(
−

1

2
·

α2Dκ[i, i]2

(α+1)Dκ[i, i]

)

É m ·max
i

exp

(
−
α2Dκ[i, i]

4

)

Observe that Dκ[i, i]=
∑

j 6=iΦDip(d−1)(T(κi ,κ j)). By Claim 5.6, T(κi ,κ j)É τ
1+τ , so ΦDip(d−1)

(
T(κi,κ j)

)
Ê

ΦDip(d−1)

(
τ

1+τ
)
= q. Consequently, Dκ[i, i]Ê q(m−1) from which the desired statement follows.

5.1 Spectral norm bound for centered links

In the rest of the section, we prove Lemma 5.4 by bounding the expected trace E
[
tr

((
AG −E[AG | κ]

)ℓ)]
,

for κ ∈ [τ,1]m a fixed configuration of shells. The proof will be almost identical to the one in Section 3,

but here we have to deal with the fact that the graph is not vertex-transitive.
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Proof of Lemma 5.4. First observe:

E
[
tr

((
AG −E[AG | κ]

)ℓ)]=E

[
tr

((
Dκ

−1/2AGDκ
−1/2−Dκ

−1/2 E[AG |κ]Dκ
−1/2

)ℓ)]

=E
[
tr

((
Dκ

−1AG −Dκ
−1 E[AG |κ]

)ℓ)]
.

We rewrite the expression in terms of Dκ
−1AG which approximates the transition matrix of the

random walk on G.12 Next, we expand the expression in terms of walks in Km.

Following the convention of Section 3, we use Wℓ to denote the collection of length-ℓ walks in Km.

For every W ∈ Wℓ, use G(W) = (V (W),E(W)) to denote the multigraph obtained by the vertices and

edges used in W. Use m(e) to denote the number of times that an edge e appears in the walk W.

Definition 5.7. We also introduce the following notation. Let dW (κ) :=
∏

(i t ,i t+1)∈W Dκ
−1[i t, i t] denote

the normalization constant along the path W conditioned on the shells κ. Also define pe = E[1[e ∈
G] | κ] to be the probability that an edge e exists conditioned on κ.

Then:

E
[
tr

((
AG −E[AG |κ]

)ℓ) | κ
]
=

∑

W∈Wℓ

dW (κ) ·E
[

∏

e∈E(W)

(1[e ∈G]− pe)m(e) | κ
]

(22)

Next we apply the decomposition in Section 3 to G(W) and obtain the 2-core graph G2(W) and the

forest graph G1(W). Since conditioned on the vectors vi ∈V2(W) the events e ∈G are independent for

all e ∈E1(W), the expectation in (22) can be decomposed into two parts:

E

[
∏

e∈E(W)

(1[e ∈G]− pe)m(e) | κ
]

=
∏

e∈E1(W)

E
[
(1[e ∈G]− pe)m(e) | κ

]
E
vi

i∈V2(W)

[
∏

e∈E2(W)

(1[e ∈G]− pe)m(e) | κ
]

(23)

We bound the contribution from the edges in E2(W) by further spliting G2(W) into paths consist-

ing of degree-2 vertices and the junction graph GJ(W) = (J(W),EJ(W)) as defined in Definition 3.5.

As in Section 3 the key observation here is that conditioned on vertices in J(W) the contributions

from the paths of degree-2 vertices are all independent from each other:

∣∣∣∣∣∣
E
vi

i∈V2(W)

[
∏

e∈E2(W)

(1[e ∈G]− pe)m(e) | κ
]∣∣∣∣∣∣

É E
vi

i∈J(W)

∏

f ∈EJ(W)

∣∣∣∣∣∣
E
vi

i∈γ( f )\J(W)

[
∏

e∈γ( f )

(1[e ∈G]− pe)m(e) | κ
]∣∣∣∣∣∣

(24)

Now, let Xκ,κ′ be the transition operator for the random step that walks from vector v in shell=κ(w) to

a uniformly random vector v′ in shell=κ′ (w)∩capÊτ(v) . Like in Section 3, we use γ( f )= ( f0, f1, . . . , fℓ( f ))

to identify the walk in G2(W) corresponding to the edge f ∈ EJ(W). We denote the edge ( f i, f i+1) with

γi( f ). We simplify the contribution from each path γ( f ) where f ∈ EJ(W) as follows:

∣∣∣∣∣ E
vi :i∈γ( f )\J(W)

[
∏

e∈γ( f )

(1[e ∈G]− pe)m(e) | κ
]∣∣∣∣∣

12If Dκ were not the expected degree matrix but rather the exact degree matrix of G, we would have a true transition

matrix here.
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=

∣∣∣∣∣ E
vi :i∈γ( f )\J(W)

[
∏

e∈γ( f )

(
1[e ∈G] ·

(
(1− pe)m(e) − (−pe)m(e)

)
+ (−pe)m(e)

)
|κ

]∣∣∣∣∣

=

∣∣∣∣∣
∑

T⊆γ( f )

E
vi :i∈γ( f )\J(W)

[
∏

e∈T

1[e ∈G] ·
(
(1− pe)m(e) − (−pe)m(e)

) ∏

e∈γ( f )\T

(−pe)m(e) |κ
]∣∣∣∣∣

É

∣∣∣∣∣
∏

e∈γ( f )

(
pe(1− pe)m(e) + (1− pe)(−pe)m(e)

)∣∣∣∣∣

+

∣∣∣∣∣
∏

e∈γ( f )

(
(1− pe)m(e) − (−pe)m(e)

)
·
ℓ( f )−2∏

i=0

pγi( f ) ·
(〈

ℓ( f )−2∏

i=0

Xκ fi
,κ fi+1

δv f0
, cappγℓ(f )−1(f )

(v fℓ(f )
)

〉
− pγℓ(f )−1( f )

)∣∣∣∣∣

(25)

Let SJ (W) ⊆ EJ(W) be the set of edges f such m(e) = 1 for some e ∈ γ( f ), and DJ(W) = EJ(W) \

SJ(W). For any f ∈ SJ (W) the first term in (25) vanishes, while for any f ∈ DJ(W)

∣∣∣∣∣
∏

e∈γ( f )

(
pe(1− pe)m(e) + (1− pe)(−pe)m(e)

)∣∣∣∣∣É
∏

e∈γ( f )

(
pe(1− pe)2 + (1− pe)p2

e

)
É

∏

e∈γ( f )

pe.

Therefore we can derive the following bound on the contribution from the 2-core graph.

(24)É E
vi

i∈J(W)

[
∏

f ∈DJ (W)

ℓ( f )−2∏

i=0

pγi( f ) ·
(∣∣∣∣∣

〈
ℓ( f )−2∏

i=0

Xκ fi
,κ fi+1

δv f0
, cappγℓ(f )−1(f )

(v fℓ(f )
)

〉
− pγℓ(f )−1( f )

∣∣∣∣∣+ pγℓ(f )−1( f )

)
·

∏

f ∈SJ (W)

ℓ( f )−2∏

i=0

pγi( f ) ·

∣∣∣∣∣

〈
ℓ( f )−2∏

i=0

Xκ fi
,κ fi+1

δv f0
, cappγℓ(f )−1(f )

(v fℓ(f )
)

〉
− pγℓ(f )−1( f )

∣∣∣∣∣ | κ
]

To bound the absolute value terms, we take an arbitrary spanning tree TJ(W) of GJ(W), and

bound the absolute value differently depending on whether f ∈ TJ(W) or not.

To bound this expectation, let TJ(W) be a spanning tree of GJ(W). For every edge not in TJ(W),

we apply a worst-case bound. To state this bound, we define C :=
√

1
2

log 1
q
·
(

1+τ
τ

)
and λ := τ

1+τ .

Claim 5.8. For every shell configuration κ ∈ [τ,1]m and non-tree edge f ∈ EJ(W) \ TJ (W) , we have

that ∣∣∣∣∣

〈
ℓ( f )−2∏

i=0

Xκ fi
,κ fi+1

δv f0
, cappγℓ(f )−1(f )

(v fℓ(f )
)

〉
− pγℓ(f )−1( f )

∣∣∣∣∣ÉC ·λℓ( f )−1

Proof. To prove the claim, we first need to understand the random variable

〈
ℓ( f )−2∏

i=0

Xκ fi
,κ fi+1

δv f0
, cappγℓ(f )−1(f )

(v fℓ(f )
)

〉
.

Recall that at time step i the operator Xκ fi
,κ fi+1

denotes the random step that takes a vector v f i
=

κ f i
·w+

√
1−κ2

f i
· zi and outputs v f i+1

:= κ f i+1
·w+

√
1−κ2

f i+1
· zi+1 where zi+1 is a uniformly random

unit vector orthogonal to w such that 〈
v f i

,v f i+1

〉
Ê τ.

This is equivalent to

κ f i
κ f i+1

+
√

(1−κ2
f i

)(1−κ2
f i+1

) · 〈zi, zi+1〉 Ê τ,
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which can then be rearranged as

〈zi, zi+1〉 Ê T
(
κ f i

κ f i+1

)
:=

τ−κ f i
κ f i+1√

(1−κ2
f i

)(1−κ2
f i+1

)
.

In particular, we are choosing zi+1 in the pγi( f )-cap of zi within the d −2 dimensional unit sphere

orthogonal to w. So the operator
∏ℓ( f )−2

i=0
Xκ fi

,κ fi+1
can be decomposed into its action in the span of w

and that in the space orthogonal to w. The action in the span of w conditioned on κ is deterministic.

Orthogonal to w, it is the operator
∏ℓ( f )−2

i=0
Ppγi (f )

on S
d−2. Thus the quantity we are interested in

understanding is the same as

〈
ℓ( f )−2∏

i=0

Ppγi (f )
δz0

, cappγℓ(f )−1
(zℓ( f ))

〉
.

Now, observe that:

∣∣∣∣∣

〈
ℓ( f )−2∏

i=0

Ppγi (f )
δz0

, cappγℓ(f )−1
(zℓ( f ))

〉
− pγℓ(f )−1

∣∣∣∣∣É dTV

(
ℓ( f )−2∏

i=0

Ppγi (f )
δz0

,ρ

)
.

Recall that pγi( f ) = ΦDip(d−1)

(
τκi ,κi+1

)
, which by Claim 5.6 is minimized when τκi ,κi+1

= τ
1+τ , which

means pγi( f ) Ê q. Thus, by Claim 4.11, Lemma 4.13, and Lemma 4.12, which make concrete the

intuition that applying Pq should only mix slower than applying Pq′ for q′ Ê q, we have:

∣∣∣∣∣

〈
ℓ( f )−2∏

i=0

Ppγi (f )
δz0

, cappγℓ(f )−1
(zℓ( f ))

〉
− pγℓ(f )−1

∣∣∣∣∣É dTV

(
P

ℓ( f )−1
q δz0

,ρ
)
= dTV

(
1

q
P

ℓ( f )−2
q capqz0,ρ

)
.

Then by Theorem 4.6, the above is

É

√
1

2
log

1

q
·
( τ

1+τ

)ℓ( f )−2
=

√
1

2
log

1

q
·
1+τ

τ
·
( τ

1+τ

)ℓ( f )−1
= C ·λ|γ( f )|−1,

which completes the proof.

Next we bound the contribution of a tree edge f ∈ TJ(W) using the following claim whose proof is

identical to that of Claim 3.7.

Claim 5.9. For every shell vector κ and tree edge f ∈ TJ(W) , we have that

E
vi

i∈J(W)

∏

f ∈TJ (W)

ℓ( f )−2∏

i=0

pγi( f ) ·
(∣∣∣∣∣

〈
ℓ( f )|−1∏

i=0

Xκ fi
,κ fi+1

δv f0
, cappγℓ(f )−1(f )

(v fℓ(f )
)

〉
− pγℓ(f )−1( f )

∣∣∣∣∣+ pγℓ(f )−1( f ) ·1[ f ∈ DJ(W)]

)

É
∏

f ∈TJ (W)

ℓ( f )−1∏

i=0

pγi( f ) ·
(
2Cλℓ( f )+1[ f ∈ DJ(W)]

)
.

Combining the two bounds for different edges in GJ(W) to obtain the simplified bound for (24):

(24)É
∏

f ∈TJ (W)

ℓ( f )−1∏

i=0

pγi( f )

(
2Cλℓ( f ) +1[ f ∈ DJ(W)]

)
·

·
∏

f ∈EJ (W)\TJ (W)

ℓ( f )−2∏

i=0

pγi( f ) ·
(
Cλℓ( f )−1+ pγℓ(f )−1( f )−11[ f ∈ DJ(W)]

)
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We now recall some notation from Section 3. We use e(W) to denote |E(W)|, sing(W) for the

number of singleton edges in G2(W), and exc(G) for |E(G)|− (|V (G)|−1), the number of edges G has

more than a tree. The relations between these variable are already shown in Observation 3.9 and

Claim 3.10. So here we directly apply these results to get that

(24)É
∏

e∈E2(W)

pe ·
∏

f ∈EJ (W)\TJ (W)

p−1
γℓ(f )−1( f ) ·λ

sing(W)−exc(W) · (3C)|EJ (W)|

É
∏

e∈E2(W)

pe ·
∏

f ∈EJ (W)\TJ (W)

p−1
γℓ(f )−1( f ) ·λ

sing(W)−exc(W) · (3C)3exc(W) by Observation 3.9

Therefore

(23)É
∏

e∈E1(W)

E
[
(1[e ∈G]− pe)m(e) | κ

]
·

∏

e∈E2 (W)

pe ·
∏

f ∈EJ (W)\TJ (W)

p−1
γℓ(f )−1( f ) ·λ

sing(W)−exc(W) · (3C)3exc(W)

É
∏

e∈E1(W)

pe ·
∏

e∈E2(W)

pe ·
∏

f ∈EJ (W)\TJ (W)

p−1
γℓ(f )−1( f ) ·λ

sing(W)−exc(W) · (3C)3exc(W)

É
∏

e∈E(W)

pe ·
∏

f ∈EJ (W)\TJ (W)

p−1
γℓ(f )−1( f ) ·λ

sing(W)

(
27C3

λ

)exc(W)

(26)

Before finally bounding the trace power, we make the following observations.

Observation 5.10. As a consequence of Claim 5.6 for all i ∈ [m], the expected degree of vertex i

satisfies

Dκ[i, i]=E[degG(i) | κ]Ê (m−1) · q

We define Strucℓ to be the set of distinct unlabelled walks of length ℓ. Then as a corollary of

Claim 3.10, we have

Corollary 5.11. The number of unlabelled walks U ∈ Strucℓ such that e(U)= a, s(U)= b, and exc(U)=
c is at most:

ℓ3(ℓ−b) ·ℓ2c.

The result follows by observing that since U is unlabelled, we can remove the ma−c+1 term that

counts the number of distinct labelings in Claim 3.10.

For an unlabeled walk U and labeled walk W, we say W ∼U if W is a labeling of U in [m].

Claim 5.12. For any unlabelled walk U we have that

∑

W∼U

dW (κ)
∏

e∈E(W)

pe ·
∏

f ∈EJ (W)\TJ (W)

p−1
γℓ(f )−1( f ) É (m · q)−exc(U)− ℓ−s(U)

2

Proof. For each W ∼U we use i1, . . . , ia ∈ [m] to denote the label of each vertex in W in the order of

visit. Then we construct the canonical spanning tree T(W) by adding each directed edge in the order

of W as long as the edge goes to an unvisited vertex. Use Par(i j) to denote the parent of vertex i j.

Then the j-th edge of T(W) is (Par(i j+1), i j+1), and use T(W)( j) to denote the tree consisting of the

first j edges of T(W). Then i j+1 is always a leaf in T(W)( j).

T(W) gives rise to a canonical spanning tree TJ(W) in the contracted graph GJ(W): an edge f is

in TJ(W) if and only if every edge in the path γ( f ) is in T(W). From this fact we can deduce that

T(W)= E(W)\
{
γℓ( f )−1( f ) : f ∈ EJ(W)\ TJ (W)

}
.
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Therefore, using Observation 5.10 we can take a loose upper bound on the contribution of edges

outside of T(W) and write

∑

W∼U

dW (κ)
∏

e∈E(W)

pe ·
∏

f ∈EJ (W)\TJ (W)

p−1
γℓ(f )−1( f )

É
∑

W∼U

((m−1) · q)−ℓ+(|V (U)|−1)
∏

(i, j)∈T(W)

p i, j

Dκ[i, i]

É ((m−1) · q)−ℓ+(|V (U)|−1)
∑

i1,...,ia∈[m]

a∏

j=2

pPar(i j ),i j

Dκ[Par(i j),Par(i j)]
(27)

where a = |V (U)|. Next we show by induction on a that

∑

i1,...,ia

a∏

j=2

p(Par(i j ),i j )

Dκ[Par(i j),Par(i j)]
= 1

The base case a = 1 is true by definition. Suppose this is true for a−1. Then:

∑

i1,...,ia

a∏

j=2

p(Par(i j ),i j )

Dκ[Par(i j),Par(i j)]
=

∑

i1,...,ia−1

a−1∏

j=2

p(Par(i j ),i j )

Dκ[Par(i j),Par(i j)]
·

m∑

ia=1

p(Par(ia),ia)

Dκ[Par(ia),Par(ia)]

By definition
∑

ia

p(Par(ia ),ia )

Dκ[Par(ia),Par(ia )]
= 1, so we have:

=
∑

i1,...,ia−1

a−1∏

j=2

p(Par(i j ),i j )

Dκ[Par(ia),Par(ia)]
·1= 1

Finally, observe that ℓ− (|V (U)|−1) Ê exc(U)+ ℓ−s(U)
2

is at least the number of steps that use a previ-

ously walked-on edge. The way to see this is to observe that the quantity ℓ− (|V (U)|−1) counts the

number of steps to a previously visited vertex. Such a step can either (1) use an excess edge for the

first time, of which there are exc(U) steps, or (2) use a previously walked-on edge, which must be at

least half the steps that do not use a singleton edge, i.e. at least ℓ−s(U)
2

steps. Thus we conclude that

(27)É ((m−1) · q)−ℓ+(|V (U)|−1) É ((m−1) · q)−exc(U)− ℓ−s(U)
2 .

Now we are finally already to bound the expected trace power. Plugging (26) into (22) gives:

(22)=
∑

U∈Strucℓ

∑

W∼U

dW (κ)
∏

e∈E(W)

pe ·
∏

f ∈EJ (W)\TJ (W)

p−1
γℓ(f )−1( f ) ·λ

sing(W)

(
27C3

λ

)exc(W)

É
∑

U∈Strucℓ
((m−1) · q)−exc(U)− ℓ−s(U)

2 ·λs(U)

(
27C3

λ

)exc(U)

by Claim 5.12

=
ℓ∑

a=1

ℓ∑

b=1

ℓ∑

c=1

∑

U∈Strucℓ
e(U)=a, s(U)=b,exc(U)=c

((m−1) · q)−
ℓ−b

2 ·λb

(
27C3

λq(m−1)

)c

=
ℓ∑

a=1

ℓ∑

b=1

ℓ∑

c=1

((m−1) · q)−
ℓ−b

2 ·λb

(
27C3

λq(m−1)

)c

·ℓ2(ℓ−b) ·ℓ2c by Claim 5.11

= ℓ
ℓ∑

b=1

ℓ∑

c=1

(
ℓ2

√
(m−1) · q

)ℓ−b

·λb

(
27C3ℓ2

λq(m−1)

)c

= ℓ3 max

(
1,

(
27C3ℓ2

λq(m−1)

)ℓ)
·max

(
λℓ,

(
ℓ2

√
(m−1) · q

)ℓ)
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By choosing ℓ= log2 m, we can conclude that with probability at least 1−m−γ,

∥∥AG −E[AG |κ]
∥∥É (1+ o(1)) ·

(
1+

27C3 log4 m

λqm

)
·max

{
λ,

log4 m
p

qm

}

Since qm ≫ log8 m · log3/2 1
q
·
(

1+τ
τ

)3
, we have:

∥∥AG −E[AG |κ]
∥∥É (1+ o(1)) ·λ.

6 The second eigenvalue of the shell walk

The goal of this section is to prove Lemma 5.2, and in particular bound
∥∥E[AG |κ]−Rκ

∥∥ where

κ∼ (Dip(d)Êτ)⊗m is a configuration of m shells, and we have conditioned on κi = 〈w,vi〉 for all i ∈ [m].

To make the matrix more amenable to analysis via the coupling-based techniques we use here, we

first observe that the spectral norm we are interested in bounding is equal to the largest eigenvalue

of E[Dκ
−1AG |κ]−~1π⊤ where π := Dκ

tr(Dκ)
~1 is the stationary distribution of the Markov chain described

by the transition matrix E[Dκ
−1AG |κ]. Indeed:

∥∥E[AG |κ]−Rκ

∥∥= |λ|max

(
E[AG |κ]−Rκ

)
= |λ|max

(
E[Dκ

−1AG |κ]−1π⊤)

where the first equality uses symmetry of the matrix and the second equality uses the fact that the

spectra of M and Dκ
−1/2MDκ

1/2 are identical. For convenience, let Q =E[AG |κ] and let Q = Dκ
−1Q.

The following main result of this section implies Lemma 5.2.

Lemma 6.1. There exists a constant C > 0 such that for any d Ê C logm, any threshold τ ∈ (0,1) such

that q :=ΦDip(d)

(
τ

1+τ
)
≫ log8 m/m, and any constant γ> 0, with probability at least 1− o(m−γ) over the

shells κ∼ (Dip(d)Êτ)⊗m,

|λ|max

(
Q−~1π⊤

)
ÉO



√

log2 d

d


.

In service of proving Lemma 6.1, we show:

Lemma 6.2. There exists a constant C > 0 such that for any d Ê C logm, any threshold τ ∈ (0,1)

such that qm ≫ log8 m, and any constant γ > 0, with probability at least 1− o(m−γ) over the shells

κ∼ (Dip(d)Êτ)⊗m,

max
i, j∈[n]

∥∥∥∥
(
Q2

)
i,∗

−
(
Q2

)
j,∗

∥∥∥∥
1

ÉO

(
log2 d

d

)
,

where
(
Q2

)
i,∗

denotes the i-th row of the matrix Q2.

We show how to prove Lemma 6.1 using Lemma 6.2 and then dedicate the rest of the section to

proving Lemma 6.2.

Proof of Lemma 6.1. First, observe that |λ|max

(
Q−~1π⊤

)
=

√
|λ|max

(
Q2 −~1π⊤

)
. Via the row sum

bound for the largest magnitude eigenvalue of a matrix (Claim 2.3), Lemma 6.2 and the fact that

π is the stationary distribution of Q:

|λ|max

(
Q2 −~1π⊤

)
Émax

i∈[n]

∥∥∥∥
(
Q2

)
i,∗

−π
⊤
∥∥∥∥

1
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=max
i∈[n]

∥∥∥∥∥
(
Q2

)
i,∗

−
∑

j∈[n]

π j

(
Q2

)
j,∗

∥∥∥∥∥
1

=max
i∈[n]

∥∥∥∥∥
∑

j∈[n]

π j

((
Q2

)
i,∗

−
(
Q2

)
j,∗

)∥∥∥∥∥
1

É max
i, j∈[n]

∥∥∥∥
(
Q2

)
i,∗

−
(
Q2

)
j,∗

∥∥∥∥
1

.

6.1 Coupling for the shell walk

In this section we give the proof of Lemma 6.2 assuming a few key lemmas. The proofs for the key

lemmas are deferred to the next section.

6.1.1 A high-probability condition for κ

To simplify the upcoming computations for Lemma 6.2, we will condition on the following high-

probability event Eγ over the sample space of the shells κ:

Definition 6.3. Let Eγ be the event that for all m shells κi ∈κ in the link, κi É η, where

η= τ
(
m−2γ−1 ·ΦDip(d)(τ), d

)
.

Note that the outermost τ(·) refers to the threshold function, rather than the value of the threshold

such that ΦDip(d)(τ)= p.

Claim 6.4. The event Eγ occurs with probability at least 1−m−2γ.

Proof. By definition, for any shell κi : Prκi∼Dip(d)|Êτ[κi Ê η] É m−2γ−1. Our conclusion follows from

taking a union bound over all m shells.

The conditioning on Eγ can be folded into high-probability guarantee over κ in Lemma 6.2. Thus,

for the remainder of the section, we can assume that κ obeys event Eγ. This will be especially

relevant in the analysis of the outlier shells (Section 6.2.2).

Claim 6.5. If d Ê C logm for some constant C > 0, then ηÉ 1−εγ, where εγ > 0 is a constant depending

only on γ.

Proof. Since τ is a constant bounded away from 1, and d =Ω(logm), by the lower bound in Lemma 2.8,

the quantity m−2γ−1 ·ΦDip(d)(τ) is at least exp(−Cγd) for some constant Cγ depending on γ. By the

upper bound in Lemma 2.8, there is a constant εγ > 0 such that ΦDip(d)(1− εγ) É exp(−Cγd). Since

ΦDip(d) is a decreasing function, ηÉ 1−εγ.

6.1.2 “Typical” and “outlier” shells

In the proof of Lemma 6.2, we analyze the contributions of “typical” and “outlier” shells separately.

Definition 6.6. We say that a shell κi is “typical” if κi ∈ [τ,τ(1+α)], for α= 36logd

τ2(d−3)(1−η)
.

Remark 6.7. α is chosen so that Q, when restricted to typical rows and columns, will resemble a

rank-1 matrix. For our eventual choices of d and m, the event that every shell is typical does not

occur with high probability; we will inevitably need to deal with outlier shells.
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6.1.3 Total variation bound from similarity of typical rows and scarcity of outlier columns

To obtain the desired row-sum bound in Lemma 6.2, we will prove the following two lemmas about

the matrix Q. The first shows that outlier columns do not contribute much to the total row sum of

any row:

Lemma 6.8. For any d Ê C logm for some constant C > 0 and any τ ∈ [0,1] such that qm ≫ log8 m, if

κi É η,
m∑

k=1

Q
i,k

·1[k outlier]ÉO

(
1

d

)

with probability 1− o(m− logm).

The second shows that typical rows are similar at indices corresponding to typical columns:

Lemma 6.9. For any dimension d and any threshold τ ∈ (0,1), if κi, κ j correspond to typical shells,

then for all ℓ such that κℓ is typical,

Q
i,ℓ

∈
(
1±O

(
log2 d

d

))
Q

j,ℓ

These lemmas are both proven by direct calculation, and we leave their proofs to Section 6.2.2

and Section 6.2.3 respectively.

To illustrate these statements, we provide a schematic of the matrix Q below, organized into its

typical and outlier rows and columns. Lemma 6.9 states that the sub-rows in area (I) of the matrix

are all nearly equal to each other. Lemma 6.8 says that the sum of its entries in area (II) or area (IV)

is a O
(

1
d

)
fraction of the total row sum.

(I) (II)

(III) (IV)







 typical

{outlier





typical

} outlier

One straightforward corollary of Lemma 6.9 and Lemma 6.8 is that the ℓ1 norms of the differ-

ences between any two typical rows of Q is at most O
(

log2 d
d

)
. More formally:

Corollary 6.10. For any d Ê C logm for some constant C > 0 and any threshold 0 < τ É 1 such that

qm ≫ log8 m, let i, j be rows of Q corresponding to typical shells κi, κ j. Then:

∥∥∥∥
(
Q

)
i,∗

−
(
Q

)
j,∗

∥∥∥∥
1

ÉO

(
log2 d

d

)

with probability 1− o(m− logm).

Proof. We split

∥∥∥∥
(
Q

)
i,∗

−
(
Q

)
j,∗

∥∥∥∥
1

based on its contributions from typical columns and outlier columns.

∥∥∥∥
(
Q

)
i,∗

−
(
Q

)
j,∗

∥∥∥∥
1

=
∑

ℓ typical

∣∣∣Q
i,ℓ

−Q
j,ℓ

∣∣∣+
∑

ℓ outlier

∣∣∣Q
i,ℓ

−Q
j,ℓ

∣∣∣
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Lemma 6.8 and the triangle inequality tell us that with probability 1− o(m− logm):

∑

ℓ outlier

∣∣∣Q
i,ℓ

−Q
j,ℓ

∣∣∣É
∑

ℓ outlier

∣∣∣Q
i,ℓ

∣∣∣+
∑

ℓ outlier

∣∣∣Q
j,ℓ

∣∣∣ÉO

(
1

d

)

Lemma 6.9 tells us that for some constant C > 0:

∑

ℓ typical

∣∣∣Q
i,ℓ

−Q
j,ℓ

∣∣∣É
∑

ℓ typical

[
1+

(
C log2 d

d
−1

)]
Q

j,ℓ

=
C log2 d

d

∑

ℓ typical

Q
j,ℓ

É
C log2 d

d

Combining the bounds on
∑

ℓ typical

∣∣∣Q
i,ℓ

−Q
j,ℓ

∣∣∣ and
∑

ℓ outlier

∣∣∣Q
i,ℓ

−Q
j,ℓ

∣∣∣ gives the desired result.

We can furthermore use Lemma 6.8, Corollary 6.10, and a coupling argument, to prove Lemma 6.2.

Proof of Lemma 6.2. We may assume event Eγ (that all shells κi É η), and the outcomes of Lemma 6.8

and Corollary 6.10. The union of these three events occur with probability 1− o(m−γ+m− logm).

Let (X (t)
a )tÊ0 be the trajectory of Markov chain Q starting at vertex a. For any pair of vertices

i, j ∈ [n], we couple X (2)
i

and X (2)
j

such that they are equal with probability 1−O
(

log2 d

d

)
, and so by

Fact 2.6: ∥∥∥pmf
(
X

(2)
i

)
−pmf

(
X

(2)
j

)∥∥∥
TV

=
1

2

∥∥∥∥
(
Q2

)
i,∗

−
(
Q2

)
j,∗

∥∥∥∥
1

ÉO

(
log2 d

d

)

from which the desired result follows.

We now exhibit such a coupling between X
(2)
i

and X
(2)
j

. Observe that X
(1)
i

and X
(1)
j

are distributed

according to
(
Q

)
i,∗

and
(
Q

)
j,∗

. When κi and κ j are both typical shells, we can couple X (1)
i

and X (1)
j

such that they are equal with probability 1−O
(

log2 d

d

)
using Corollary 6.10 and Fact 2.6. As a result

X
(2)
i

and X
(2)
j

can be coupled so that they agree with probability 1−O
(

log2 d
d

)
. When either κi or κ j

is an outlier shell, though X (1)
i

and X (1)
j

may have TV distance greater than O
(

log2 d

d

)
, by Lemma 6.8

for both random variables 1−O
(

1
d

)
-fraction of the probability mass is over the typical shells. Due to

that, we can couple X (2)
i

and X (2)
j

with probability
(
1−O

(
1
d

))
·
(
1−O

(
log2 d

d

))
by Lemma 6.8. Thereby

we complete the proof.

6.2 Relating typical rows and bounding outlier columns

Our next step is to prove Lemma 6.8 and Lemma 6.9. Throughout this section, instead of working

with Q, we will work with Q = E[AG | κ]; it will be simpler to operate on the entries of Q and later

relate them to Q. We first characterize the entries of Q using the Dip(d−1) distribution.

6.2.1 The conditional expected adjacency matrix

For each pair of vertices i, j ∈ [m], we have

Q i, j = qκi
(κ j) := Pr

vi ,v j∼ρw

[〈
vi,v j

〉
Ê τ | 〈vi,w〉 = κi,〈v j,w〉 = κ j

]
.

Though qx(y) is symmetric in its inputs x, y, we choose this notation because we will often work with

the function qx(·), where the input is any value in [τ,1].
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Claim 6.11. The quantity qx(y) is exactly a tail probability of the Dip(d−1) distribution:

qx(y)=ΦDip(d−1)(T(x, y))

Proof. Conditional on 〈vi,w〉 = x and
〈
v j,w

〉
= y, vi and v j are distributed as vi = x ·w+

p
1− x2 ·ui

and v j = y ·w+
√

1− y2 ·u j, for ui, u j uniformly random unit vectors orthogonal to w. Now, observe

that the condition
〈
vi,v j

〉
Ê τ is equivalent to

〈
ui, u j

〉
Ê τ−xyp

(1−x2)(1−y2)
, and thus the desired statement

follows since ui and u j are sampled from a space isometric to S
d−2.

6.2.2 The contribution of outlier columns

The goal of this section is to prove Lemma 6.8.

Lemma (Restatement of Lemma 6.8). For any d Ê C logm for some constant C > 0 and any τ ∈ [0,1]

such that qm ≫ log8 m, if κi É η,

m∑

k=1

Q
i,k

·1[k outlier]ÉO

(
1

d

)

with probability 1− o(m− logm).

The lemma statement is equivalent to the following about Q: for all i ∈ [m],

∑m
k=1

Q i,k ·1[k outlier]
∑m

k=1
Q i,k

ÉO

(
1

d

)

with probability 1− o(m− logm). Recalling that we use Z to denote the normalizing constant from

Section 2.3, we can define:

N(x) :=
∫1

τ(1+α)
qx(y) ·Z−1(1− y2)(d−3)/2d y= Z−1

∫1

τ(1+α)
(1− y2)(d−3)/2 ·ΦDip(d−1) (T(x, y)) d y

D(x) := Z−1

∫1

τ
qx(y) · (1− y2)(d−3)/2d y= Z−1

∫1

τ
(1− y2)(d−3)/2 ·ΦDip(d−1) (T(x, y)) d y

By our definitions of N(x) and D(x), and recalling that we condition on Eγ (Definition 6.3) throughout

this section,

N(κi)= E
κℓ

[Q i,ℓ ·1[ℓ outlier]], D(κi)= E
κℓ

[Q i,ℓ]

The Z−1(1− y2)(d−3)/2 expression in each integrand comes from the probability density over shells.

First, when κi É η, we establish that the ratio of the expected sum of outlier Q i,k and typical Q i,k

is of the desired magnitude of O
(

1
d

)
.

Lemma 6.12. For any d Ê C logm for some constant C > 0, any constant τ∈ [0,1], and any xÉ η,

N(x)

D(x)
ÉO

(
1

d

)
.

The proof is by computation and is provided in Appendix B. We are now ready to prove Lemma 6.8.
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Proof of Lemma 6.8. For convenience, we use N and D as shorthand for N(κi) and D(κi). We compute

a high probability lower bound for the numerator
∑m

k=1
Q i,k ·1[k outlier] and a high probability upper

bound for the denominator
∑m

k=1
Q i,k.

Concentration of the numerator: We first show that
∑m

k=1
Q i,k ·1[k outlier] concentrates around

Nm. First, each Q i,k É 1. Then, Var(Q i,k)ÉE[Q2
i,k

·1[k outlier]]ÉE[Q i,k ·1[k outlier]]= N. Applying

Bernstein’s Inequality, we obtain:

Pr

[
m∑

k=1

Q i,k ·1[k outlier]Ê Nm+
(p

Nm+1
)
log2 m

]
É exp

(
−

(p
Nm+1

)2
log4 m

1
2
·Nm+ 1

3
·
(p

Nm+1
)
log2 m

)
É m− logm

Concentration of the denominator: We next show that
∑m

k=1
Q i,k concentrates around Dm. Using

a similar bound on variance as above, and applying Bernstein’s inequality again:

Pr

[
m∑

k=1

Q i,k É Dm−
(p

Dm+1
)
logm

]
É exp

(
−

(p
Dm+1

)2
log2 m

1
2
·Dm+ 1

3
·
(p

Dm+1
)
log m

)
É m− logm

Thus, with probability greater that 1−2m− logm, the ratio
∑n

k=1
Q i,k ·1[k outlier]∑m

k=1
Q i,k

is at most

Nm+
(p

Nm+1
)
log2 m

Dm−
(p

Dm+1
)
logm

We can upper bound this by ÉO
(

1
d

)
, as Lemma 6.12 tells us N

D
ÉO

(
1
d

)
, and since Dm Ê qm ≫ log8 m

the first terms in the ratio dominate.

6.2.3 Relating typical rows

Our goal for this section is to prove:

Lemma (Restatement of Lemma 6.9). For any dimension d and any threshold τ ∈ (0,1), if κi , κ j

correspond to typical shells, then for all ℓ such that κℓ is typical,

Q
i,ℓ

∈
(
1±O

(
log2 d

d

))
Q

j,ℓ

We will translate Lemma 6.9 into a statement about Q first. Let Q i,∗ and Q j,∗ be rows of Q

corresponding to typical shells κi,κ j. We will prove that Q i,∗ and Q j,∗, when restricted to typical

columns, are nearly constant scalings of each other. Formally, we will prove:

Lemma 6.13. For any dimension d and any threshold τ ∈ (0,1), let κi ,κ j,κℓ be typical shells. Then,

qκi
(κℓ)

qκ j
(κℓ)

·
(

qκi
(τ)

qκ j
(τ)

)−1

∈ 1±O

(
log2 d

d

)

In other words, this establishes that for any typical shells κi ,κ j,κℓ,

qκi
(κℓ)

qκ j
(κℓ)

≈
qκi

(τ)

qκ j
(τ)

,

where the quantity on the right is a constant c i j depending only on κi and κ j (not κℓ).
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Proof of Lemma 6.9 using Lemma 6.13. By the definition of Q,

Q
i,ℓ

=
Q i,ℓ∑m

k=1
Q i,k

, Q
j,ℓ

=
Q j,ℓ∑m

k=1
Q j,k

It suffices to prove that
Q

iℓ

Q
j,ℓ

is close to 1. Expanding
Q

iℓ

Q
j,ℓ

, we can upper bound:

Q
i,ℓ

Q
j,ℓ

=
Q i,ℓ∑m

k=1
Q i,k

·
∑m

k=1
Q j,k

Q j,ℓ

=
Q i,ℓ

Q j,ℓ
·
∑m

k=1
Q j,k∑m

k=1
Q i,k

É
(
1+

C log2 d

d

)(
qκi

(τ)

qκ j
(τ)

)
·
∑

k typical Q j,k +
∑

k outlier Q j,k∑
k typical Q i,k +

∑
k outlier Q i,k

É
(
1+

C log2 d

d

)(
qκi

(τ)

qκ j
(τ)

)
·

(
1+ C′

d

)∑
k typical Q j,k

∑
k typical Q i,k

É
(
1+

C log2 d

d

)(
qκi

(τ)

qκ j
(τ)

)
·

(
1+ C′

d

)(
1+ C log2 d

d

)∑
k typical

(
qκ j

(τ)

qκi
(τ)

)
·Q i,k

∑
k typical Q i,k

É 1+
C′′ log2 d

d

The first inequality uses Lemma 6.13 to bound
Q i,ℓ

Q j,ℓ
. The second inequality uses the fact that the

outlier entries of Q i,∗ and Q j,∗ only occupy an O
(

1
d

)
fraction of the ℓ1 norm of each row (Lemma 6.8).

The third inequality again comes from an application of Lemma 6.13 to relate Q i,k to Q j,k when k is

typical. The lower bound follows analogously.

Proof of Lemma 6.13. By definition:

qκi
(κℓ)

qκ j
(κℓ)

·
(

qκi
(τ)

qκ j
(τ)

)−1

=
ΦDip(d−1) (T(κi,κℓ))

ΦDip(d−1)

(
T(κ j,κℓ)

) ·
ΦDip(d−1)

(
T(κ j,τ)

)

ΦDip(d−1) (T(κi,τ))
(28)

Since κi ,κ j,κℓ ∈ [τ,τ(1+α)], by Claim 5.6, all terms of the form T(x, y) in the above are lower bounded

by T(τ(1+α),τ(1+α)), which is lower bounded by a constant for large enough d. Thus, by Lemma 2.8:

(28)=
(
1±O

(
logd

d

))
·
T(κ j,κℓ) ·T(κi ,τ)

T(κi,κℓ) ·T(κ j ,τ)
·
(

A

B

)(d−1)/2

where A :=
(
1−T(κi ,κℓ)2

)(
1−T(κ j,τ)2

)
and B :=

(
1−T(κ j,κℓ)2

)(
1−T(κi ,τ)2

)
. We show:

∣∣∣∣
T(κ j,κℓ) ·T(κi ,τ)

T(κi,κℓ) ·T(κ j ,τ)
−1

∣∣∣∣ÉO(α2) (29)

∣∣∣∣
A

B
−1

∣∣∣∣ÉO(α2) (30)

where (29) is proved in Claim C.1 and (30) is proved in Claim C.2. Consequently,

qa(x)

qb(x)
·

qb(τ)

qa(τ)
=

(
1±O

(
log d

d

))
·
(
1±O(α2)

)
·
(
1±O(dα2)

)

The term of order dα2 dominates, and because α=O(
log d

d
) we conclude the desired result.
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7 2-dimensional expansion of the random geometric complex

In this section we prove Theorem 1.6.

Theorem 7.1. For every 0 < ε < 1, 0 < η < 2ε and d = η log4/3 n, if H ∼ Geo(2)
d

(
n, n−1+ε), then every

link of H is a
(

1
2
−δ

)
-expander, and its 1-skeleton is a

(
1− 4δ

1+2δ

)
-expander with high probability where

δ= 1
2
·

1−
√

1−exp(−2log 4
3
·(1−ε)/η)

1+
√

1−exp(−2log 4
3
·(1−ε)/η)

− on(1).

One of the ingredients in the proof of Theorem 7.1 is the spectral expansion of random geometric

graphs, which is a corollary of Theorem 1.10 and Corollary 4.7:

Theorem (Restatement of Theorem 1.7). Let G ∼Geod(n, p) and τ := τ(p, d). Then with high proba-

bility G is a µ-expander, where

µ := (1+ o(1)) ·max

{
(1+ odτ2 (1)) ·τ,

log4 n
p

pn

}
,

where odτ2(1) denotes a function that goes to 0 as d ·τ(p, d)2 →∞.

The second ingredient is a bound on the second eigenvalue of the links, proved in Section 5:

Theorem (Restatement of Theorem 5.1). Let 0 < τ < 1 be a constant. Let v1, . . . ,vm ∼ capÊτ(w) and

G := ggτ(v1, . . .,vm). Then for q :=ΦDip(d)

(
τ

1+τ
)
, suppose qm ≫ log8 m · log3/2 1

q
·
(

1+τ
τ

)3
and d Ê C · log m

for any constant C > 0, then for any constant γ> 0,

Pr
[
|λ|2

(
ÂG

)
>

τ

1+τ
+ od,m(1)

]
ÉO

(
m−γ).

Proof of Theorem 7.1. To show that the links expand, we apply Theorem 5.1 in combination with a

union bound over all links. The second eigenvalue bound for the 1-skeleton is then proved using

Theorem 1.3, the trickling-down theorem. Let p = n−1+ε, d = η log4/3 n and τ= τ(p, d).

Let G := ggτ(v1, . . .,vn) to denote the geometric graph of the collection of vectors used to generate

H. The number of vertices that fall in the neighborhood of a vertex v within G is mv ∼Binom(n, p),

and hence mv Ê m := pn−2
√

pn logn except with probability o(1/n). For the rest of the proof, we

condition on the event that mv Ê m for all v, which happens with probability 1− o(1) by the union

bound.

The link Hv of a vertex v is obtained by taking Gv, the subgraph of G induced by the neighborhood

of v, and then removing the isolate vertices. Note that the isolated vertices need to be removed since

when sampling a random complex, we remove all edges that are not in any triangles. Our goal is to

control the second eigenvalue of all the links in H, and we do so by showing bounds on the second

eigenvalue of Gv for all v. The second eigenvalue bounds show that with high probability, for all v,

the graph Gv is connected, and hence has no isolated vertices. Consequently, Hv is in fact equal to

Gv and the second eigenvalue bounds port over.

As a first step, we show that Gv satisfies the hypothesis of Theorem 5.1. In particular, we show

for q :=ΦDip(d−1)

(
τ

1+τ
)

q ·mv ≫ log4 mv · log2 1

q
·
(
1+τ

τ

)4

. (31)
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Using Lemma 2.8 and the fact that the tail function of a probability distribution is monotone de-

creasing, we can lower bound q:

q ÊΦDip(d−1)

(
1

2

)
Ê

2Zd−1

d−2
·
(

3

4

)(d−2)/2

·
(
1−

16logd

d−1

)
ÊΩ

(
1
p

d

)
·n−η/2,

where the first inequality holds since τ ∈ (0,1], and the last inequality holds by definitions of d and

Zd. We now lower bound τ by a constant. By Lemma 2.8:

ΦDip(d)




√√√√1−exp

(
−

(1−ε) log 4
3

η

)
ÊΩ

(
1
p

d

)
·pp ·

(
1−O

(
logd

d

))
Ê p =ΦDip(d)(τ),

where the first inequality holds by definition of Zd. Since ΦDip(d) is a decreasing function,

τÊ

√√√√1−exp

(
−

(1−ε) log 4
3

η

)
.

Consequently:

log4 mv · log2 1

q
·
(
1+τ

τ

)4

É log6 n.

On the other hand, qmv ÊΩ

(
1p
d

)
· nε−η/2 ≫ log6 n, which establishes (31). By (31) and Theorem 5.1

with γ= 2/ε, with probability at least 1−O(1/n2):

|λ|2
(
ÂGv

)
É

τ

1+τ
+ on(1).

By the union bound over all vertices, with probability 1−O(1/n):

|λ|2
(
ÂGv

)
É

τ

1+τ
+ on(1) ∀v ∈ [n].

Henceforth, we condition on the above. Since τ
1+τ < 1, for all v ∈ [n], each Gv is connected and has no

isolated vertices and hence Hv =Gv. Consequently

|λ|2
(
ÂHv

)
É

τ

1+τ
+ on(1) ∀v ∈ [n].

Assuming the 1-skeleton H(1) is connected, by the trickling-down theorem (Theorem 1.3) it satisfies:

|λ|2
(
ÂH(1)

)
É

τ
1+τ + on(1)

1− τ
1+τ − on(1)

= τ+ on(1).

It remains to bound τ, τ/(1+τ) and show H(1) is connected. By Lemma 2.8, the following inequality

must be satisfied:

p É
Zd

τ(d−1)
·
(
1−τ2

)(d−1)/2
.

Since the right hand side of the above is a decreasing function of τ and plugging in

√
1−exp

(
−2(1−ε) log 4

3

η

)

yields a value smaller than p, we know:

τÉ

√√√√1−exp

(
−

2(1−ε) log 4
3

η

)
= 1−

4δ

1+2δ
. (32)
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The function τ/(1+τ) is an increasing function and hence:

τ

1+τ
É

√
1−exp

(
−2(1−ε) log 4

3

η

)

1+

√
1−exp

(
−2(1−ε) log 4

3

η

) + on(1)=
1

2
−δ.

Finally, to show H(1) is connected, it suffices to illustrate H̃(1), a reweighted version of H(1), whose

normalized adjacency matrix has a spectral gap. We use G as our reweighting of H(1), which is valid

since all edges in G occur in H(1) with probability 1−on(1). Indeed, for every vertex v and neighbor w

the vertex w has some neighbor w′ within Gv, which means {v,w,w′} is a triangle in H causing {v,w}

to appear in H(1). By our choice of parameters, the lower and upper bounds on τ shown in (7) and

(32) respectively, and Theorem 1.7, we know |λ|2(AG)< τ+on(1)< 1, which implies H(1) is connected,

which completes our proof.

8 Tightness of the tricking-down theorem

In this section we will show that the trickle-down theorem is tight:

Proposition (Restatement of Proposition 1.8). For each λ ∈ (0, 1
2
] and η> 0 there exists a 2-dimensional

expander in which all vertex link eigenvalues are at most λ for which the 1-skeleton is connected with

eigenvalue at least λ
1−λ −η.

We prove the proposition by showing that a random geometric graph’s adjacency matrix (when

weighted in a regular way) has second eigenvalue at least τ, and then prove that the random geo-

metric complex indeed satisfies that regularity condition.

Lemma 8.1. Let G ∼Geod(n, p) generated by vectors v1, . . . ,vn, and let W be the transition matrix of

any time-reversible Markov chain on G with stationary distribution π. Then with high probability

λ2(W)Ê τ− on(1)−O(dTV (π,Un)2) where Un is the uniform distribution on [n].

Proof. When dTV (π,Un)Ê 0.1, the statement is vacuously true. Thus, we assume dTV (π,Un)< 0.1 for

the rest of this proof. We see that:

1−λ2(W) = min
f :V (G)→R

d

f non-constant

Ex∼W y‖ f (x)− f (y)‖2

Ex,y∼π‖ f (x)− f (y)‖2
É

Ex∼W y

∥∥vx −vy

∥∥2

Ex,y∼π
∥∥vx −vy

∥∥2
É

2(1−τ(p, d))

Ex,y∼π
∥∥vx −vy

∥∥2
(33)

where the last inequality uses that for adjacent x, y,
〈
vx,vy

〉
Ê τ(p, d). To lower bound the denomina-

tor, observe:

E
x,y∼π

∥∥vx −vy

∥∥2 =
∑

x,y∈[n]

π(x)π(y)
(
2−2

〈
vx,vy

〉)
= 2

(
1−

∑

x,y∈[n]

〈
π(x)vx,π(y)vy

〉
)

= 2

(
1−

∥∥∥∥∥
∑

x∈[n]

π(x)vx

∥∥∥∥∥

2)
= 2

(
1−

∥∥∥∥∥
∑

x∈[n]

1

n
vx +

∑

x∈[n]

(
π(x)−

1

n

)
vx

∥∥∥∥∥

2)

Ê 2

(
1−

∥∥∥∥∥
1

n

∑

x∈[n]

vx

∥∥∥∥∥

2

−4

∥∥∥∥∥
1

n

∑

x∈[n]

vx

∥∥∥∥∥ ·dTV (π,Un)−4dTV (π,Un)2

)
.

49



By standard concentration arguments,
∥∥ 1

n

∑
x∈[n] vx

∥∥ is on(1) with high probability. Plugging in the

lower bound into (33) tells us:

1−λ2(W) É 1−τ(p, d)+ on(1)+O
(
dTV (π,Un)2

)
,

which can be rearranged into the desired inequality.

Armed with this lemma we can prove Proposition 1.8.

Proof of Proposition 1.8. Let τ= λ
1−λ , which is in (0,1) for λ ∈

(
0, 1

2

)
. Using the bounds from Lemma 2.8

we can choose n and d =Θ(log n) such that for p =ΦDip(d)(τ), we have
np2

2
≫ polylogn.

Let H ∼ Geo(2)
d

(n, p). Since each link contains Binom(n−1, p) vertices, and (n−1)p ≫ polylogn,

every link has (n−1)p(1± on(1))Ê m := np/2 vertices with probability 1−O(n−1). Also, ΦDip(d)

(
τ

1+τ
)
Ê

ΦDip(d)(τ), so m ·ΦDip(d)

(
τ

1+τ
)
Ê np2

2
≫ polylogm, and so the conditions of Theorem 5.1 are met so that

by a union bound we can conclude that all links have second eigenvalue at most τ
1+τ + o(1)=λ+ o(1).

Simultaneously, for any pair of vertices the number of triangles they participate in are within

a multiplicative factor of 1± lognp
p2n

= 1± on(1) of each other, as we argue in the next paragraph.

Since the stationary distribution π of the random walk on G weighted according to H(1), the 1-

skeleton of H, puts mass on vertex v proportional to the number of triangles v participates in, it

must be the case that π(v) = (1± on(1)) · 1
n

. Consequently, dTV (π,Un) = on(1), and by Lemma 8.1,

λ2(H(1))Ê τ− on(1)= λ
1−λ − on(1).

We now show concentration for the number of triangles that contain a vertex. Indeed, the number

of triangles that a vertex v participates in is equal to the number of edges in its link. Using, mv to

denote the number of vertices in the link of v, deg(u) to denote the degree of a vertex u within the

link of v, and κ to denote the collection of shells that vertices in the link of v lie in, we have:

|E(Link(v))| =
1

2

mv∑

i=1

degv(u).

Henceforth we condition on mv achieving some value in (1± on(1))p(n−1). The average degree of

a vertex u within the link of v is at least
np2

2
, and hence by Bernstein’s inequality each degv(u) =

(1± on(1))E
[
degv(u)|κu

]
except with probability O(n−4) since degv(u)|κu is a sum of independent

indicator random variables. The random variables E
[
degv(u)|κu

]
are independent and distributed

as p(κu)mv where p(κu) is the probability that a uniformly random vector in capp(v) falls in capp(u)

where 〈u,v〉=κu. We can show with Bernstein’s inequality that:

mv∑

u=1

E
[
degv(u)|κu

]
= (1± o(1))E[p(κu)]m2

v

except with probability O(n−4). By the union bound, with probability O(n−1) for all v ∈ [n],

|E(Link(v))| =
1± on(1)

2
E[p(κu)]m2

v,

which completes the proof.
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A Azuma-Hoeffding for continuous processes

Lemma (Restatement of Lemma 4.20). Let (X t)tÊ0 ⊂R be a stochastic process adapted to the filtration

Ft with E[er dX t |Ft]< exp
(
r2σ2

t dt
)
, for all t, r. Then for all s, x> 0,

Pr[|Xs −X0| Ê x]É 2exp

(
−x2

4
∫s

0 σ2
t dt

)
.

Proof of Lemma 4.20. The proof is the same as that of the standard Azuma-Hoeffding inequality.

Without loss of generality assume X0 = 0. From Markov’s inequality,

Pr[|Xs| Ê x]É e−θx (E[exp(θXs)]+E[exp(−θXs)])

We have that X t+dt = X t +dX t, and so for any θ,

d E[exp(θX t)]=E[exp(θX t+dt)−exp(θX t)]

=E[exp(θX t)] ·E[exp(θdX t)−1 |Ft]

ÉE[exp(θX t)] ·
(
exp

(
θ2σ2

t dt

K

)
−1

)
=E[exp(θX t)] ·

θ2σ2
t dt

K
,

since the higher-order terms in the Taylor expansion of exp go to zero. Hence, we conclude that

d logE[exp(θX t)] É
θ2σ2

t dt

K
, and thus logE[exp(θXs)] =

∫s
0 d logEexp(θX t) É

∫s
0

θ2σ2
t dt

K
(where we used

that X0 = 0). In conclusion,

E[exp(θXs)]É exp

(
θ2

∫s
0 σ2

t dt

K

)
,

and choosing θ = Kx

2
∫s

0 σ2
t dt

, and then repeating the argument with −Xs, completes the proof.

B Bounding the expected contribution of outlier shells

Lemma (Restatement of Lemma 6.12). For any d Ê C logm for some constant C > 0, any constant

τ ∈ [0,1], and any xÉ η,
N(x)

D(x)
ÉO

(
1

d

)
.

Proof. For the function T(x, y) := τ−xyp
1−x2

p
1−y2

, we are interested in bounding

∫1

τ(1+α)
(1− y2)(d−3)/2 ·ΦDip(d−1)(T(x, y)) d y

∫1

τ
(1− y2)(d−3)/2 ·ΦDip(d−1)(T(x, y)) d y

É

∫1

τ(1+α)
(1− y2)(d−3)/2 ·ΦDip(d−1)(T(x, y)) d y

∫τ(1+α/2)

τ
(1− y2)(d−3)/2 ·ΦDip(d−1)(T(x, y)) d y

(34)
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For any y ∈ [τ(1+α),1] and z ∈ [τ,τ(1+α/2)], we show that the expression

(1− y2)(d−3)/2 ·ΦDip(d−1)(T(x, y))

(1− z2)(d−3)/2 ·ΦDip(d−1)(T(x, z))
(35)

is bounded by ατ/d. Consequently, (34) is bounded by 2
d

.

We now prove (35). Recall that by Claim 5.6, T(x, y) is decreasing in x and y on [τ,1]× [τ,1]. For

fixed x, let y∗ be chosen such that T(x, y∗)= 4p
d

. We split into cases depending on where y and z fall

with respect to y∗.

Case 1: y∗ É z. In this case, the numerator of (35) can be bounded by (1− y2)(d−3)/2 and the denomi-

nator can be lower bounded by β · (1− z2)(d−3)/2 for some constant β> 0. Combined with the fact that

the derivative of 1− y2 is −2y which is at most −2τ and our choice of α, we have:

(35)É
1

β
·
(

1− y2

1− z2

)(d−3)/2

É
(1−ατ2)(d−3)/2

β
É

ατ

d
.

Case 2: y∗ Ê y. In this case, via Lemma 2.8, the numerator of (35) can be bounded by

(
1− y2

)(d−3)/2 ·
Zd−1

T(x, y)(d−2)

(
1−T(x, y)2

)(d−2)/2 =
(
1− y2 −τ2 +2τxy

1− x2

)(d−3)/2

·
Zd−1

√
1−T(x, y)2

T(x, y)(d−2)

and similarly the denominator can be lower bounded by

β ·
(
1− z2 −τ2 +2τxz

1− x2

)(d−3)/2

·
Zd−1

√
1−T(x, z)2

T(x, z)(d−2)

for some constant β> 0. Consequently,

(35)É
1

β
·
(

1− y2 −τ2 +2τxy

1− z2 −τ2 +2τxz

)(d−3)/2

·
T(x, z)

√
1−T(x, y)2

T(x, y)
√

1−T(x, z)2
ÉO

(p
d
)
·
(

1− y2 −τ2 +2τxy

1− z2 −τ2 +2τxz

)(d−3)/2

The derivative of the expression G(z) := 1−z2−τ2+2τxz is −2z+2τx, which is bounded by −2τ(1−x)É
−2τ(1−η) when τÉ z. By the derivative bound and our choice of α the above expression is at most:

O
(p

d
)
·
(

3−2τ(1−η)(y− z)

3

)(d−3)/2

ÉO
(p

d
)
·
(
1−

(1−η)ατ2

3

)(d−3)/2

É
ατ

d
.

Case 3: yÉ y∗ É z. In this case:

(35)=
(1− y2)(d−3)/2 ·ΦDip(d−1)(T(x, y))

(1− y2
∗)(d−3)/2 ·ΦDip(d−1)(T(x, y∗))

·
(1− y2

∗)(d−3)/2 ·ΦDip(d−1)(T(x, y∗))

(1− z2)(d−3)/2 ·ΦDip(d−1)(T(x, z))
.

By an identical calculation to the case where y∗ Ê y, the first part of the above product is bounded by

O
(p

d
)
·
(
1−

2τ(1−η)(y∗− y)

3

)(d−3)/2

and the second part is bounded by

O(1) · (1−2(z− y∗)τ)(d−3)/2.

Either y∗− y>ατ/4 or z− y∗ >ατ/4, and so

(35)ÉO
(p

d
)
·max

{
1−

(1−η)ατ2

6
,1−

ατ2

4

}(d−3)/2

É
(
1−

(1−η)ατ2

6

)(d−3)/2

É
ατ

d
,

which completes the proof.
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C Computations for evaluating ratios of typical entries

Claim C.1. Let κx = τ(1+δx), where α is the typicality threshold, and x ∈ {i, j,ℓ}. Then,

∣∣∣∣
T(κ j,κℓ) ·T(κi ,τ)

T(κi,κℓ) ·T(κ j ,τ)
−1

∣∣∣∣ÉO(α2)

Proof. We first simplify
T(κ j ,κℓ)·T(κi ,τ)

T(κi ,κℓ)·T(κ j ,τ)
by expanding the expression for T(·, ·) and cancelling terms:

T(κ j,κℓ) ·T(κi ,τ)

T(κi,κℓ) ·T(κ j ,τ)
=

(τ−κ jκℓ)(1−κi)

(τ−κiκℓ)(1−κ j)

T(κ j,κℓ) ·T(κi ,τ)

T(κi ,κℓ) ·T(κ j ,τ)
−1=

(τ−κ jκℓ)(1−κi)− (τ−κiκℓ)(1−κ j)

(τ−κiκℓ)(1−κ j)

The claim will follow from an upper bound on the numerator and a lower bound on the denominator.

Upper bound on numerator: The following calculation establishes that the magnitude of the

numerator |(τ−κ jκℓ)(1−κi)− (τ−κiκℓ)(1−κ j)| is O(α2).

|(τ−κ jκℓ)(1−κi)− (τ−κiκℓ)(1−κ j)| = |(τ−τκi −κ jκℓ+κiκ jκℓ)− (τ−τκ j −κiκℓ+κiκ jκℓ)|
= |τ(κ j −κi)−κℓ(κ j −κi)| = |(τ−κℓ)(κ j −κi)|
= τ2|1− (1+δℓ)| · |1+δ j − (1+δi)| = τ2(δℓ)|δ j −δi |
É τ2α2

where the last inequality uses δℓ Éα and |δ j −δi| Éα.

Lower bound on denominator: The denominator (τ−κiκℓ)(1−κ j ) is lower bounded by a constant.

(τ−κiκℓ)(1−κ j)Ê (τ−τ2(1+α)2)(1−τ(1+α))

As αÉO
(

logd
d

)
, both (τ−τ2(1+α)2) and (1−τ(1+α)) are lower bounded by a constant.

Claim C.2. Let κx = τ(1+δx), where α is the typicality threshold, and x ∈ {i, j,ℓ}, and define A :=(
1−T(κi ,κℓ)2

)(
1−T(κ j,τ)2

)
and B :=

(
1−T(κ j,κℓ)2

)(
1−T(κi ,τ)2

)
. Then,

∣∣∣∣
A

B
−1

∣∣∣∣ÉO(α2)

Proof. It suffices to lower bound B by a constant, and then prove that |A−B| ÉO(α2). Lower bounding

B by a constant is straightforward; T(x, y) is maximized when x = y = τ, achieving a value of τ
1+τ .

Thus, B Ê (1− τ2

(1+τ)2 )2, which is a constant.

To get a handle on |A−B|, we first expand the expressions:

A−B = [T(κi ,τ)2−T(κ j ,τ)2−T(κi ,κℓ)2 +T(κ j,κℓ)2]+ [T(κi ,κℓ)2T(κ j,τ)2 −T(κ j,κℓ)2T(κi,τ)2]

=
1

(1−τ2)(1−κ2
i
)(1−κ2

j
)(1−κ2

ℓ
)
· [τ2 · f1(δi ,δ j,δℓ)+τ4 · f2(δi ,δ j,δℓ)]

where

f1(x, y, z) := (1−τ(1+ x))(1−τ2(1+ y)2)(1−τ2(1+ z)2)− (1−τ(1+ y))(1−τ2(1+ x)2)(1−τ2(1+ z)2)
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− (1−τ(1+ x)(1+ z))(1−τ2(1+ y)2)(1−τ2)+ (1−τ(1+ y)(1+ z))(1−τ2(1+ x)2)(1−τ2)

f2(x, y, z)= (1−τ(1+ x)(1+ z))(1−τ(1+ y))− (1−τ(1+ y)(1+ z))(1−τ(1+ x))

The term (1−τ2)(1−κ2
i
)(1−κ2

j
)(1−κ2

ℓ
) is lower bounded by a constant for large enough d and so it

suffices to bound | f1(δi ,δ j,δℓ)| and | f2(δi ,δ j,δℓ)| by O(α2).

To do so, we use the fact that f1 and f2 is a polynomial of constant degree (in particular, of degree

at most 5) whose degree-0 and degree-1 terms are 0, and whose remaining coefficients are bounded

by a constant. The result then follows since δi,δ j,δk Éα.

It is easy to see that their coefficients are bounded by a constant. The fact that the degree-0 and

degree-1 terms of fk vanish for k = 1,2 follows from the fact that fk(0,0,0)= 0 and that the univariate

polynomials fk(x,0,0), fk(0, y,0), and fk(0,0, z) are identically 0.
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