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Abstract

These notes are a re-exposition of the proofs of the local-to-global expansion theorem in
simplicial complexes of [AL20] and the trickling-down theorem of [Opp18].

1 Basic definitions

Definition 1.1 (Simplicial complex). A d-dimensional simplicial complex S is a collection of sets
called faces along with a positive weight function w : S → R+ such that:

• if U ∈ S , then any U′ ⊆ U is also in S .

• for any U ∈ S there is a size-d + 1 set U′ ∈ S such that U′ ⊇ U.

• for any set |U| 6 d, w(U) = ∑ U′ :U′⊇U
|U′|=|U|+1

w(U′).

Remark 1.2. Perhaps somewhat confusingly, size-k + 1 faces are called k-faces.

Remark 1.3. A weighting of the top-level (size-d+ 1) faces, trickles down and induces a weighting
of the remaining faces.

Definition 1.4 (Link). Given a simplicial complex S and a k-face U where k 6 d− 2, we say the
complex SU defined as:

{U′ \U : U′ ⊇ U, U ∈ S}

along with weight function wU(U′ \U) := w(U′) is a k-link.

Definition 1.5. The k-skeleton of S , denoted S6k is the complex obtained by taking all 6 k-faces of
S .

Remark 1.6. The 1-skeleton of a complex is the induced graph on it. An important object for us
will be the 1-skeleton of a link. Given a k-face U, we will use MU to denote the Markov transition
matrix for the random walk on the induced graph on SU .

Definition 1.7 (Random walks). We will be concerned with the up-down walk on k-faces for 0 6
k 6 d− 1 and the down-up walk on k-faces for 0 6 k 6 d. The transition in one step of the up-down
walk starting at a face U is the following:

• Choose a k + 1-face U′ containing U with probability proportional to w(U′).
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• Drop a uniformly random element e in U′ and walk to U′′ := U′ \ {e}.

One step of the down-up walk is:

• Drop a uniformly random element e in U and let U′ := U \ {e}.

• Walk to a k-faces U′′ containing U′ with probability proportional to w(U′′).

We use P∆ and P∇ to denote the transition matrices of the up-down and down-up walks respec-
tively, and L∆, L∇ for the Laplacian operators where L = 1− M is the Laplacian for a Markov
operator M. We use γ(M) to denote the spectral gap of a Markov transition matrix M. We will use
the subscript k to indicate we are working with k-faces.

Remark 1.8. The up-down and down-up walks can be verified to be reversible Markov chains,
and it can be verified that the stationary distribution is proportional to the weight function w on
k-faces.

Remark 1.9. It can be verified that γ(P∆
k ) = γ(P∇k+1).

Definition 1.10. Given a Markov transition matrix M, we say {a, b} ∼ M to denote choosing a
random edge by first picking a according to the stationary distribution of M and then walking to
a random edge {a, b} according to M.

Remark 1.11. When M is the Markov transition matrix of a reversible Markov chain with station-
ary distribution π, its spectral gap is equal to:

min
f

E{u,v}∼M
[
( fu − fv)2]

Eu,v∼π [( fu − fv)2]
= min

f

2〈 f , L f 〉π
Eu,v∼π [( fu − fv)2]

where L is the Markov Laplacian 1−M.

2 Local-to-global expansion

A useful tool in analyzing the spectral gap of the up-down walk is the following “local-to-global”
theorem of [AL20].

Theorem 2.1. Given a d-dimensional simplicial complex S , define γj as minU∈j-links γ(MU). Then for
0 6 k 6 d− 1:

γ(P∆
k ) = γ(P∇k+1) >

1
k + 2

k−1

∏
j=−1

γj.

Proof. We proceed by induction. When k = 0, the statement is clear. Suppose we know the above
bound on γ(P∆

j ) for all j 6 k − 1. Denoting πj as the stationary distribution on j-faces, for any
function f on the k-faces of S :

〈 f , L∆
k f 〉πk = E

{U′,U}∼P∆
k

[
( fU − fU′)

2

2

]

= E
S∼πk−1

E
{u,v}∼( k+1

k+2 )MS+
1

k+21

[
( fS∪{u} − fS∪{v})

2

2

]
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>
k + 1
k + 2

γk−1 E
S∼πk−1

E
u,v∼πS

[
( fS∪{u} − fS∪{v})

2

2

]

=
k + 1
k + 2

γk−1 E
{U,U′}∼P∇k

[
( fU − fU′)

2

2

]
=

k + 1
k + 2

γk−1〈 f , L∇k f 〉πk

>
k + 1
k + 2

γk−1
1

k + 1

k−2

∏
j=−1

γj (by induction hypothesis)

=
1

k + 2

k−1

∏
j=−1

γj

which completes the proof.

3 Trickling-down theorem

Sometimes, to lower bound the spectral gaps of all links in a complex it suffices to lower bound the
spectral gap of only the top-level links and verify that the rest of the links are merely connected.
This is articulated by the following statement due to [Opp18].

Theorem 3.1. Given a d-dimensional simplicial complex S , k 6 d− 2, and a lower bound γ on the spectral
gap of all k-links. Then for every (k− 1)-link U, either γ(MU) = 0 or γ(MU) > 2− 1

γ .

Proof. It suffices to prove the statement for k = 0. In particular, we assume that the link of every
vertex has spectral gap at least γ and show that this implies that the graph underlying S either
has spectral gap at least 2− 1

γ or is disconnected.
We do so via the following chain of inequalities:

〈 f , L∆
0 f 〉π0 = E

{v,w}∼L∆
0

[
( fv − fw)2

2

]
= E

u∼π0
E

{v,w}∼Mu

[
( fv − fw)2

2

]
> γ E

u∼π0
E

v,w∼πu

[
( fv − fw)2

2

]
= γ〈 f , (1− (P∆

0 )
2) f 〉 (by time reversibility).

Suppose L∆
0 has spectral gap α, then the spectral gap of 1− (P∆

0 )
2 is 1− (1− α)2 = 2α− α2, and

consequently the above is at least:

αγ(2− α) E
v,w∼π0

[
( fv − fw)2

2

]
.

Let f ∗ be a nonconstant vector that achieves the spectral gap of L∆
0 . Then:

α E
v,w∼π0

[
( f ∗v − f ∗w)2

2

]
> αγ(2− α) E

v,w∼π0

[
( f ∗v − f ∗w)2

2

]
3



and consequently
α > αγ(2− α).

Since we know α > 0, to satisfy the above inequality either α = 0 or α > 2− 1
γ .
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