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Abstract

We present an elementary way to transform an expander graph into a simplicial complex
where all high order random walks have a constant spectral gap, i.e., they converge rapidly
to the stationary distribution. As an upshot, we obtain new constructions, as well as a natural
probabilistic model to sample constant degree high-dimensional expanders.

In particular, we show that given an expander graph G, adding self loops to G and taking
the tensor product of the modified graph with a high-dimensional expander produces a new
high-dimensional expander. Our proof of rapid mixing of high order random walks is based
on the decomposable Markov chains framework introduced by [JST+04].
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1 Introduction

Expander graphs are graphs which are sparse, yet well-connected. They play important roles
in applications such as the construction of pseudorandom generators and error-correcting codes
[SS94]. Motivated by both purely theoretical questions, such as the topological overlapping prob-
lem, and applications in computer science, such as PCPs, a generalization of expansion to high
dimensional complexes has recently emerged. We work with d–dimensional complexes, which
not only have vertices and edges, but also hyperedges of k vertices, for any k 6 d + 1. Whereas
in the one-dimensional world of graphs, the properties of edge expansion, spectral expansion and
rapid mixing of random walks are equivalent, their generalization to Several different characteri-
zations of “expansion” have been developed for these high–dimensional complexes. In particular,
the high-dimensional extension of spectral expansion is simple to state, and implies rapid mixing
of high order walks [KO17] and agreement expanders [DK17].

We construct bounded-degree high–dimensional expanders of all constant–sized dimensions,
where the high order random walks have a constant spectral gap, and thus mix rapidly. We base
our HDX’s from existing T-regular one-dimensional constructions, which can be sampled readily
from the space of all T-regular graphs. This endows a natural distribution from which we can
sample HDX’s of our construction as well.

One sufficient, but not necessary criterion that implies rapid mixing is spectral, which comes
from the graph theoretic notion below.

Definition 1.1 (Informal). A d–dimensional λ–spectral expander is a d–dimensional simplicial
complex (i.e. a hypergraph whose faces satisfy downward closure) such that

• (Global Expansion) The vertices and edges (sets of two vertices) of the complex constitute a
λ–spectral expander graph,

• (Local Expansion) For every hyperedge E of size 6 d − 1 in the hypergraph, the vertices
and edges in the ”neighborhood” of E also constitute a λ–spectral expander. (The precise
definition of ”neighborhood” will be discussed later.)

Most known constructions of bounded-degree high–dimensional spectral expanders are heav-
ily algebraic, rather than combinatorial or randomized. In contrast, there are a wealth of different
constructions for bounded-degree (one-dimensional) expander graphs [HLW06]. Some of these
are also algebraic, such as the famous LPS construction of Ramanujan graphs [LPS88], but there
are also many simple, probabilistic constructions of expanders. In particular, Friedman’s Theorem
says that with high probability, random d-regular graphs are excellent expanders [Fri03].

Unfortunately, random d–dimensional hypergraphs with low degrees are not d–dimensional

expander graphs. For a hypergraph with n vertices, we need a roughly n
(

log n
n

)1/d
-degree Erdos-

Renyi graph to make the neighborhood of every hyperedge of size 6 d− 1 to be connected with
high probability. While random low degree hypergraphs are not high–dimensional expanders,
our construction provides simple probabilistic high–dimensional expanders of all dimensions.

1.1 Technical Overview

Construction. We construct an H–dimensional simplicial complex Q on n · s vertices, from a
graph G of n vertices and a (small) H–dimensional complete simplicial complex B on s vertices.
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To construct Q, we replace each vertex v of G with a copy of B which we denote Bv. Denote the
copy of a vertex w ∈ B in Bv by (v, w). The faces of Q are chosen in the following way: for every
face {w1, w2, . . . , wk} in B, add {(v1, w1), (v2, w2), . . . , (vk, wk)} to the graph, where for some edge
e in G, the vertices v1, . . . vk are one of the endpoints of e. The main punchline of our work is
that when G is a (triangle-free) expander graph, the high order random walks on Q mix rapidly.
Specifically, we prove:

Theorem 1.2 (Main theorem, informal version of Theorem 3.1). Suppose G is a triangle-free expander
graph with two-sided spectral gap ρ. For every k such that 1 6 k < H, there is a constant C depending on
k, H, s, ρ, but independent of n such that the Markov transition matrix for the up-down walk on the k-faces
of Q has two-sided spectral gap C.

First attempt at proving rapid mixing of high order random walks. [KM16], which introduced
the notions of up-down and down-up random walks, and subsequent works [DK17, KO17, KO19,
ALGV19] developed and followed the “local-to-global paradigm” to prove rapid mixing of high
order random walks. In particular, each of these works would:

A. Establish that all the links of a relevant simplicial complex have “small” second eigenvalue.

B. Prove or cite a statement about how rapid mixing follows from small second eigenvalues of
links (such as Theorem 1.4).

Then, step A and step B together would imply that the up-down and down-up random walks
on the simplicial complexes they cared about mixed rapidly. This immediately motivates first
bounding the second eigenvalue of the links of our construction, and applying the quantitatively
strongest known version of the type of theorem alluded to in step B. Thus, in Section 4 we analyze
the second eigenvalue of all links of Q and prove:

Theorem 1.3 (Informal version of Theorem 3.3). The two-sided spectral gap of every link in Q is
bounded by approximately 1

2 .

And the ‘quantitatively strongest’ known “local-to-global” theorem is

Theorem 1.4 (Informal statement of [KO17, Theorem 5]). If the second eigenvalue of every link of a
simplicial complex S is bounded by λ, then the up-down walk on k-faces of S , S↑↓k satisfies:

λ2(S↑↓k ) 6
(

1− 1
k + 1

)
+ kλ.

Observe that the upper bound on the second eigenvalue of all links must be strictly less than
1

k(k+1) to conclude any meaningful bounds on the mixing time of the up-down random walk. Thus,
unfortunately, Theorem 1.3 in conjunction with Theorem 1.4 fails to establish rapid mixing.

Hence, we depart from the local-to-global paradigm and draw on alternate techniques.

Decomposing Markov Chains. Each k-face ofQ is either completely contained in a cluster {(v, ?)}
for a single vertex v in G, or straddles two clusters corresponding to vertices connected by an edge,
i.e., is contained in {(v, ?)} ∪ {(u, ?)}. Consider performing an up-down random walk on the
space of k-faces ofQ (henceforthQ↑↓k ). If we record the single cluster or pair of clusters containing
the k-face the random walk visits at each timestep, it would resemble:
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{17, 19} → {17, 19} → {17, 19} → {17} → {17} → {17, 155} → {17, 155} → {17, 155}
→ {155}→ {155, 203}→ {155, 203}→ {155, 203}→ {155, 203}→ {155, 203}→ {203}
→ {6, 203} → {6, 203} → · · ·

In the above illustration of a random walk, let us restrict our attention to the segment of the walk
where the k-faces are all contained in, say, the pair of clusters {155, 203}. Intuitively, we expect
the random walk restricted to those k-faces to mix rapidly and also exit the set quickly by virtue
of the state space being constant-sized. In particular, if we keep the random walk running for
t ≈ C log n steps for some large constant C, it would seem that the number of “exit events”1 is
roughly α · C log n for some other constant α. The sequence of “exit events” can be viewed as
a random walk on the space of edges and vertices of G, and since there are many steps in this
walk, the expansion properties of G tell us that the location of the random walk after t steps is
distributed according to a relevant stationary distribution. In light of these intuitive observations
of rapidly mixing in the walks within cluster pairs and also rapidly mixing in a walk on the space
of cluster pairs, one would hope that the up-down walk on k-faces mixes rapidly.

This hope is indeed fulfilled and is made concrete in a framework of Jerrum et al. [JST+04].
In their framework, there is a Markov chain M on state space Ω. They show that if Ω can be
partitioned into Ω1, . . . , Ω` such that the chain “restricted” (for some formal notion of restricted)
to each Ωi, and an appropriately defined “macro-chain” (where each partition Ωi is a state) each
have a constant spectral gap, then the original Markov chain M has a constant spectral gap as
well. Our proof of the fact thatQ↑↓k has a constant spectral gap utilizes this result of [JST+04]. This
framework of decomposable Markov chains is detailed in Section 2.2.1, and the analysis of the
spectral gap of the down-up random walk2 is in Section 5.

1.2 Related Work

While high–dimensional expanders have been of relatively recent interest, already many different
(non-equivalent) notions of high–dimensional expansion have emerged, for a variety of different
applications.

The earliest notions of high–dimensional expansion were topological. In this vein of work,
[LM06, Gro10] introduced coboundary expansion, [EK16] defined cosystolic expansion, and [EK16,
KKL14] defined skeleton expansion. To our knowledge, most existing constructions of these types
of expanders rely on the Ramanujan complex. We refer the reader to a survey by Lubotzky [Lub17]
for more details on these alternate notions of high dimensional expansion and their uses.

To describe notions of high dimensional expansion that are relevant to computer scientists, we
need to first highlight a key property of (one-dimensional) expander graphs–that random walks
on them mix rapidly to their stationary distribution. The notion of a random walk on graphs
was generalized to simplicial complexes in the work of Kaufman and Mass [KM16] to the “up-
down” and “down-up” random walks, whose states are k-faces of a simplicial complex. They
were interested in bounded–degree simplicial complexes where the up-down random walk mixed
to its stationary distribution rapidly. They then proceed to show that the known construction of
Ramanujan complexes from [LSV05] indeed satisfy this property.

1Transitions like {17, 19} → {17}, {155} → {155, 203}, and so on.
2Which is actually equivalent to proving a spectral gap on the up-down random walk but is more technically con-

venient. See Fact 2.38.
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A key technical insight in their work that the rapid mixing of up-down random walks follows
from certain notions of local spectral expansion, i.e., from sufficiently good two-sided spectral expan-
sion of the underlying graph of every link. A quantitative improvement between the relationship
between the two-sided spectral expansion of links and rapid mixing of random walks was made
in [DK17], and this improvement was used to construct agreement expanders based on the Ra-
manujan complex construction. Later, [KO17] showed that one-sided spectral expansion of links
actually sufficed to derive rapid mixing of the up-down walk on k-faces.

1.2.1 HDX Constructions

Although this combinatorial characterization of high–dimensional expansion is slightly weaker
than some of the topological characterizations mentioned above, few constructions are known for
bounded degree HDX’s with dimension > 2. Most of these rely on heavy algebra. In contrast, for
one-dimensional expander graphs, there are a wealth of different constructions, including ones
via graph products and randomized ones. [Fri03] states that even a random d-regular graph is an
expander with high probability.

The most well-known construction of bounded-degree high–dimensional expanders are the
Ramanujan complexes [LSV05]. These require the Bruhat-Tits building, which is a high-dimensional
generalization of an infinite regular tree. The underlying graph has degree qO(d2), where q is a
prime power satisfying q ≡ 1 (mod 4). The links can be described by spherical buildings, which
are complexes derived from subspaces of a vector space, and are excellent expanders.

Dinur and Kaufman showed that given any λ ∈ (0, 1), and any dimension d, the d–skeleton of
any d + d2/λe–dimensional Ramanujan complex is a d–dimensional λ–spectral expander [DK17].
Here, the degree of each vertex is (2/λ)O((d+2/λ)2). In other words, they “truncate” the Ramanujan
complexes, throwing out all faces of size greater than some number k. Their primary motivation
was to obtain agreement expanders, which find uses towards PCPs.

Recently, Kaufman and Oppenheim [KO19] present a construction of one–sided high–dimensional
expanders, which are coset complexes of elementary matrix groups. The construction guarantees
that for any λ ∈ (0, 1) and any dimension d, there exists a infinite family of high–dimensional ex-
panders {Xi}i∈N, such that (1) every Xi are d–dimensional λ–one–sided–expander; (2) every Xi’s

1-skeleton has degree at most Θ

(√
(1/λ+d−1)(d+2)2

2 log (1/λ+d−1)

)
; (3) as i goes to infinity the number of vertices

in Xi also goes to infinity.
Even more recently, Chapman, Linial, and Peled [CLP18] also provided a combinatorial con-

struction of two-dimensional expanders. They construct an infinite family of (a, b)-regular graphs,
which are a-regular graphs whose links with respect to single vertices are b-regular. The pri-
mary motivation for their construction comes from the theory of PCPs. They prove an Alon-
Boppana type bound on λ2(G) for any (a, b)-regular graph, and construct a family of graphs where
this bound is tight. They also build an (a, b)-regular two-dimensional expander using any non-
bipartite graph G of sufficiently high girth; they achieve a local expansion only depending on the
girth, and the global expansion depending on the spectral gap of G. Like ours, their construction
also resembles existing graph product constructions of one-dimensional expanders.
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2 Preliminaries and Notation

2.1 Spectral Graph Theory

While we can describe our constructions combinatorially, our analysis of both the mixing times of
certain walks as well as the local expansion will heavily rely on understanding graph spectra.

Definition 2.1. For a graph G on n vertices, we use Adj(G) to denote its normalized adjacency matrix,
i.e. the matrix

Adj(G)uv =
1{u,v}∈E(G)

deg(u)

and write its eigenvalues as

1 = λ1(G) > λ2(G) > . . . > λn(G) > −1

Let Spectrum(G) to indicate the set {λi(G)}. We write OneSidedGap(G) for the spectral gap of G,
which is the quantity 1 − λ2(G). Graphs with OneSidedGap(G) > µ are said to be one-sided µ-
expanders.

Most of the graphs we analyze achieve a stronger condition; that the second largest eigenvalue
magnitude is not too large. Formally, we write |λ|i for the i-th largest eigenvalue in absolute value.
In particular, |λ|2 = max{|λ2|, |λn|}. The absolute spectral gap of G, denoted TwoSidedGap(G), is
the quantity 1− |λ|2. Graphs with TwoSidedGap(G) > µ are two-sided µ-expanders.

Remark 2.2. This definition is also easily extended to graphs that have edge weights. If we have
a weight function w : E(G)→ R>0, the normalized adjacency matrix is given by:

Adj(G)uv =
1{u,v}∈E(G) · w({u, v})
∑v:{u,v}∈E(G) w({u, v})

In this case, λ1(G) is still 1; the rest of the definitions remain the same.

If we consider Adj(G) as a transition matrix for a random walk on G, having a large spectral gap
and large expansion implies fast mixing (i.e. convergence to a stationary distribution).

2.1.1 Graph Tensors

Our construction can roughly be described as a tensor product, defined below.

Definition 2.3. The tensor product G× H of two graphs G and H is given by

1. Vertex set V(G× H) = V(G)×V(H),

2. Edge set E(G× H) = {((u1, v1), (u2, v2)) : (u1, u2) ∈ E(G) and (v1, v2) ∈ E(H)}.

The adjacency matrix Adj(G×H) is the tensor (Kronecker) product Adj(G)⊗Adj(H). Due to this
structure, Spectrum(G × H) = {λiµj : λi ∈ SpectrumG, µj ∈ Spectrum(H)}. As 1 is the largest
eigenvalue of both Adj(G) and Adj(H), it follows that both

OneSidedGap(G× H) = min(1− 1 · µ2, 1− λ2 · 1) = min(OneSidedGap(G), OneSidedGap(H))

TwoSidedGap(G× H) = min(1− 1 · |µ|2, 1− |λ|2 · 1) = min(TwoSidedGap(G), TwoSidedGap(H))
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2.1.2 Line Graphs

The line graph, which is an incidence graph on the edges, will be a useful scaffolding on which
we decompose our high order walks.

Definition 2.4. Given a graph G, its line graph L(G) has vertices V(L(G)) = E(G), and edges
E(L(G)) = {{e1, e2} ∈ E(G)× E(G) | e1, e2 share an endpoint in G}.

The relationship between Spectrum(L(G)) and Spectrum(G) is also well understood.

Theorem 2.5 ([Sac66]). If G is a graph of degree d with n vertices and L(G) its line graph, then the
characteristic polynomials χ(G, λ) and χ(L(G), λ) satisfy

χ(L(G), λ) = (λ + 2)n( d
2−1)χ(G, λ + 2− d).

2.2 Markov Chains

Here, we provide a very basic treatment of the Markov chain concepts required for the analysis of
our high order walks. We refer to [LP17] for a detailed and thorough treatment of the fundamen-
tals of Markov chains.

Definition 2.6. A Markov chain M = (Ω, P) is given by states Ω and a transition matrix P where
P[i, j] is the probability of going to state j from state i. We may also write this quantity as M[j→ i].

Remark 2.7. The Markov chain literature often defines Pi,j as the transition probability Pr(i → j),
so their P is the transpose of ours. However, when dealing with P’s spectrum, we work with
column (right) eigenvectors, while this alternate convention uses row (left) eigenvectors, so both
conventions yield the same results.

Remark 2.8. For graph G, Adj(G) is the transition matrix for a Markov chain where states are
vertices, and each state transitions to its neighbors uniformly at random. We may use “graph” in
lieu of “chain” when we want to indicate this particular Markov chain.

Definition 2.9. A chain M = (Ω, P) can be associated with a digraph D on the states. If D is
strongly connected, we say M is irreducible. If it is possible to go from state i to state j in D using
exactly k steps for any sufficiently large k, we say M is aperiodic.

Definition 2.10. We define the edge set of a Markov chain M as

E(M) := {{i, j} : i, j ∈ States(M), M[i→ j] > 0}.

Definition 2.11. For chain M = (Ω, P), let λ1 > λ2 > . . . > λ|Ω| be the right eigenvalues of P.

Fact 2.12. Let M = (Ω, P). For any Markov chain, λ1 = 1.

Definition 2.13. Let M = (Ω, P). If P is irreducible and aperiodic, the associated (normalized)
eigenvector of λ1 = 1 is the stationary distribution of M, which we denote by πM. We call 1− λ2

the spectral gap of M, which we write as λ(M).

The next property we introduce is present for every Markov chain we consider. Intuitively, it
means that if start at the stationary distribution and run the chain for a sequence of time states,
the reverse sequence has the same probability of occurring.
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Definition 2.14. The Markov chain M = (Ω, P) is time-reversible if for any integer k > 1:

πM(x0)M[x0 → x1] · · ·M[xk−1 → xk] = πM(xk)M[xk → xk−1] · · ·M[x1 → x0]

Time reversibility helps us compute stationary distributions via the detailed balance equations. This
is especially helpful when there are a huge number of symmetric states.

Fact 2.15. The Markov chain M = (Ω, P) is time-reversible if and only if it satisfies the detailed balance
equations: for all x, y ∈ Ω,

πM(x)M[x → y] = πM(y)M[y→ x]

Most of the Markov chains we encounter in this work will also have self-loops. If we start with
Markov chain M̃ = (Ω, P̃) and wish to add a uniform self loop probability to each state to get
Markov chain M = (Ω, P), we write P as a convex combination of P̃ and I:

P = c · I + (1− c) · P̃, where 0 6 c 6 1

Since this convex combination will appear a few different times throughout this paper, we’ll prove
a basic fact about the spectral gap of P:

Lemma 2.16. For M = (Ω, P) as defined above:

OneSidedGap(M) = (1− c) ·OneSidedGap(M̃)

Proof. Let λ be any eigenvalue of P̃, with associated eigenvector v. Then, v is also an eigenvector
for P for eigenvalue:

c + (1− c) · λ(M)

To see this, Pv =
[
c · I + (1− c) · P̃

]
v = cv + (1− c)

(
P̃v
)
= [c + (1− c) · λ] v. Thus, the spec-

trum of M̃ is a linear shift and scaling of the spectrum of M, and the spectral gap also scales by
(1− c).

Remark 2.17. Note that TwoSidedGap(M) does not scale the way OneSidedGap(M) does. In fact, if
we perform the above scaling, the smallest eigenvalue of P is at least (−1 + c), so

TwoSidedGap(M) > min {OneSidedGap(M), 1− |c− 1|} .

Definition 2.18. The ε-mixing time of a Markov chain M is the smallest t such that for any distri-
bution ν over the states of M,

‖πM − ν‖1 6 ε

where πM is the stationary distribution of M.

Theorem 2.19. For any Markov chain M, the ε-mixing time tmix(ε) satisfies:

tmix(ε) 6 log
(

1
ε min πM

)
· 1

TwoSidedGap(M)
.
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2.2.1 Decomposing Markov Chains

The Poincaré inequality is a powerful tool for studying convergence of Markov chains. Consider a
finite-state time reversible Markov chain M whose structure gives rise to natural state-space par-
tition, M can be decomposed into a number of restriction chains and a projection chain. [JST+04]
show that the spectral gap for the original chain can be lower bounded in terms of the spectral
gaps for the restriction and projection chains.

We now formally define decomposition of a Markov chain. Consider an ergodic Markov chain
on finite state space Ω with transition probability P : Ω2 → [0, 1]. Let π : Ω → [0, 1] denote its
stationary distribution, and let {Ωi}i∈[m] be a partition of the state space into m disjoint sets, where
[m] := {1, . . . , m}.

The projection chain induced by the partition {Ωi} has state space [m] and transitions

P(i, j) =

(
∑

x∈Ωi

π(x)

)−1

∑
x∈Ωiy∈Ωj

π(x)P(x, y).

The above expression corresponds to the probability of moving from any state in Ωi to any state
in Ωj in the original Markov chain.

For each i ∈ [m], the restriction chain induced by Ωi has state space Ωi and transitions

Pi(x, y) =

{
P(x, y), x 6= y,

1−∑z∈Ωi\{x} P(x, z), x = y.

Pi(x, y) is the probability of moving from state x ∈ Ωi to state y when leaving Ωi is not allowed.
Regardless of how we define the projection and restriction chains for a time reversible Markov

chain, they all inherit one useful property from the original chain.

Fact 2.20. Let M = (Ω, P) be a time-reversible Markov chain. Then, for any decomposition of M, the
projection and restriction chains are also time-reversible.

We ultimately want to study the spectral gap of random walks. Luckily, the original Markov
chain’s spectral is related to the restriction and projection chains’ spectral gaps in the following
way:

Theorem 2.21 ([JST+04, Theorem 1]). Consider a finite-state time-reversible Markov chain decomposed
into a projection chain and m restriction chains as above. Define γ to be maximum probability in the Markov
chain that some state leaves its partition block,

γ := max
i∈[m]

max
x∈Ωi

∑
y∈Ω\Ωi

P(x, y).

Suppose the projection chain satisfies a Poincaré inequality with constant λ̄ , and the restriction chains sat-
isfy inequalities with uniform constant λmin. Then the original Markov chain satisfies a Poincaré inequality
with constant

λ := min
{

λ̄

3
,

λ̄λmin

3γ + λ̄

}
.

Recall that if λ satisfies a Poincaré inequality, it is a lower bound on the spectral gap (cf. [LP17]).
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2.3 High-Dimensional Expanders

The generalization from expander graphs to hypergraphs (more specifically, simplicial complexes)
requires great care. We now formally establish the high dimensional notions of “neighborhood”,
“expansion,” and “random walk.”

Definition 2.22. A simplicial complex S is specified by vertex set V(S) and a collection F (S) of
subsets of V(S), known as faces, that satisfy the “downward closure” property: if A ∈ F (S) and
B ⊆ A, then B ∈ F (S). Any face S ∈ F (S) of cardinality (k + 1) is called a k-face of S . We
use k-faces(S) to denote the subcollection of k-faces of F (S). We say S has dimension d, where
d = max{|F| : F ∈ F (S)} − 1.

Example 2.23. A 1-dimensional complex S is a graph with vertex set V(S) and edge set 1-faces(S).

Definition 2.24. To formally define random walks and Markov chains on a S , we need to associate
S with a weight function w : F (S) → R+. We want our weight function to be balanced, meaning
for F ∈ k-faces(S):

w(F) = ∑
J∈(k+1)-faces(S):J⊃F

w(J)

If we restrict ourselves to balanced w, it suffices to only define w over d-faces(S) and propagate
the weights downward to the lower order faces.

Observation 2.25. Let w be a balanced weight function on faces of S . Define:

Zk = ∑
F∈k-faces(S)

w(F)

Because of the downward closure property, we always have Zk = (k + 2) · Zk+1.

Definition 2.26. The (weighted) k-skeleton of S is the complex with vertex set V(S) and all faces in
F (S) of cardinality at most k + 1, with weights inherited from S .

Example 2.27. The 1-skeleton of S only contains its vertices (0-faces) and edges (1-faces). It can be
characterized as a graph with edge weights, so we can also compute OneSidedGap(1-skeleton(S))
and TwoSidedGap(1-skeleton(S)).

Definition 2.28. For S ∈ k-faces(S) for k 6 H − 1, we associate a particular (H − k)-dimensional
pure complex known as the link of S defined below.

link(S) := {T \ S : T ∈ F (S), S ⊆ T}

If S was equipped with weight function w, then link(S) “inherits” it. We associate link(S) with
weight function wS given by wS(T) = w(S ∪ T). If w is balanced, then wS is also balanced.

Example 2.29. In a graph, the link of a vertex is simply its neighborhood.

Definition 2.30. The global expansion of S , denoted GlobalExp(S), is the expansion of its weighted
1-skeleton.
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Definition 2.31. The local expansion of S , denoted LocalExp(S) is

LocalExp(S) := min
06k6H−1

min
S∈k-faces(S)

TwoSidedGap(1-skeleton(link(S))).

In words, it is equal to the expansion of the worst expanding link.

Example 2.32. We use K(H)
H+2 to denote the complete H-dimensional complex on vertex set [H + 2],

i.e., the pure H-dimensional simplicial complex obtained by making the set of (H + 1)-faces equal
to all subsets of [H + 2] of size H + 1. The 1-skeleton is then a clique on H + 2 vertices whose
expansion is 1− 1

H+1 and the 1-skeleton of a t-link is a clique on H + 2− t vertices, which has

expansion 1− 1
H+1−t . As a result, TwoSidedGap

(
K(H)

H+2

)
= 1

2 .

Remark 2.33. We often use Adj(S) to refer to the adjacency matrix of the 1-skeleton of S , and we
may also use λi(S) to refer to the i-th largest eigenvalue of Adj(S).

Previously, we mentioned that there are several different notions of high dimensional expansion:
some geometric or topological, some combinatorial. We now formally define high dimensional
spectral expansion, which is a more combinatorial and graph theoretic notion:

Definition 2.34. S is a two-sided λ-local spectral expander if GlobalExp(S) > λ and LocalExp(S) > λ.

2.3.1 High Order Walks on Simplicial Complexes

Let S be a H-dimensional simplicial complex and with weight function w : k-faces(S) → R>0 on
the k-faces of S , for k 6 H. For each k < H, we can define a natural (periodic) Markov chain on a
state space consisting of k-faces and (k + 1)-faces of S .

• At a (k + 1)-face J, there are exactly (k + 2) faces F ∈ k-faces(S) such that F ⊂ J, due to the
downward closure property. We transition from J to each k-face F with probability 1

k+1 .

• At a k-face F, we transition to each (k + 1)-face J satisfying J ⊃ F with probability w(J)
w(F) .

(Note that w must be balanced for these transitions to be well-defined.)

Restricting the above chain to only odd or even time steps gives us two new random walks: one
entirely on k-faces(S) and one entirely on (k + 1)-faces(S).

Definition 2.35 (Down-up walk on k-faces of S). = Let S↓↑k+1 be the Markov chain with state space
equal to k-faces(S) and transition probabilities S↓↑[J → J′] described by the process above, where
there is an implicit transition down to a k-face and back up to a (k + 1)-face. Then:

S↓↑[J → J′] =



1
k + 1 ∑

F∈k-faces(S):F⊂J

w(J)
w(F)

if J = J′

1
k + 1

· w(J′)
w(J ∩ J′)

if J ∩ J′ ∈ k-faces(S)

0 otherwise
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Definition 2.36 (Up-down walk on k-faces of S). Let S↑↓ be the Markov chain with state space
equal to k-faces(S) and transition probabilities S↑↓[F → F′] described by the process above, where
there is an implicit transition up to a (k + 1)-face and back down to a k-face. Then:

S↓↑[F → F′] =


1

k + 1
if F = F′

w(F ∪ F′)
w(F)

if F ∪ F′ ∈ (k + 1)-faces(S)

0 otherwise

Remark 2.37. In the literature, we also see S↓↑k+1 written as S∨k+1, and S↑↓k written as S∧k .

We now present some facts about these high order walks without proof. We refer to [KO17,
ALGV19] for proofs of these facts.

Fact 2.38. The transition matrices for S↓↑k+1 and S↑↓k share the same eigenvalues. The nonzero eigenvalues
occur with the same multiplicity. A straightforward but important consequence of this fact is

Spectrum(S↓↑k+1) = Spectrum(S↑↓k+1)

Fact 2.39. The Markov chains S↓↑k and S↑↓k have the same stationary distribution on k-faces(S), which is
proportional to w(F) for each F ∈ k-faces(S). We will call this distribution πk(·).

For the remainder of the paper, we will assume a uniform weight function on d-faces(S), which
is useful for applications like sampling bases of a matroid [ALGV19]. When using the uniform
weighting scheme, for F ∈ k-faces(S), there is a natural interpretation of πk(F): the fraction of
d-faces that contain F as a subface. (We also note that we will use symbolic variables to represent
various weight values, and that it is straightforward to adapt our computations to cases where we
have uniform weights over k-faces(S) for any k.)

3 Local Densification of Expanders

For a graph G and H-dimensional simplicial complex S , we give a way to combine the two to
produce a bounded-degree H-dimensional complex LocalDensifier(G,S) of constant expansion.
First, construct a graph G′ with

1. vertex set equal to V(G)×V(S), and

2. edge set equal to {{(v1, b1), (v2, b2)} : {b1, b2} ∈ 1-faces(S), {v1, v2} ∈ E(G) or v1 = v2}.

LocalDensifier(G,S) is then defined as the H-dimensional pure complex whose H-faces are all
cliques on H + 1 vertices {(v1, b1), (v2, b2), . . . , (vH+1, bH+1)} such that there exists an edge {a, b}
in G for which v1, . . . , vH+1 ∈ {a, b}.

Linear algebraically, we can think of this graph construction as adding a self loop to each vertex
of G and then taking the tensor product with the 1-skeleton of S .

Our construction is Q := LocalDensifier(G,B), where B is equal to K(H)
s , the H-dimensional

complete complex on some constant s > H + 1 vertices, and G is a T-regular triangle-free expander
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graph on n vertices. We endow Q with a balanced weight function w induced by setting the
weights of all H-faces to 1.

As a first step to understanding this construction, we inspect the weights induced on k-faces
for k < H. Consider a k-face F := {(v1, b1), . . . , (vk+1, bk+1)}. A short calculation reveals that if
v1, . . . , vk+1 are all equal, then w(F) is equal to wJ,k := T2H−k − (T − 1) and otherwise, w(F) is
equal to wI,k := 2H−k. Henceforth, write wJ and wI instead of wJ,k and wI,k when k is understood
from context.

We now list out what we prove about Q. Most importantly, we show:

Theorem 3.1. For every 1 6 k < H, the Markov transition matrix Q↓↑k for down-up (and equivalently
up-down) random walks on the k-faces satisfies:

TwoSidedGap
(
Q↓↑k

)
>

TwoSidedGap(G)

64T2(k + 1)2(s− k)(2k − 1)
.

We dedicate Section 5 to proving Theorem 3.1. In Section 5.1, we show the transition probabil-
ities for the down-up walks on the k-faces and derive a lower bound on the smallest eigenvalue of
Q↓↑k (Observation 5.4). In the rest of the section we decompose the random walk Markov chains
to obtain an upper bound on the one-sided spectral gap for Q↓↑k (Theorem 5.19).

As an immediate corollary of Theorem 3.1 and Theorem 2.19, we get that

Corollary 3.2. Let Nk denote the number of k-faces in Q. Then the ε-mixing time of Q↓↑k satisfies:

t(ε) 6
64T2(k + 1)2(s− k)(2k − 1)

TwoSidedGap(G)
· log

(
2Nk

ε

)
.

We note that Nk = Θ(n).

We also derive bounds on the expansion of links of Q. In particular, as a direct consequence
of Theorem 4.2 and the discussion of the expansion properties of the complete complex in Exam-
ple 2.32, we conclude:

Theorem 3.3. We can prove the following bounds on the local and global expansion of Q:

GlobalExp(Q) >
[

1
2
− 1

2 · (T2H + 1)

]
· TwoSidedGap(G), and

LocalExp(Q) > 1
2

.

Remark 3.4. Suppose G is a random T-regular (triangle-free) graph and H > T. Then the corre-
sponding (random) simplicial complex Q, as a consequence of Friedman’s Theorem [Fri03]3, with
high probability satisfies

TwoSidedGap
(
Q↓↑k

)
>

T − 2
√

T − 1− on(1)
64T3(k + 1)2(s− k)(2k − 1)

GlobalExp(SQ) >
T − 2

√
T − 1− on(1)
T + 1

, and

3Friedman’s theorem says that a random T-regular graph, whp, has two-sided spectral gap T−2
√

T−1−on(1)
T . Addi-

tionally, random graphs are triangle-free with constant probability.
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LocalExp(S) > 1/2.

Thus, Q endows a natural distribution over simplicial complexes that gives a high-dimensional
expander with high probability.

Remark 3.5. If G is strongly explicit, such as an expander from [RVW02, BATS11], then Q is also
strongly explicit since the tensor product of two strongly explicit graphs is also strongly explicit.

4 Local Expansion

For this entire section, we will mainly work with the complex LocalDensifier(G,S), so when we
use link(·) without a subscript, it will be with respect to LocalDensifier(G,S). Next, fix a face
σ = (F, f ) ∈ k-faces(LocalDensifier(G,S)). In order to study the expansion of the 1-skeleton of
link(σ), we need to first compute the weights on its 1-faces.

Let τ = {(v1, b1), (v2, b2)} ∈ 2-faces(link(σ)), where as before, vi ∈ V(G) and bi ∈ 1-faces(S).
There are several cases we need to consider:

1. Case 1: |image( f )| = 2.
Here, wσ(τ) = w(τ ∪ σ), which is proportional to the number of H-faces (F′, f ′) that contain
τ ∪ σ. The face τ ∪ σ already has (k + 3) vertices, so there are ( S

H−(k+2)) possibilities of F′.

There are 2H−(k+2) choices for f ′, since image( f ′) must equal image( f ).

2. Case 2: |image( f )| = 1.

(a) Case 2(a): v1 = v2 ∈ image( f ) and {b1, b2} ∈ 2-faces(linkS (F)).
Again, there are ( S

H−(k+2)) possibilities for F′. Since v1 = v2 ∈ image( f ), we will have

T · [2H−(k+2) − 1] + 1 choices for f ′, as v1 has T neighbors in G, and when f ′ is not
constant on v1, there are T choices for the other value it can take.

(b) Case 2(b): v1 6= v2 but (v1, v2) ∈ E(G), and {b1, b2} ∈ 2-faces(linkS (F)).
Again, we have ( S

H−(k+2)) possibilities for F, but we only have 2H−(k+2) choices for f ′;
the image of f ′ must be {v1, v2}.

(c) Case 2(c): v1 = v2 /∈ image( f ) but v1∪ image( f ) ∈ E(G), and {b1, b2} ∈ 2-faces(linkS (F)).
The analysis is identical to that of Case 2(b)

For simplicity, we’ll assign weights to the elements of 2-faces(LocalDensifier(G,S)) as below:

w({(v1, b1), (v2, b2)}) =
{

wS,k := 2H−(k+2) for Case 1, 2(b), and 2(c)

wC,k := 1 + T(2H−(k+2)) for Case 2(a)

(Here, the C and S denote “center” and “satellite,” whose meanings will be more natural when
discussing link(σ) when σ 6= ∅.)

Remark 4.1. Note that if we choose σ = ∅ (so k = −1), we simply get the weights of the 1-skeleton
of LocalDensifier(G,S) itself, which will be useful for computing global expansion.
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Theorem 4.2. Let G be a triangle-free T-regular graph and let S be a pure H-dimensional simplicial
complex. Then

GlobalExp(LocalDensifier(G,S)) = min
{[

1
2
− 1

2 · (T2H + 1)

]
TwoSidedGap(G), GlobalExp(S)

}
, and

LocalExp(LocalDensifier(G,S)) > min{TwoSidedGap(S), 1/2}.

Proof. Let G̃ be the graph obtained by adding self-loops to G, with transitions

G̃[i→ j] =


wC,−1

wC,−1+TwS,−1
if i = j

wS,−1
wC,−1+TwS,−1

otherwise

For large H, the self loop probabilities approach 1
2 , while the others approach 1

2T .
First, observe that Adj(LocalDensifier(G,S)) = Adj(G̃)⊗Adj(S). Thus,

Spectrum(LocalDensifier(G,S)) = {λµ : λ ∈ Spectrum(G̃), µ ∈ Spectrum(S)}.

and hence the second largest absolute eigenvalue is no more than max{λ1(G̃)|λ|2(S), λ1(S)|λ|2(G̃)},
which is simply equal to max{|λ|2(G̃), |λ|2(S)}. This implies that

GlobalExp(LocalDensifier(G,S)) = min{TwoSidedGap(G̃), GlobalExp(S)}.

By Lemma 2.16,

TwoSidedGap(G̃) = (1− wC,−1

wC,−1 + TwS,−1
) · TwoSidedGap(G)

=

[
1
2
− 1

2 · (T2H + 1)

]
· TwoSidedGap(G)

the first part of the theorem statement follows.
Next, we lower bound LocalExp(LocalDensifier(G,S)). For any face S in LocalDensifier(G,S), there
exists an edge {u, v} in G such that S is contained in {u, v}× S′ where S′ is a face of S . If S contains
vertices from both {u}× S′ and {v}× S′, then link(S) is isomorphic to LocalDensifier(edge, link(S′))
where edge denotes a single-edge graph.

Spectrum(LocalDensifier(edge, link(S′))) =
{

λ,−λ

2
: λ ∈ Spectrum(link(S′))

}
and hence

TwoSidedGap(1-skeleton(link(S))) > min{TwoSidedGap(S), 1/2}.

Without loss of generality, the remaining case is if S contains vertices from only {u} × S′. In this
case, link(S) is isomorphic to LocalDensifier(star, link(S′)) where star denotes a star graph with T
satellites.

Spectrum(LocalDensifier(star, link(S′))) = {λµ : λ ∈ Spectrum(link(S′)), µ ∈ Spectrum(M)} (1)

where M is star with self loops added on each vertex. We’ll call the center vertex of M the “center”
vertex, and we’ll call the remaining vertices the “satellites.”
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Using wC,k and wS,k for Cases 2(a), 2(b), and 2(c) computed above, we can also find the appro-
priate weights for M.

M[i→ j] =



wC,k

wC,k + TwS,k
if i = j, i is the center

wS,k

wC,k + TwS,k
if i is the center vertex, j is a satellite

1
2

if i is a satellite

We can completely classify the eigenspaces of Adj(M) and determine their corresponding
eigenvalues as follows.

1. The vector with value wC,k+TwS,k
2wS,k

and 1 on satellites is an eigenvector of Adj(M) with eigen-
value 1.

2. The (T− 1)-dimensional subspace of vectors which are 0 on the center of the star, and whose
entries sum to 0 is an eigenspace for eigenvalue 1/2.

3. The vector with value −T on the center and 1 on the satellites is an eigenvector with eigen-
value 1

2 −
wC,k

wC,k+TwS,k
. For large H, this eigenvalue approaches 0.

Since the above classification gives T + 1 eigenvectors it is complete and it is clear that the second
largest absolute eigenvalue of M2 is bounded by 1/2 and thus in this case as well, using (1), we
can infer

TwoSidedGap(1-skeleton(link(S))) > min{TwoSidedGap(S), 1/2}.

which means

LocalExp(LocalDensifier(G,S)) > min{TwoSidedGap(S), 1/2}.

5 Spectral Gap of High Order Walks

5.1 Offsets and Colors

We now inspect the structure of the k-faces of our construction Q in more detail.

Definition 5.1 (k-faces of Q). The set of k-faces of Q is exactly equal to the set of tuples (F, f )
where F is a k-face of B and f is a labeling of each element by endpoints of some edge {u, v} in G.
We call (F, f ) t-offset if either |{x ∈ F : f (x) = u}| = t or |{x ∈ F : f (x) = v}| = t.

Remark 5.2. Suppose t 6 k + 1− t. Note that a (k + 1− t)-offset state is also t-offset, but we will
stick to the convention of describing such states as t-offset. For example, a (k + 1)-offset state is
also 0-offset, but we will only use the term 0-offset.

Definition 5.3 (Coloring of k-faces ofQ). We color a k-face (F, f ) ofQwith image( f ). Each 0-offset
face is then colored with a vertex of G and the remaining faces are each colored with an edge of G.
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Figure 1: A 5-face in Q. Corresponding 5-face in B is {1, 3, 4, 5, 7, 8} is given by red vertices.
Labeling is (1, u), (3, v), (4, v), (5, u), (7, u), (8, v). {u, v} is an edge in G. Color of 5-face is {u, v}

Figure 2: A 0-offset 5-face. Color of 5-face is {u}.

In the rest of the section, we study the spectral gap of the Markov chain Q↓↑k , the down-up
random walk on k-faces of Q induced by certain special weight functions — weight functions
w : k-faces(Q)→ R>0 with the property that there are two values wI and wJ such that

w((F, f )) =

{
wJ if (F, f ) is 0-offset

wI otherwise.

For instance, if we impose uniform weights on the highest dimensional faces of our complex, the
propagated weights on the k-th level will satisfy the above property. The wI and wJ values for this
setup is in Appendix 1.

For the sequel, we use D to refer to the quantity TwI +wJ . The transition probabilities between
states (F, f ) and (F′, f ′) depends on a number of conditions such as whether they are 0-offset
or 1-offset or a different type, whether they arise from the same k-face in B, and the colors of
(F, f ) and (F′, f ′) respectively. We provide a detailed treatment of the transition probabilities
Q↓↑k [(F, f ) → (F′, f ′)] in Table 1 in Appendix A. From the transition probability table we observe
that:
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Observation 5.4. For every k-faces in Q↓↑k , the self-loop probability is at least 1
s−k ·

wJ
D . Therefore,

the smallest eigenvalue of Q↓↑k is at least 1
s−k ·

wJ
D − 1.

5.2 High-Level Picture of Q↓↑k
As noted in the previous subsection, each k-face can be described by three parameters: a base face
F ∈ k-faces(B), a “color” set C that is either a single vertex or an edge in E(G), and a function
f : F → C. The walk Q↓↑k is difficult to analyze directly, but by grouping states based on these
three parameters, we can decompose the walk into a projection and restriction chain, and analyze
it using the tools from [JST+04].

Figure 3: This figure illustrates Q↓↑k , with states clustered by their color. The rounded rectangles
correspond to colors that are edges, while circles correspond to colors that are single vertices. In
each cluster, the {F} indicates that all F could be represented. Similarly, { f } indicates that any f
with image( f ) as the color set can be represented. We use fu to denote the constant function on u.

At the outermost level, we can first group states into subchains based on their color. All sub-
chains whose color is an edge (the rounded rectangles in Figure 3) are isomorphic to each other;
similarly, all subchains whose color is a single vertex (the circles in Figure 3) are also isomor-
phic to each other. At first, it seems promising to partition Q↓↑k into these subchains; however, it
is inconvenient that these subchains are not all isomorphic. To remedy this, we split the single-
vertex-colored subchains into T isomorphic copies (with some changes to transition probabilities),
and absorb them into the edge-colored subchains. This is detailed in the next section.

If we use this partition, the projection chain resembles a random walk on the line graph of G.
Each restriction chain corresponds to all states of a single color C. The states are still represented
by any base face F ∈ k-faces(B) and any function f : F → C. To analyze each of these restriction
chains, it is simplest to apply [JST+04] once more.

Now, we first group states by which base face F they correspond to. The subchains derived
from fixing a particular F (the rectangles in Figure 4) are all isomorphic to each other, which leads
to a much simplified analysis. Using this partition, the projection chain is simply the k-down-up
walk on B. Each restriction chain is thus over states corresponding to a fixed base face F and fixed
color C, but the function f : F → C is allowed to vary. At this point, we may assume |C| = 2; thus
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f corresponds to assigning every element of F one of two elements. The inner restriction chain
can be modeled by a hypercube.

Figure 4: This figure illustrates a subchain of Q↓↑k , for particular color {u, v} and {u}. We can
further cluster the states in this subchain by which face F in B they represent. Again, { f } indicates
that f can be any function with image( f ) as the color.

Thus, the spectral gap of Q↓↑k is a combination of the spectral gaps of (1) the line graph of G,
(2) the k-down-up walk on B, and (3) the random walk on a hypercube.

5.3 Splitting 0-Offset Vertices

Towards our end goal of lower bounding the spectral gap ofQ↓↑k , we find it convenient to analyze
a related Markov chain Q̃↓↑k , since the related chain has a natural partition into isomorphic sub-
chains. Q̃↓↑k has the property that its spectrum contains that ofQ↓↑k , which lets us translate a lower
bound on the spectral gap of Q̃↓↑k to a lower bound on the spectral gap of Q↓↑k .

Definition 5.5 (Split chain Q̃↓↑k and coloring of states in Q̃↓↑k ). We identify each state in States(Q̃↓↑k )

with a tuple (F, f , c) where (F, f ) is a face in k-faces(Q) and c is a color.

1. For each 0-offset face (F, f ) in k-faces(Q), let {u} be the color of F, and let the neighbors of
u in G be v1, . . . , vT. States(Q̃↓↑k ) contains the states (F, f , {u, v1}), . . . , (F, f , {u, vT}) in place
of the state (F, f , u).

2. For each remaining k-face (F, f ) ofQ (i.e. each k-face that isn’t 0-offset), States(Q̃↓↑k ) contains
(F, f , image( f )).

For each pair of states (F, f , c), (F′, f ′, c′) in States(Q̃↓↑k ),

Q̃↓↑k [(F, f , c)→ (F′, f ′, c′)] =

Q
↓↑
k [(F, f )→(F′, f ′)]

T if (F′, f ′) is 0-offset

Q↓↑k [(F, f )→ (F′, f ′)] otherwise.

Intuitively, we want to split any transition to a 0-offset face in Q into T separate transitions in
Q̃↓↑k , since each 0-offset face is also split into T new states.

Definition 5.6. We say two k-faces (F, f , e) and (F′, f ′, e′) have identical base k-faces if F = F′ and
different base k-faces if F 6= F′.
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Figure 5: This figure illustrates the post-split vertices of Definition 5.5. The new vertices can take
on any F, but their mappings f will be constant functions.

Definition 5.7. Given a state (F, f , e) such that (F, f ) is a 1-offset face, there is a single vertex v
such that f (v) is different from f (u) for all u in F \ {v}. We call this vertex v a lonely vertex.

Lemma 5.8. Spec
(
Q↓↑k

)
⊆ Spec

(
Q̃↓↑k

)
, and therefore, λ2(Q↓↑k ) 6 λ2(Q̃↓↑k ).

Proof. Given a right eigenvector v ofQ↓↑k for eigenvalue λ, we exhibit a right eigenvector ṽ of Q̃↓↑k ,
also for eigenvalue λ. Let

ṽ[(F, f , c)] =

{
v[(F, f )]

T if (F, f ) is 0-offset

v[(F, f )] otherwise.

We now verify that ṽ is indeed a right eigenvector of P̃.

P̃ṽ[(F, f , c)] = ∑
(F′, f ′,c′)∈States(Q̃↓↑k )

Q̃↓↑k [(F′, f ′, c′)→ (F, f , c)]ṽ[F′, f ′, c′]

= ∑
(F′, f ′,c′)∈States(Q̃↓↑k )

(F′, f ′) 0-offset

Q̃↓↑k [(F′, f ′, c′)→ (F, f , c)]
v[F′, f ′]

T
+

∑
(F′, f ′,c′)∈States(Q̃↓↑k )
(F′, f ′) not 0-offset

Q̃↓↑k [(F′, f ′, c′)→ (F, f , c)]v[F′, f ′]

If (F, f , c) is a 0-offset face, then the above quantity is equal to

∑
(F′, f ′)∈k-faces(Q)
(F′, f ′) 0-offset

Q↓↑k [(F′, f ′)→ (F, f )]
T

·v[F
′, f ′]
T

· T + ∑
(F′, f ′)∈k-faces(Q)
(F′, f ′) not 0-offset

Q↓↑k [(F′, f ′)→ (F, f )]
T

v[(F′, f ′)]
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=
1
T ∑

(F′, f ′)∈k-faces(Q)
Q↓↑k [(F′, f ′)→ (F, f )]v[(F′, f ′)]

=
1
T

λv[(F, f )]

= λṽ[(F, f , c)].

And if (F, f , c) is not a 0-offset face, then the quantity is equal to

∑
(F′, f ′)∈k-faces(Q)
(F′, f ′) 0-offset

Q↓↑k [(F′, f ′)→ (F, f )]·v[F
′, f ′]
T

· T + ∑
(F′, f ′)∈k-faces(Q)
(F′, f ′) not 0-offset

Q↓↑k [(F′, f ′)→ (F, f )]v[(F′, f ′)]

=
1
T ∑

(F′, f ′)∈k-faces(Q)
Q↓↑k [(F′, f ′)→ (F, f )]v[(F′, f ′)]

= λv[(F, f )]

= λṽ[(F, f , c)].

Since for every right eigenvector v of P, we can exhibit a right eigenvector ṽ of P̃, we can conclude
that Spec

(
Q↓↑k

)
⊆ Spec

(
Q̃↓↑k

)
.

5.3.1 Stationary Distribution of Q̃↓↑k

If we want to apply the projection and restriction framework to Q̃↓↑k , we first need to compute its
stationary distribution. To do this, we take advantage of the time-reversibility of the high order
random walks, and apply the detailed balance equations. The transition probabilities in Q̃↓↑k are
laid out in detail in Appendix A.

Lemma 5.9. The stationary distribution of the outer restriction chain is given by:

πQ̃↓↑k
(x) =


1

|E(G)| ·
1

( s
k+1)
· 1

2
· wJ

(2k − 1)TwI + wJ
for x 0-offset

1
|E(G)| ·

1
( s

k+1)
· 1

2
· TwI

(2k − 1)TwI + wJ
otherwise

Proof. Via the detailed balance equations, we first observe that all vertices with the same offset
have the same stationary distribution. Now, let x be any 0-offset vertex and y be any 1-offset
vertex. Using the detailed balance equations, we have:

πQ̃↓↑k
(x) · wI

(k + 1)(s− k)D
= πQ̃↓↑k

(y) · wJ

(k + 1)(s− k)DT

Now, let x be any t-offset vertex, with t > 1, and let y be any (t + 1)-offset vertex. Again, using
the detailed balance equations:

πQ̃↓↑k
(x) · 1

2(k + 1)(s− k)
= πQ̃↓↑k

(y) · 1
2(k + 1)(s− k)
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From here, we see that all 0-offset faces have one stationary distribution probability, and all other
faces also share the same stationary probability. The relations above tell us that for a 0-offset vertex
x, and a t-offset vertex y with t > 1:

πQ̃↓↑k
(x)

πQ̃↓↑k
(y)

=
wJ

TwI

Normalizing so that ∑x∈Q̃↓↑k
πQ̃↓↑k

(x) = 1 gives the desired result.

5.4 Outer Projection and Restriction Chains

Now, we can further decompose Q̃↓↑k into a projection chain and m isomorphic restriction chains,
where m = |E(G)|, since we will have one partition element for each edge in G. Formally, we
partition States(Q̃↓↑k ) into m disjoint sets Ω1 ∪ · · · ∪Ωm, where Ωi = {(F, f , c) | c = ei}.

5.4.1 The Outer Projection Chain

The partition Ω induces a projection chain ([m], Po). The state space is [m]. The edge set is

E(Po) = {{i, j} | ∃(F, f , ei) ∈ Ωi and (G, g, ej) ∈ Ωj s.t. Q̃↓↑k [(F, f , ei)→ (G, g, ej)] > 0}

In words, we have an edge between i and j if there are transitions from Ωi to Ωj.
The table below summarizes the types of transition probabilities that occur between i and j

in Po. Each row corresponds to a specific vertex of “Source” type, and provides (1) the transition
probability to a specific vertex of “Target” type (where “Same k-face” denotes a transition from
(F, f ) to (F, f ′)), and (2) the number of such transitions that occur from the source.

Source Target Same k-face Probability Count in Ωj, j 6= i, (i, j) ∈ E(G)

0-offset
0-offset

Yes 1
s−k ·

wJ
DT 1

No 1
k+1 ·

1
s−k ·

wJ
DT (k + 1)(s− (k + 1))

1-offset
Yes 1

k+1 ·
1

s−k ·
wI
D (k + 1)

No 1
k+1 ·

1
s−k ·

wI
D (k + 1)(s− (k + 1))

1-offset
0-offset

Yes 1
k+1 ·

1
s−k ·

wJ
DT 1

No 1
k+1 ·

1
s−k ·

wJ
DT s− (k + 1)

1-offset
Yes 1

k+1 ·
1

s−k ·
wI
D 1

No 1
k+1 ·

1
s−k ·

wI
D s− (k + 1)

Using the table, Lemma 5.9, and the definition of projection chain from [JST+04], the transition
probabilities of Po are:

Po[i→ j] =



1
2T
· TwI + wJ

[(2k − 1)TwI + wJ ]
, i 6= j, and (i, j) ∈ E(Po),

1−
(

T − 1
T

)
·
(

TwI + wJ

(2k − 1)TwI + wJ

)
, i = j,

0 otherwise.

Our goal is to obtain the spectral gap of Po.
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Lemma 5.10. The spectral gap of Po is

TwoSidedGap(G)

2T
· wJ + TwI

wJ + (2k − 1)TwI
>

TwoSidedGap(G)

2T(2k − 1)
.

Due to the symmetry of the transition probabilities and the partition Ω, the spectrum of of Po is
easily computed from the spectrum of the following graph L:

• V(L) = [m],

• E(L) = {(i, j) ∈ E(Po) | i 6= j}.

Observation 5.11. L is the line graph of the base expander G.

Proof. By definition of the partition Ω, there is a natural bijection between vertices in V(L) and
edges in E(G). By construction, (i, j) ∈ E(L) if and only if there exists {(F, f , ei), (G, g, ej)} ∈
E(Q̃↓↑k ) such that (F, f , ei) ∈ Ωi and (G, g, ej) ∈ Ωj. In the chain Q̃↓↑k , two states (F, f , ei) and
(G, g, ej) from different partition sets are connected only if they share a common endpoint in G.
Thus, {i, j} ∈ E(Po) only if ei, ej are adjacent in G. The if direction is straightforward from the
construction of Po. So L is the line graph of G.

Proof of Lemma 5.10. Using Observation 5.11 and Theorem 2.5, we relate the spectrum of L to the
spectrum of G. Specifically, if λ is an eigenvalue of the adjacency matrix of G, then λ + T− 2 is an
eigenvalue of the adjacency matrix of L. Then, the second eigenvalues of the adjacency matrices
of L and G satisfy λ2(L) = λ2(G) + T − 2. Thus, the spectral gap of L is equal to the spectral gap
of G, i.e., λ(L) = λ(G). Use PL to denote the normalized adjacency matrix of L. Then the second
eigenvalue of PL is λ2(G)

2T−2 . We overload the symbol Po to also denote the transition matrix of the
projection chain.

Po =

(
1−

(
T − 1

T

)
· (wJ + TwI)

(wJ + (2k − 1)TwI)

)
· I + T − 1

T
· (wJ + TwI)

wJ + (2k − 1)TwI
· PL

It follows that if v, λ is an eigenvector, eigenvalue pair of PL, then

v, 1−
(

T − 1
T

)
· (wJ + TwI)

(wJ + (2k − 1)TwI)
+ λ · T − 1

T
· (wJ + TwI)

wJ + (2k − 1)TwI

is an eigenvector, eigenvalue pair of Po. Therefore the spectral gap of Po is

TwoSidedGap(G)

2T
· wJ + TwI

wJ + (2k − 1)TwI
.

5.4.2 The Outer Restriction Chain

A restriction chain Ro,i is induced by the partition block Ωi.

Lemma 5.12. For any i 6= j, i, j ∈ [m], the restriction chains Ro,i and Ro,j are isomorphic.

Proof. Let ei, ej ∈ E(G) be the edges corresponding to Ωi, Ωj respectively. Suppose ei = {ui, vi}
and ej = {uj, vj}. Define a map tij : ei → ej to be tij(ui) = uj, tij(vi) = vj. Then Ro,i and Ro,j are
isomorphic under the map Mij : Ωi → Ωj, (F, f , ei)→ (F, tij ◦ f , ej).
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Since the restriction chains are isomorphic, we can focus on Ro,1 without loss of generality. Using
the decomposition rule given in Section 2.2.1, we can compute the transition probabilities of Ro,1:

• For all 0-offset (F, f , e1), the self loop probability is

T − 1
T

+
wJ

DT(s− k)
.

The transition probability to each of its (k+ 1)(s− k− 1) adjacent 0-offset neighbors (F′, f , e1)

is
wJ

DT(k + 1)(s− k)
.

The transition probability to each of its (k + 1)(s− k) non-0-offset neighbors (F′, f ′) is

wI

D(k + 1)(s− k)
.

• For all 1-offset (F, f , e1), the self loop probability is

(T − 1)
T(k + 1)

+
wI

D(k + 1)(s− k)
+

k
2(k + 1)(s− k)

.

The transition probability to each of its (s− k) 0-offset neighbors (F′, f ′) is

wJ

DT(k + 1)(s− k)
.

The transition probability to each of its k non-0-offset neighbors with identical base k-face
(F, f ′, e1) is

1
2(k + 1)(s− k)

.

The transition probability to each of its (s − k − 1) non-0-offset neighbors with a different
base k-face (F′, f ′, e1) reached by deleting the lonely4 vertex and adding back a different
lonely vertex is

wI

D(k + 1)(s− k)
.

The transition probability to each of its 2k(s− k− 1) non-0-offset neighbors with a different
base k-face (F′, f ′, e1) reached by deleting a non-lonely vertex and adding back any other
vertex is

1
2(k + 1)(s− k)

.

• For the remaining (F, f , e1), the self loop probability is

1
2(s− k)

.

The transition probability to each of its (k+ 1) neighbors with an identical base k-face (F, f ′, e1)

is
1

2(k + 1)(s− k)
.

4Recall that “lonely” was defined in Definition 5.7
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The transition probability to each of its 2(k + 1)(s− k − 1) neighbors with a different base
k-face (F′, f ′, e1) is also

1
2(k + 1)(s− k)

.

5.4.3 Stationary Distribution of Ro,1

To compute the spectral gap of Ro,1, we will further decompose the chain in the next section. In
order to apply the projection and restriction framework once more to Ro,1, we must again compute
a stationary distribution.

Lemma 5.13. The stationary distribution of the outer restriction chain is given by:

πRo,1(x) =


1

( s
k+1)
· 1

2
· wJ

(2k − 1)TwI + wJ
for x 0-offset

1
( s

k+1)
· 1

2
· TwI

(2k − 1)TwI + wJ
otherwise

Proof. By Fact 2.20, Ro,1 is also time-reversible. We proceed using the same analysis we used for
Lemma 5.9. At the very end, we use a slightly different normalization to get the desired result.

5.5 Inner Projection and Restriction Chains

Now, we are left to study the outer restriction chain, which, for a fixed e ∈ E(G), is composed of
all (F, f , e) in States(Q̃↓↑k ). Again, we further decompose this chain into projection and restriction
chains which are easier to analyze.

We group all (F, f , e) with the same F ∈ k-faces(B) into the same restriction state space ΩF,
which induces a projection chain resembling B↓↑, the down-up walk on k-faces of B, and a restric-
tion chain resembling a lazy random walk on a (k + 1)-dimensional hypercube.

5.5.1 The Projection Chain

By defining the projection restriction chains as above, we end up with isomorphic restriction
chains for each F ∈ k-faces(B). Thus, we can identify each of the states of the inner projection
chain PI with some face F ∈ k-faces(S). Let {Fi} be this partition based on face.

Given F, F′ ∈ k-faces(S), we can only transition from F to F′ either when F = F′, or when
F ∩ F′ ∈ (k− 1)-faces. This coincides with the feasible transitions in B↓↑.

The table below indicates the transition probabilities from a specific face of “Source” type in Fi

to various “Target” faces in Fj for j 6= i. In the last column, we count transitions to any Fj, rather
than a specific Fj; this made our computations much easier. Due to the symmetry of the {Fi}
partition elements, to get the transition from Fi to a specific Fj, we simply divide the transition
probability to

⋃
j 6=i Fj by the number of Fj adjacent to Fi, which is (k + 1)(s− (k + 1)).

24



Source Delete Target Probability Count in Fj, j 6= i

0-offset anything
0-offset 1

k+1 ·
1

s−k ·
wJ
DT 1

1-offset 1
k+1 ·

1
s−k ·

wI
D 1

1-offset
minority

0-offset 1
k+1 ·

1
s−k ·

wJ
DT 1

1-offset 1
k+1 ·

1
s−k ·

wI
D 1

majority
1-offset 1

k+1 ·
1

s−k ·
1
2 1

2-offset 1
k+1 ·

1
s−k ·

1
2 1

t-offset
minority

t-offset 1
k+1 ·

1
s−k ·

1
2 1

(t− 1)-offset 1
k+1 ·

1
s−k ·

1
2 1

majority
t-offset 1

k+1 ·
1

s−k ·
1
2 1

(t + 1)-offset 1
k+1 ·

1
s−k ·

1
2 1

Using the table above, Lemma 5.13, and the framework of [JST+04], the specific transition proba-
bilities for each state in the projection chain are:

• p :=
1

T(k + 1)(s− k)
· [(2

k − 2)T + 1]TwI + wJ

(2k − 1)TwI + wJ
to each of its (k + 1)(s− (k + 1)) neighbors.

• 1− (k + 1)(s− (k + 1))p for self loops, which can be verified to be nonzero.

Let B̃↓↑ be the non-lazy version (i.e. no self loops) of B↓↑. Since in our construction, B↓↑ is a
complete complex, w(F) is uniform over F ∈ k-faces, so all transitions in B̃↓↑ are also uniform. To
understand the spectrum of PI , we can express the transition matrix of PI as:

(k + 1)(s− (k + 1))p · B̃↓↑ + [1− (k + 1)(s− (k + 1))p] · 1

Luckily, for B↓↑ a complete complex, the spectrum of B̃↓↑ is well understood. The following can
be deduced from the main theorem of [KO17].

Theorem 5.14. OneSidedGap(B↓↑) >
1

(k + 1)
.

We can now compute the second largest eigenvalue of the non-lazy walk B̃↓↑.

Corollary 5.15. OneSidedGap(B̃↓↑) >
1

(k + 1)
+

1
(k + 1)(s− k− 1)

.

Proof. Since we are working with a complete complex, all weights on sets of a given size are
uniform. Thus, the self-loop probability of B↓↑ is 1

s−k .
We can next write B↓↑ = 1

s−k · I + (1− 1
s−k ) · B̃↓↑. Using Lemma 2.16, we conclude that

OneSidedGap(B̃↓↑) =
OneSidedGap(B↓↑)

(1− 1
s−k )

We get the desired result after substituting 1
(k+1) as a lower bound for OneSidedGap(B̃↓↑).

Corollary 5.16. OneSidedGap(PI) >
1

2T(k + 1)
.
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Proof. By Lemma 2.16 again, we have

OneSidedGap(PI) = OneSidedGap(B̃↓↑) · (k + 1)(s− (k + 1))p.

Substituting for p:

OneSidedGap(PI) >
[

1
(k + 1)

+
1

(k + 1)(s− k− 1)

]
·
[

s− k− 1
T(S− k)

· [(2
k − 2)T + 1]TwI + wJ

(2k − 1)TwI + wJ

]

>
[

1
(k + 1)

+
1

(k + 1)(s− k− 1)

]
· 1

2T

>
1

2T(k + 1)

It can be verified that
1

2T
is a lower bound on

s− k− 1
T(s− k)

· [(2
k − 2)T + 1]TwI + wJ

(2k − 1)TwI + wJ
.

5.5.2 The Restriction Chain

Each restriction chain RI can be treated as a (k + 1)-dimensional hypercube with self loops. To
see this, note that each restriction chain is a set of states (F, f , e) in Q̃↓↑k where both F and e are the
same. There are thus 2k+1 states in each restriction chain, since for each x, we have two choices for
f (x). Associating x where f (x) = u to a 0-coordinate in a hypercube vertex, and x where f (x) = v
to a 1-coordinate, gives us a bijection from the restriction chain to the hypercube.

The transition probabilities can be summarized succinctly:

Source Delete Target Probability
0-offset anything 1-offset 1

k+1 ·
1

s−k ·
wI
D

1-offset
minority 0-offset 1

k+1 ·
1

s−k ·
wJ
DT

majority 2-offset 1
k+1 ·

1
s−k ·

1
2

t-offset
minority (t− 1)-offset 1

k+1 ·
1

s−k ·
1
2

majority (t + 1)-offset 1
k+1 ·

1
s−k ·

1
2

We can also define a related chain U, that has the same state space and transitions as R, but the
self loop probabilities are uniform across all vertices. More precisely:

• For all hypercube vertices, the self loop probability is 1− wI

D(S− k)
. The transition probabil-

ity to each of their (k + 1) neighbors in the hypercube is

wI

D(k + 1)(s− k)
.

The goal of this section is to bound on the spectral gap of RI . Our approach relates the spectrum
of R to the spectrum of U. Due to the uniformity of the self loop probabilities, the spectrum of U
is easy to compute.
For ease, we will write D̃ = 2wJ + wI T(2k+1 − 2). The key bound on OneSidedGap(RI) is the
following:
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Lemma 5.17.

OneSidedGap(RI) >
wJ D̃

2k+1 · (TwI)2 ·OneSidedGap(U) >
wJ

2TwI
·OneSidedGap(U) .

We are able to explicitly compute OneSidedGap(U) = 2wI
D(k+1)(s−k) (see Lemma B.5). Thus, the

following is immediate.

Corollary 5.18. If we impose uniform weights on the highest order faces,

OneSidedGap(RI) >
wJ

2TwI
· 2wJ

D(k + 1)(s− k)
>

1
(k + 1)(s− k)

.

We defer the proof of Lemma 5.17, and also provide the necessary background, to Appendix B, in
the appendix.

5.6 Rapid Mixing for High Order Random Walks

Now we put together the decomposition theorem and the lower bounds for the spectral gaps of
the project and restriction chains to obtain the following lower bound on the spectral gap of Q̃↓↑k :

Theorem 5.19. The k down-up random walk Q↓↑k has one-sided spectral gap,

OneSidedGap(Q↓↑k ) >
TwoSidedGap(G)

64T2(k + 1)2(s− k)(2k − 1)
.

Proof. Use OneSidedGap(M) to denote the spectral gap of a Markov chain M. We deduce from
Lemma 5.8 and Theorem 2.21 that

OneSidedGap(Q↓↑k ) > OneSidedGap(Q̃↓↑k ) (Lemma 5.8)

> min
{

OneSidedGap(Po)

3
,

OneSidedGap(Po)OneSidedGap(Ro,1)

3γo + OneSidedGap(Po)

}
(Theorem 2.21 on Q̃↓↑k )

> min
{

OneSidedGap(Po)

3
,

OneSidedGap(Po)

3γo + OneSidedGap(Po)
· OneSidedGap(PI)

3
,

OneSidedGap(Po)

3γo + OneSidedGap(Po)
· OneSidedGap(PI)OneSidedGap(RI)

3γI + OneSidedGap(PI)

}
(Theorem 2.21 on Ro,1),

where

γo = max
i∈[m]

max
x∈Ωi

∑
y∈Ω\Ωi

Q̃↓↑k (x, y) < 1

γI = max
F∈k-faces(S)

max
x∈V(RI)

∑
y∈V(Ro,1)\V(RI)

Ro,1(x, y) < 1.
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Furthermore, Lemma 5.10, Corollary 5.16 and Corollary 5.18 provide lower bounds for OneSidedGap(Po),
OneSidedGap(PI), and OneSidedGap(RI). If we substitute the spectral-gap lower bounds, and an
upper bound of 1 for both γo and γI , we obtain a lower bound on OneSidedGap(Q↓↑k ):

OneSidedGap(Q↓↑k ) >
TwoSidedGap(G)

64T2(k + 1)2(s− k)(2k − 1)
.

6 Future Work

Our construction and its analysis opens the door for other combinatorial and randomized candi-
dates for high dimensional expanders. Due to the numerous ways of constructing one-dimensional
expander graphs via graph products, such as the replacement product and the zig-zag product,
a natural direction to pursue is to see if there are high-dimensional analogues of these products
as well. Additionally, we traded off arbitrarily good local spectral expansion in favor of having
a randomized, simple combinatorial construction. It would be worthwhile to investigate any po-
tential improvements on the 1

2 local spectral expansion and to understand whether 1
2 is a natural

barrier for any graph–product–based construction. Lastly, though we were able to demonstrate
rapid mixing, our analysis relied heavily on the [JST+04] framework, which may not yield a tight
bound on the spectral gap of the higher order walks. It would also be interesting to investigate
either simpler analyses, or tighter analyses.

More importantly, our construction demonstrates a large family of high dimensional expanders
whose higher order walks mix rapidly, yet do not have arbitrarily good local spectral expansion.
This suggests that a constant local spectral expansion may be enough to recover the rapid mix-
ing. Thus far, the predominant machinery for establishing rapid mixing of higher order walks is
through Theorem 5.4 of [KO17], which requires the second largest eigenvalue of the links to be
o(1). It would be interesting to see whether in the regime of constant local spectral expansion
there is a decomposition theorem that establishes rapid mixing of higher order walks.

Another feature of our construction is that only an exponentially small fraction (in link size)
of the links actually have edge expansion 1

2 . The vast majority of the links, when considering
their underlying 1-skeletons, are in fact complete graphs, which have excellent expansion. In fact,
their second eigenvalues will always be negative; if we ignore the exponentially small number of
problematic links, we can actually use Theorem 5.4 of [KO17]. It would be interesting to further
explore whether (1) constant local spectrum suffices, or (2) we actually need a large fraction of the
links to have o(1) local spectral expansion.
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A Transition Probabilities of the Down-Up Walk

If we impose uniform weights at the highest order faces, then

wI = 2H−k

wJ = T2H−k − (T − 1)

For ease of notation, we use define another variable D = TwI + wJ , which will arise very often.
Note that for the uniform weights case, wJ is only slightly smaller than TwI , which will help with
some of our asymptotics.
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Table 1: Transition Probabilities in Q↓↑k

Source Delete Target Same k-face Same edge Probability Count

0-offset anything
0-offset

Yes N/A 1
s−k ·

wJ
D 1

No N/A 1
k+1 ·

1
s−k ·

wJ
D (s− (k + 1))(k + 1)

1-offset
Yes N/A 1

k+1 ·
1

s−k ·
wI
D (k + 1)T

No N/A 1
k+1 ·

1
s−k ·

wI
D (k + 1)T(s− (k + 1))

1-offset

minority

0-offset
Yes N/A 1

k+1 ·
1

s−k ·
wJ
D 1

No N/A 1
k+1 ·

1
s−k ·

wJ
D s− (k + 1)

1-offset

Yes Yes 1
k+1 ·

1
s−k ·

wI
D 1

No Yes 1
k+1 ·

1
s−k ·

wI
D s− (k + 1)

Yes No 1
k+1 ·

1
s−k ·

wI
D T − 1

No No 1
k+1 ·

1
s−k ·

wI
D (T − 1)(s− (k + 1))

majority
1-offset

Yes Yes k
k+1 ·

1
s−k ·

1
2 1

No Yes 1
k+1 ·

1
s−k ·

1
2 (s− (k + 1))k

2-offset
Yes Yes 1

k+1 ·
1

s−k ·
1
2 k

No Yes 1
k+1 ·

1
s−k ·

1
2 k(s− (k + 1))

t-offset

minority
t-offset

Yes Yes t
k+1 ·

1
s−k ·

1
2 1

No Yes 1
k+1 ·

1
s−k ·

1
2 t(s− (k + 1))

t− 1-offset
Yes Yes 1

k+1 ·
1

s−k ·
1
2 t

No Yes 1
k+1 ·

1
s−k ·

1
2 t(s− (k + 1))

majority
t-offset

Yes Yes k+1−t
k+1 ·

1
s−k ·

1
2 1

No Yes 1
k+1 ·

1
s−k ·

1
2 (k + 1− t)(s− (k + 1))

t + 1-offset
Yes Yes 1

k+1 ·
1

s−k ·
1
2 k + 1− t

No Yes 1
k+1 ·

1
s−k ·

1
2 (k + 1− t)(s− (k + 1))

B Spectral Gap of Inner Restriction Chain

B.1 Variational Characterization of Spectral Gap

We will also use a different, variational characterization of the spectral gap of a time-reversible
Markov chain (Ω, P), which will prove useful when working with self loops that have differ-
ent probabilities. This characterization provides bounds on λ2 without forcing us to analyze the
chain’s entire spectrum [Ber14].

Definition B.1. Let M = (Ω, P) be a time-reversible Markov chain. For functions f , g : Ω → R,
the Dirichlet form corresponding to M is:

EM( f , g) =
1
2 ∑

x∈Ω
∑

y∈Ω
πM(x)M[x → y] · [ f (x)− f (y)][g(x)− g(y)]

We may omit the subscript M when there is no ambiguity.

Definition B.2. Again, let (Ω, P) be a time-reversible Markov chain with stationary distribution
πM. For a functions f : Ω→ R, the variance corresponding to M is:

VarM( f ) =
1
2 ∑

x∈Ω
∑

y∈Ω
πM(x)πM(y) · [ f (x)− f (y)]2
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Table 2: Transition Probabilities in Q̃↓↑k

Source Delete Target Same k-face Same edge Probability Count

0-offset anything

0-offset Yes
Yes 1

s−k ·
wJ
DT

1
No T − 1

0-offset No
Yes 1

k+1 ·
1

s−k ·
wJ
DT

(s− (k + 1))(k + 1)
No (T − 1)(s− (k + 1))(k + 1)

1-offset Yes
Yes

1
k+1 ·

1
s−k ·

wI
D

(k + 1)
No (k + 1)(T − 1)

1-offset No
Yes (k + 1)(s− (k + 1))
No (k + 1)(T − 1)(s− (k + 1))

1-offset

minority

0-offset
Yes

Yes

1
k+1 ·

1
s−k ·

wJ
DT

1
No T − 1

No
Yes s− (k + 1)
No (s− (k + 1))(T − 1)

1-offset

Yes Yes

1
k+1 ·

1
s−k ·

wI
D

1
No Yes s− (k + 1)
Yes No T − 1
No No (T − 1)(s− (k + 1))

majority
1-offset

Yes Yes k
k+1 ·

1
s−k ·

1
2 1

No Yes
1

k+1 ·
1

s−k ·
1
2

(s− (k + 1))k

2-offset
Yes Yes k
No Yes k(s− (k + 1))

t-offset

minority
t-offset

Yes Yes t
k+1 ·

1
s−k ·

1
2 1

No Yes
1

k+1 ·
1

s−k ·
1
2

t(s− (k + 1))

t− 1-offset
Yes Yes t
No Yes t(s− (k + 1))

majority
t-offset

Yes Yes k+1−t
k+1 ·

1
s−k ·

1
2 1

No Yes
1

k+1 ·
1

s−k ·
1
2

(k + 1− t)(s− (k + 1))

t + 1-offset
Yes Yes k + 1− t
No Yes (k + 1− t)(s− (k + 1))

We may omit the subscript M when there is no ambiguity. This definition is equivalent to

VarM( f ) = EπM [ f 2]− EπM [ f ]2

These definitions are equivalent because for X, Y i.i.d, Var(X) = 1
2 E[(X−Y)2].

Theorem B.3. Let M = (Ω, P) be a time-reversible Markov Chain. Then:

OneSidedGap(M) = inf
{
EM( f , f )
VarM( f )

| f : Ω→ R, VarM( f ) 6= 0
}

Often, we will not be able to compute the exact spectral gap of a chain, but it will suffice to
have a lower bound on it. We can determine whether λ is a lower bound on OneSidedGap(M) by
checking if it satisfies the Poincaré inequality:
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Definition B.4. We say λ > 0 satisfies the Poincaré inequality if for all f : Ω→ R:

λ ·VarM( f ) 6 EM( f , f )

By the variational characterization of spectral gap, we would also have λ 6 OneSidedGap(M).

B.2 Proof of Lemma 5.17

Lemma B.5. Let H be the uniform, non-lazy walk on the (k + 1)-dim. hypercube. Then λ2(H) = 2
k+1 .

Proof. See [Bab79] for a thorough treatment of Cayley graphs. The (k + 1)-dimensional hypercube
is the Cayley graph derived from the cyclic group Zk+1

2 .

Observation B.6. λ(U) is 2wI
D(k+1)(S−k) .

Proof. Let PH denote the transition matrix of a uniform random walk on a (k + 1)-dimensional
hypercube, with no self loops. Then, the transition matrix PU of U can be expressed as:

PU =

(
1− wI

D(S− k)

)
· I + wI

D(S− k)
· PH

By Lemma 2.16, we have λ(U) = λ(H) · wI
D(S−k) , so we get the desired result via Lemma B.5.

We also observe that the stationary distribution of U, which we will call πU , is uniform over the
2k+1 states. The stationary distribution of RI , denoted πRI can also be described explicitly.

Observation B.7. The stationary distribution πRI of chain RI is

πRI (x) =


wJ

2wJ+wI T(2k+1−2) if x ∈ {~0,~1}
TwI

2wJ+TwI(2k+1−2) otherwise

Proof. By time reversibility of RI [JST+04], the detailed balance equations imply that for all y that
are t-offset, for t > 1, the stationary probability πRI (y) is the same, and πRI (~0) = πRI (~1).

Let x be 0-offset and y be 1-offset. Again, by time-reversibility of Ri and detailed balance:

πRI (x) · wI

D(k + 1)(S− k)
= πRI (y) ·

wJ

DT(k + 1)(S− k)

This tells us πRI (x) = wJ
TwI
· πRI (y). Solving for ∑x∈{0,1}k+1 πRI (x) = 1 gives the desired result.

Recall that we write D̃ = 2wJ + wI T(2k+1 − 2).

Proof of Lemma 5.17. Let g be a real-valued function over the k-faces of LocalDensifier(G,S). Using
Theorem B.3, it suffices to prove that for all g,

ERI (g, g)
VarRI (g, g)

>
wJ D̃

2k+1 · (TwI)2 ·
EU(g, g)

VarU(g, g)
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First, we compute both EU(g, g) and ER(g, g).

EU(g, g) =
1
2 ∑

x,y∈{0,1}(k+1)

πU(x) · [g(x)− g(y)]2 · PU(x, y)

=
1
2
· 1

2(k+1)
· wI

D(k + 1)(S− k) ∑
x,y∈{0,1}(k+1)

[g(x)− g(y)]2

ERI (g, g) =
1
2 ∑

x,y∈{0,1}(k+1) :x∈{~0,~1}
πRI (x) · [g(x)− g(y)]2 · PRI (x, y)

+
1
2 ∑

x,y∈{0,1}(k+1) :x/∈{~0,~1}
πRI (x) · [g(x)− g(y)]2 · PRI (x, y)

=
1
2 ∑

x,y∈{0,1}(k+1) :x∈{~0,~1}

wJ

D̃
· [g(x)− g(y)]2 · wI

D(k + 1)(S− k)

+
1
2 ∑

x∈{0,1}(k+1) :x 1-balanced

TwI

D̃
·

 ∑
y∈{0,1}(k+1) :y 0-balanced

[g(x)− g(y)]2 · wJ

DT(k + 1)(S− k)

+ ∑
y∈{0,1}(k+1) :y not 0-balanced

[g(x)− g(y)]2 · 1
2(k + 1)(S− k)


+

1
2 ∑

x,y∈{0,1}(k+1) :x,y/∈{~0,~1}

TwI

D̃
· [g(x)− g(y)]2 · 1

2(k + 1)(S− k)

>
1
2
· wIwJ

D̃D(k + 1)(S− k)
∑

x,y∈{0,1}(k+1)

[g(x)− g(y)]2

From the above computations, we can conclude that

ERI (g, g) >
2(k+1) · wJ

D̃
· EU(g, g)

Similarly, we can compute both VarU(g) and VarR(g):

VarU(g) =
1
2 ∑

x,y∈{0,1}k+1

πU(x)πU(y)[ f (x)− f (y)]2

=
1
2
· 1

22(k+1) ∑
x,y∈{0,1}k+1

[ f (x)− f (y)]2

VarRI (g, g) =
1
2 ∑

x,y∈{~0,~1}
πRI (x)πRI (y)[ f (x)− f (y)]2

+
1
2 ∑

x∈{~0,~1}, y∈{0,1}k+1\{~0,~1} or
x∈{0,1}k+1\{~0,~1}, y∈{~0,~1}

πRI (x)πRI (y)[ f (x)− f (y)]2

+
1
2 ∑

x,y∈{~0,~1}
πRI (x)πRI (y)[ f (x)− f (y)]2
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=
1
2 ∑

x,y∈{~0,~1}

w2
J

D̃2
[ f (x)− f (y)]2 +

1
2 ∑

x∈{~0,~1}, y∈{0,1}k+1\{~0,~1} or
x∈{0,1}k+1\{~0,~1}, y∈{~0,~1}

TwIwJ

D̃2
[ f (x)− f (y)]2

+
1
2 ∑

x,y∈{~0,~1}

(TwI)
2

D̃2
[ f (x)− f (y)]2

6
1
2
· (TwI)

2

D̃2 ∑
x,y∈{0,1}k+1

[ f (x)− f (y)]2

From the above computations, we can conclude that

VarRI (g) 6
22(k+1) · (TwI)

2

D̃2
VarU(g)

Combining this with what we know about ERI (g, g) and EU(g, g), we conclude the lemma.
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