Local-to-global theorems for high-dimensional expansion

Sidhanth Mohanty

June 28, 2022

Abstract

These notes are a re-exposition of the proofs of the local-to-global expansion theorem in simplicial complexes of [AL20] and the trickling-down theorem of [Opp18].

1 Basic definitions

Definition 1.1 (Simplicial complex). A d-dimensional simplicial complex \mathcal{S} is a collection of sets called faces along with a positive weight function $w: \mathcal{S} \rightarrow \mathbb{R}^{+}$such that:

- if $U \in \mathcal{S}$, then any $U^{\prime} \subseteq U$ is also in \mathcal{S}.
- for any $U \in \mathcal{S}$ there is a size- $d+1$ set $U^{\prime} \in \mathcal{S}$ such that $U^{\prime} \supseteq U$.
- for any set $|U| \leqslant d, w(U)=\sum_{\substack{U^{\prime}: U^{\prime} \supset U \\\left|U^{\prime}\right|=|\bar{U}|+1}} w\left(U^{\prime}\right)$.

Remark 1.2. Perhaps somewhat confusingly, size- $k+1$ faces are called k-faces.
Remark 1.3. A weighting of the top-level (size- $d+1$) faces, trickles down and induces a weighting of the remaining faces.

Definition 1.4 (Link). Given a simplicial complex \mathcal{S} and a k-face U where $k \leqslant d-2$, we say the complex \mathcal{S}_{U} defined as:

$$
\left\{U^{\prime} \backslash U: U^{\prime} \supseteq U, U \in \mathcal{S}\right\}
$$

along with weight function $w_{U}\left(U^{\prime} \backslash U\right):=w\left(U^{\prime}\right)$ is a k-link.
Definition 1.5. The k-skeleton of \mathcal{S}, denoted $\mathcal{S} \leqslant k$ is the complex obtained by taking all $\leqslant k$-faces of \mathcal{S}.

Remark 1.6. The 1-skeleton of a complex is the induced graph on it. An important object for us will be the 1 -skeleton of a link. Given a k-face U, we will use M_{U} to denote the Markov transition matrix for the random walk on the induced graph on \mathcal{S}_{U}.

Definition 1.7 (Random walks). We will be concerned with the up-down walk on k-faces for $0 \leqslant$ $k \leqslant d-1$ and the down-up walk on k-faces for $0 \leqslant k \leqslant d$. The transition in one step of the up-down walk starting at a face U is the following:

- Choose a $k+1$-face U^{\prime} containing U with probability proportional to $w\left(U^{\prime}\right)$.
- Drop a uniformly random element e in U^{\prime} and walk to $U^{\prime \prime}:=U^{\prime} \backslash\{e\}$.

One step of the down-up walk is:

- Drop a uniformly random element e in U and let $U^{\prime}:=U \backslash\{e\}$.
- Walk to a k-faces $U^{\prime \prime}$ containing U^{\prime} with probability proportional to $w\left(U^{\prime \prime}\right)$.

We use P^{Δ} and P^{∇} to denote the transition matrices of the up-down and down-up walks respectively, and L^{Δ}, L^{∇} for the Laplacian operators where $L=\mathbb{1}-M$ is the Laplacian for a Markov operator M. We use $\gamma(M)$ to denote the spectral gap of a Markov transition matrix M. We will use the subscript k to indicate we are working with k-faces.

Remark 1.8. The up-down and down-up walks can be verified to be reversible Markov chains, and it can be verified that the stationary distribution is proportional to the weight function w on k-faces.

Remark 1.9. It can be verified that $\gamma\left(P_{k}^{\Delta}\right)=\gamma\left(P_{k+1}^{\nabla}\right)$.
Definition 1.10. Given a Markov transition matrix M, we say $\{a, b\} \sim M$ to denote choosing a random edge by first picking a according to the stationary distribution of M and then walking to a random edge $\{a, b\}$ according to M.

Remark 1.11. When M is the Markov transition matrix of a reversible Markov chain with stationary distribution π, its spectral gap is equal to:

$$
\min _{f} \frac{\mathbf{E}_{\{u, v\} \sim M}\left[\left(f_{u}-f_{v}\right)^{2}\right]}{\mathbf{E}_{u, v \sim \pi}\left[\left(f_{u}-f_{v}\right)^{2}\right]}=\min _{f} \frac{2\langle f, L f\rangle_{\pi}}{\mathbf{E}_{u, v \sim \pi}\left[\left(f_{u}-f_{v}\right)^{2}\right]}
$$

where L is the Markov Laplacian $\mathbb{1}-M$.

2 Local-to-global expansion

A useful tool in analyzing the spectral gap of the up-down walk is the following "local-to-global" theorem of [AL20].

Theorem 2.1. Given a d-dimensional simplicial complex \mathcal{S}, define γ_{j} as $\min _{U \in j \text {-links }} \gamma\left(M_{U}\right)$. Then for $0 \leqslant k \leqslant d-1$:

$$
\gamma\left(P_{k}^{\Delta}\right)=\gamma\left(P_{k+1}^{\nabla}\right) \geqslant \frac{1}{k+2} \prod_{j=-1}^{k-1} \gamma_{j} .
$$

Proof. We proceed by induction. When $k=0$, the statement is clear. Suppose we know the above bound on $\gamma\left(P_{j}^{\Delta}\right)$ for all $j \leqslant k-1$. Denoting π_{j} as the stationary distribution on j-faces, for any function f on the k-faces of \mathcal{S} :

$$
\begin{aligned}
\left\langle f, L_{k}^{\Delta} f\right\rangle_{\pi_{k}} & =\underset{\left\{U^{\prime}, U\right\} \sim P_{k}^{\Delta}}{\mathbf{E}}\left[\frac{\left(f_{U}-f_{U^{\prime}}\right)^{2}}{2}\right] \\
& =\underset{S \sim \pi_{k-1}\{u, v\} \sim\left(\frac{k+1}{k+2}\right) M_{S}+\frac{1}{k+2} \mathbb{1}}{\mathbf{E}}\left[\frac{\left(f_{S \cup\{u\}}-f_{S \cup\{v\}}\right)^{2}}{2}\right]
\end{aligned}
$$

$$
\begin{aligned}
& \geqslant \frac{k+1}{k+2} \gamma_{k-1} \underset{S \sim \pi_{k-1}}{\mathbf{E}} \underset{u, v \sim \pi_{S}}{\mathbf{E}}\left[\frac{\left(f_{S \cup\{u\}}-f_{S \cup\{v\}}\right)^{2}}{2}\right] \\
& =\frac{k+1}{k+2} \gamma_{k-1} \underset{\left\{U, U^{\prime}\right\} \sim P_{k}^{\nabla}}{\mathbf{E}}\left[\frac{\left(f_{U}-f_{U^{\prime}}\right)^{2}}{2}\right] \\
& =\frac{k+1}{k+2} \gamma_{k-1}\left\langle f, L_{k}^{\nabla} f\right\rangle_{\pi_{k}} \\
& \geqslant \frac{k+1}{k+2} \gamma_{k-1} \frac{1}{k+1} \prod_{j=-1}^{k-2} \gamma_{j} \\
& =\frac{1}{k+2} \prod_{j=-1}^{k-1} \gamma_{j}
\end{aligned}
$$

$$
\geqslant \frac{k+1}{k+2} \gamma_{k-1} \frac{1}{k+1} \prod_{j=-1}^{k-2} \gamma_{j} \quad \text { (by induction hypothesis) }
$$

which completes the proof.

3 Trickling-down theorem

Sometimes, to lower bound the spectral gaps of all links in a complex it suffices to lower bound the spectral gap of only the top-level links and verify that the rest of the links are merely connected. This is articulated by the following statement due to [Opp18].

Theorem 3.1. Given a d-dimensional simplicial complex $\mathcal{S}, k \leqslant d-2$, and a lower bound γ on the spectral gap of all k-links. Then for every $(k-1)$-link U, either $\gamma\left(M_{U}\right)=0$ or $\gamma\left(M_{U}\right) \geqslant 2-\frac{1}{\gamma}$.

Proof. It suffices to prove the statement for $k=0$. In particular, we assume that the link of every vertex has spectral gap at least γ and show that this implies that the graph underlying \mathcal{S} either has spectral gap at least $2-\frac{1}{\gamma}$ or is disconnected.

We do so via the following chain of inequalities:

$$
\begin{aligned}
\left\langle f, L_{0}^{\Delta} f\right\rangle_{\pi_{0}} & =\underset{\{v, w\} \sim L_{0}^{\Delta}}{\mathbf{E}}\left[\frac{\left(f_{v}-f_{w}\right)^{2}}{2}\right] \\
& \left.=\underset{u \sim \pi_{0}\{v, w\} \sim M_{u}}{\mathbf{E}} \mathbf{E} \frac{\left(f_{v}-f_{w}\right)^{2}}{2}\right] \\
& \geqslant \gamma_{u \sim \pi_{0}}^{\mathbf{E}} \underset{v, w \sim \pi_{u}}{\mathbf{E}}\left[\frac{\left(f_{v}-f_{w}\right)^{2}}{2}\right]
\end{aligned}
$$

$$
=\gamma\left\langle f,\left(\mathbb{1}-\left(P_{0}^{\Delta}\right)^{2}\right) f\right\rangle \quad \text { (by time reversibility). }
$$

Suppose L_{0}^{Δ} has spectral gap α, then the spectral gap of $\mathbb{1}-\left(P_{0}^{\Delta}\right)^{2}$ is $1-(1-\alpha)^{2}=2 \alpha-\alpha^{2}$, and consequently the above is at least:

$$
\alpha \gamma(2-\alpha) \underset{v, w \sim \pi_{0}}{\mathbf{E}}\left[\frac{\left(f_{v}-f_{w}\right)^{2}}{2}\right] .
$$

Let f^{*} be a nonconstant vector that achieves the spectral gap of L_{0}^{Δ}. Then:

$$
\alpha \underset{v, w \sim \pi_{0}}{\mathbf{E}}\left[\frac{\left(f_{v}^{*}-f_{w}^{*}\right)^{2}}{2}\right] \geqslant \alpha \gamma(2-\alpha) \underset{v, w \sim \pi_{0}}{\mathbf{E}}\left[\frac{\left(f_{v}^{*}-f_{w}^{*}\right)^{2}}{2}\right]
$$

and consequently

$$
\alpha \geqslant \alpha \gamma(2-\alpha) .
$$

Since we know $\alpha \geqslant 0$, to satisfy the above inequality either $\alpha=0$ or $\alpha \geqslant 2-\frac{1}{\gamma}$.

Acknowledgments

I would like to thank Tim Hsieh and Prasad Raghavendra for reading an earlier version of this writeup and encouraging me to post this online, and Ishaq Aden-Ali for catching typos.

References

[AL20] Vedat Levi Alev and Lap Chi Lau. Improved analysis of higher order random walks and applications. In Proceedings of the 52nd Annual ACM SIGACT Symposium on Theory of Computing, pages 1198-1211, 2020. 1, 2
[Opp18] Izhar Oppenheim. Local spectral expansion approach to high dimensional expanders part i: Descent of spectral gaps. Discrete \& Computational Geometry, 59(2):293-330, 2018. 1,3

