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Abstract

Kahale [Kah95] proved that linear sized sets in d-regular Ramanujan graphs have vertex expansion
at least d

2 and complemented this with construction of near-Ramanujan graphs with vertex expansion
no better than d

2 . However, the construction of Kahale encounters highly local obstructions to better
vertex expansion. In particular, the poorly expanding sets are associated with short cycles in the graph.
Thus, it is natural to ask whether the vertex expansion of high-girth Ramanujan graphs breaks past the
d
2 bound. Our results are two-fold:

1. For every d = p + 1 for prime p and in�nitely many n, we exhibit an n-vertex d-regular graph with
girth Ω(logd−1 n) and vertex expansion of sublinear sized sets bounded by d+1

2 whose nontrivial
eigenvalues are bounded in magnitude by 2

√
d − 1 + O (

1
log n).

2. In any Ramanujan graph with girth C log n, all sets of size bounded by n0.99C/4 have near-lossless
vertex expansion (1 − od (1))d .

The tools in analyzing our construction include the nonbacktracking operator of an in�nite graph, the
Ihara–Bass formula, a trace moment method inspired by Bordenave’s proof of Friedman’s theorem
[Bor19], and a method of Kahale [Kah95] to study dispersion of eigenvalues of perturbed graphs.

∗mckenzie@math.berkeley.edu. This material is based upon work supported by the National Science Foundation
Graduate Research Fellowship Program under Grant No. DGE-1752814. Any opinions, �ndings, and conclusions or recom-
mendations expressed in this material are those of the authors and do not necessarily re�ect the views of the National Science
Foundation.

†sidhanthm@cs.berkeley.edu. Supported by NSF grant CCF-1718695.

ar
X

iv
:2

00
7.

13
63

0v
2 

 [
m

at
h.

C
O

] 
 2

0 
Fe

b 
20

21



1 Introduction

This paper is concerned with expander graphs, which are ubiquitous in theoretical computer science. A
natural and highly well-studied quantity associated with a d-regular graph is its edge expansion de�ned as

min
|S|6�n

E(S, S)/|S|,

namely the minimum ratio of edges leaving a set S to the size of S for all S of appropriately bounded size.
While edge expansion is known to be intractable to compute, there are explicit constructions of good edge
expanders, and it is closely related to the second largest magnitude eigenvalue of its adjacency matrix,
also known as spectral expansion of a graph, via the expander mixing lemma and Cheeger’s inequality
[Alo86]. Spectral expansion is easily computable. In particular, an application of the expander mixing lemma
proves that small enough sets in graphs with spectral expansion o(d) have near-optimal edge expansion of
(1 − od (1))d .

A natural analog to edge expansion is vertex expansion, de�ned as

min
|S|6�n

|Γ(S)|/|S|

for some constant �, where Γ(S) is the neighborhood of the set S (potentially containing vertices of S).
However, as di�cult as edge expansion is to ascertain, vertex expansion has proven far more challenging.

As witnessed by balls around a vertex, we cannot hope for vertex expansion greater than d −1. Therefore
we call a graph a lossless vertex expander if for every � , there exists an � such that there is vertex expansion
d − 1 − � for sets of size �n. Lossless vertex expanders exist since a random d-regular graph is one with
high probability (see [HLW18, Theorem 4.16] for a proof). However no deterministic construction of such
graphs is known. In an e�ort to understand lossless vertex expansion better and give explicit constructions,
a natural question to ask is:

What properties of random graphs leads to lossless vertex expansion?

Since a random d-regular graph is near-Ramanujan with high probability [Fri03], and since near-Ramanujan
graphs have near-optimal edge expansion, it is natural to inquire if spectral expansion has any implications
for vertex expansion as well. Kahale [Kah95] showed that the spectral expansion gives a bound on the
vertex expansion. Speci�cally, Ramanujan graphs (namely graphs with optimal spectral expansion) have
vertex expansion at least d/2. While this is a nontrivial implication, it falls short of achieving the coveted
losslessness property. Kahale also proved that the bound of d/2 is tight. In particular, he exhibited an in�nite
family of near-Ramanujan graphs with vertex expansion d/2, which means spectral expansion alone is not
su�cient for lossless vertex expansion.

The occurrence of a copy of K2,d 1 as a subgraph is the obstruction to lossless vertex expansion in
Kahale’s example. Kahale’s example deviates from a random graph in that it is highly unlikely for a random
graph to contain a copy of K2,d as a subgraph. More generally, random graphs have the property that with
high probability any two “short” cycles are far apart, which Kahale’s example doesn’t satisfy. Thus, it is
natural to ask if the “near-Ramanujan” property in conjunction with the “separatedness of cycles” property
of random graphs break past the d/2 barrier of Kahale. The “separatedness of cycles” property is especially
interesting to consider since it is a key property of random graphs exploited in proofs of Alon’s conjecture
[Fri03, Bor19]. A concrete question we can ask is:

1complete bipartite graph with 2 vertices on one side and d vertices on the other
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Do Ramanujan graphs with Ω(logd−1 n) girth have lossless vertex expansion?

An a�rmative answer to the above question would prove that the Ramanujan graphs of Lubotzky, Phillips,
and Sarnak [LPS88] are lossless vertex expanders. Towards answering the above question, we prove the
following negative result:

Theorem 1.1. For every d = p + 1 for prime p, there is an in�nite family of d-regular graphs G on n vertices
of girth > ( 23 − on(1)) logd−1 n where there is a set of vertices U such that |Γ(U )| 6 (d + 1)|U |/2, |U | 6 n1/3,
and max{�2(G), −�n(G)} 6 2

√
d − 1 + O(1/logd−1 n).

We also complement the above with a positive result which can be summarized as “small enough sets
in Ramanujan graphs expand nearly losslessly”:

Theorem 1.2. Let G be a d-regular Ramanujan graph with girth C logd−1 n, then every set of S of size 6 n�

for � < C
4 has vertex expansion (1 − od (1))d .

1.1 Technical overview

We give a brief description of how Theorem 1.1 and Theorem 1.2 are proved.

Overview of proof of Theorem 1.1. Our proof is inspired by that of Kahale’s. At a high level, Kahale
embeds a copy of K2,d within a Ramanujan graph. We proceed similarly to Kahale, but instead of embedding
a K2,d , we embed a single subgraph H that is high girth but a lossy vertex expander and show that if H has
size n� for some 0 < � 6 1/3, the overall graph is still near-Ramanujan.

Our proof involves two steps: the �rst step is in proving that the subgraph H being embedded has
spectral radius bounded by 2

√
d − 1, and the second step is in proving that planting H within a Ramanujan

graph results in a near-Ramanujan graph. For the �rst step, we describe an in�nite graph containing H
and bound its spectral radius via a trace moment method. The trace moment method involves bounding
the number of closed walks satisfying certain properties within a graph, and is inspired by an encoding
argument from Bordenave’s proof of Friedman’s theorem [Bor19].

The second step is in proving that our method of embedding a copy of H within a Ramanujan graph
does not perturb the eigenvalues by a large amount. Towards doing so, we use the fact that the spectral
radius of H is bounded by 2

√
d − 1 in conjunction with Kahale’s argument about dispersion of eigenvalues

in high-girth graphs.

Overview of proof of Theorem 1.2. We �rst prove that if a set S in a Ramanujan graph has “lossy”
vertex expansion, then we can construct a graph H on vertex set S such that (i) the girth of H is at least
half the girth of G, and (ii) the average degree of H is “high” (in particular, the worse the vertex expansion
of S, the higher the average degree of H ). We then employ the irregular Moore bound, which gives a
quantitative tradeo� between the average degree of a graph and its girth. In particular, this would imply
that a Ramanujan graph with “lossy” vertex expansion necessarily must have “low” girth.

1.2 Related work

Applications of vertex expanders. There are many applications of expander graphs where having
vertex expansion is particularly useful. For example, lossless expanders are particularly of interest in
the �eld of error correcting codes [LMSS01, SS96, Spi96]. Lossless vertex expanders give linear error
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correcting codes that are decodable in linear time [SS96]. Guruswami, Lee and Razborov [GLR08] use
bipartite vertex expanders to construct large subspaces ofRn where all vectors x in the subspace satisfy
(log n)−O(log log log n)||x ||2 6 ||x ||1 6

√
n||x2||.

Explicit constructions. Constructions of Ramanujan graphs of [LPS88, Mar88, Mor94] of all degrees
that are of the form pr + 1 for p prime, as well as the construction of near-Ramanujan graphs of every
degree of [MOP20] have vertex expansion ∼ d

2 just by virtue of being Ramanujan via Kahale’s result. In fact
no deterministic construction has improved upon the d/2 bound obtained from solely spectral information.
In a remarkable work, Capalbo et. al. [CRVW02] exhibited an explicit construction of a bipartite graph
where subsets of one side of the bipartite graph expand losslessly to the other, using a zig-zag product
so the the losslessness of a small, random-like graph boosts the expansion from a large, potentially lossy
vertex expanding graph.

Quantum Ergodicity. Quantum ergodicity is another area where both local and global properties of
random-like graphs are used. In particular, Anantharaman and Le Masson [ALM15] proved that graphs that
have few short cycles (and are therefore close to high girth) and spectral expansion are quantum ergodic,
which in this context means the eigenvectors are equidistributed across vertices. Anantharaman, as well
as Brooks, Le Masson, and Lindenstrauss exhibited alternative proofs [Ana15, BLML16]. The proof from
[BLML16] shows that quantum ergodicity is equivalent to the mixing of a certain graphical operator. They
then use high girth to show that this is equivalent to showing mixing on the in�nite tree, then expansion
to show the nonbacktracking operator mixes on the tree.

Eigenvector delocalization. Ganguly and Srivastava, and later Alon, Ganguly and Srivastava [GS18,
AGS19] give a perturbation of the LPS graph similar to Kahale’s argument, but instead of individual vertices,
two trees are added and connected to the graph. By assuming the tree is su�ciently deep and carefully
connecting the tree to the rest of the graph, the authors create a graph that is high girth but contains
eigenvectors that are localized. These graphs are also lossy vertex expanders. However, they show that
these graphs cannot be Ramanujan, but rather have spectral radius at least (2 + c)

√
d − 1 where c > 0 is

a constant. Alon [Alo20] used eigenvector delocalization to create near-Ramanujan expanders of every
degree by perturbing known constructions of Ramanujan or near-Ramanujan graphs. Paredes [Par20]
used similar techniques to remove short cycles in a graph while preserving expansion and uses this to
algorithmically create graphs that are near-Ramanujan and also have girth at least Ω(

√
log n).

Complexity of constraint satisfaction problems. Proofs that it is hard for even linear degree Sum-
of-Squares to refute random 3XOR and 3SAT instances on n variables [Gri01, Sch08] rely on lossless
vertex expansion of some sets in a graph underlying a random instance, which suggests a connection
between deterministic algorithms for constructing lossless vertex expanders and algorithms for explicit
hard instances for Sum-of-Squares.

2 Preliminaries

2.1 Elementary graph theory

De�nition 2.1. The girth g(G) of a graph G is the length of the smallest cycle in G.
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De�nition 2.2. For G = (V , E), the valency of a ∈ V to B ⊂ V is |Γ(a) ∩ B|, where Γ(S) for S ⊂ V is the set
of neighbors of S in G.

De�nition 2.3. The ball of radius ℎ around a set U ⊂ V , denoted Ballℎ(U ), is the set of vertices of distance
at most ℎ from U .

De�nition 2.4. The vertex expansion of a set U ⊂ V is

Ψ(U ) ∶=
|Γ(U )|
|U |

.

Similarly, the �-vertex expansion of a graph G is:

Ψ�(G) = min
|U |6� |V |

Ψ(U )

where U ranges over subsets of V , and � is an arbitrary constant.

De�nition 2.5. Given a graph G, we use AG to denote its adjacency matrix. When G is a �nite graph on n
vertices, the eigenvalues of AG can be ordered as �1(G) > �2(G) > … > �n(G).

De�nition 2.6. We use BG to denote the nonbacktracking matrix of a graph G which is a matrix with rows
and columns indexed by directed edges of G de�ned as follows:

B[(u, v), (w, x)] =

{
1 if v = w and u ≠ x

0 otherwise.

De�nition 2.7. The spectral expansion of a �nite graph G, denoted �(G) is de�ned as max{�2(G), −�n(G)},
which can equivalently be described as the “second largest absolute eigenvalue”.

We now state the following standard fact known as the expander mixing lemma (see [HLW18, Lemma
2.5]).

Lemma 2.8 (Expander Mixing Lemma). Let G be a d-regular graph on n vertices. For any two subsets of
vertices, S, T ⊆ V (G), let e(S, T ) be the number of pairs of vertices (x, y) such that x ∈ S, y ∈ T and {x, y} is
an edge in G. Then:

||||
e(S, T ) −

d
n
|S| ⋅ |T |

||||
6 �(G)

√
|S| ⋅ |T |.

And �nally, we state the “irregular Moore bound” of [AHL02] which articulates a tradeo� between the
average degree of a graph and its girth.

Lemma 2.9. Let G be a n-vertex graph with average degree-d . Then

g(G) 6 2 logd−1 n + 2.

2.2 Operator theory

In this section, let V be a countable set and T ∶ �2(V )→ �2(V ) be a bounded linear operator.

De�nition 2.10. The spectrum of T , which we denote spec(T ), is the set of all � ∈ C such that �1 − T is
not invertible.
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De�nition 2.11. The spectral radius of T , which we denote �(T ) is de�ned as sup{|�| ∶ � ∈ spec(T )}.

Fact 2.12. The operator norm of T , which we write as ‖T ‖ is equal to
√
�(T T ∗) where T ∗ is the adjoint of T .2

Fact 2.13. �(T ) = lim�→∞ ‖T � ‖1/� .

Fact 2.14 (Consequence of [Que96, Theorem 6]). Suppose T is a self-adjoint operator, and Φ is a basis of
�2(V ). Then:

�(T ) = sup
�∈Φ

lim sup
k→∞

|⟨�, T k�⟩|1/k .

Fact 2.15. Let A be any principal submatrix of T . Then �(A) 6 �(T ).

Corollary 2.16. If H is a subgraph of (possibly in�nite) graph G, then �(AH ) 6 �(AG).

3 In�nite trees hanging from a biregular graph

Let H be any (2, d − 1)-biregular graph where the partition with degree-(d − 1) vertices is called U and the
partition with degree-2 vertices is called V . Let X be the in�nite graph constructed from H in the following
way:

At every vertex in U , the (d − 1)-regular partition, glue an in�nite tree where the root has
degree-1 and the remaining vertices have degree-d . At every vertex in V , the 2-regular partition,
glue an in�nite tree where the root has degree-(d − 2) and every other vertex has degree-d .

Note that X is a d-regular in�nite graph. The main result of this section is:

Lemma 3.1. �(AX ) 6 2
√
d − 1.

To prove Lemma 3.1, we instead turn our attention to the nonbacktracking matrix of X , called BX . In
particular, we bound �(BX ) and then employ the Ihara–Bass formula of [AFH15] for in�nite graphs to
translate the bound on �(BX ) into a bound on �(AX ).

Thus, we �rst prove:

Lemma 3.2. �(BX ) 6
√
d − 1.

We use the following version of the Ihara–Bass formula of [AFH15] for in�nite graphs.

Theorem 3.3. Let G be a (possibly in�nite) graph. Then

spec(BG) = {±1} ∪ {� ∶ (DG − 1) − �AG + �21 is not invertible}.

An immediate corollary that we will use is:

Corollary 3.4. Let G be a d-regular graph. Then �(BG) 6
√
d − 1 implies that �(AG) 6 2

√
d − 1.

Proof. If there is � in spec(AG) such that |�| > 2
√
d − 1, then �1 − AG is not invertible. Consequently, by

Theorem 3.3 � = �+
√
�2−4(d−1)
2 , which is greater than

√
d − 1, is in spec(BG).

In light of Corollary 3.4, we see that Lemma 3.2 implies Lemma 3.1.
Towards proving Lemma 3.2, we �rst make a de�nition.

2Since �2(V ) comes equipped with the inner product ⟨f , g⟩ ∶= ∑v∈V f (v)g(v), T ∗ is simple the “transpose” of T .
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De�nition 3.5. We call a walk W a (a × b)-linkage if it can be split into a segments, each of which is a
length-b nonbacktracking walk.

Proof of Lemma 3.2. The �rst ingredient in the proof is the fact that for any � > 0,

�(BX )� 6 ‖B�X ‖

and thus
�(BX ) 6 lim sup

�→∞
‖B�X ‖

1/�

Since ‖B�X ‖ =
√
‖B�X (B∗X )� ‖ =

√
�(B�X (B∗X )� ) it su�ces to bound �(T ) where T ∶= B�X (B

∗
X )� is a bounded

self-adjoint operator, and hence by Fact 2.14:

�(T ) = max
uv∈E⃗(X )

lim sup
k→∞

|⟨1uv , T k1uv⟩|1/k .

The quantity ⟨1uv , T k1uv⟩ is bounded by the number of (2k × (� + 1))-linkages that start and end at vertex
u, which we can bound via an encoding argument. In particular, we will give an algorithm to uniquely
encode such linkages and bound the total number of possible encodings.

Encoding linkages. Each length-(� + 1) nonbacktracking segment can be broken into 3 consecutive
phases (of which some can possibly be empty): the phase where distance to H decreases on each step (Phase
1), the second phase where distance to H does not change on each step (Phase 2), and the third phase where
distance to H increases on each step (Phase 3). We further break the third phase into two (possibly empty)
subphases — the �rst subphase where the distance to u decreases on each step (Phase 3a), and the second
subphase where the distance to u increases on each step (Phase 3b).

To encode the linkage, for each length-(� + 1) nonbacktracking we specify four numbers denoting the
lengths of Phases 1, 2, 3a, and 3b. Note that Phase 2 is nonempty only if it is contained in H . For each step
ab in Phase 2 that goes from U (the (d − 1)-regular partition) to V (the 2-regular partition) we specify a
number i in [d − 1] such that b is the ith neighbor of a within H . If the �rst step ab in Phase 2 is from V to
U we specify a number in [2] denoting if b is the �rst or second neighbor of a. For each step ab in Phase 3b
we specify a number i in [d − 1] such that b is the ith neighbor of a that does not lie in the path between
between u and H .

Recovering linkages from encodings. We recover a linkage from its encoding “segment-by-segment”.
Suppose the �rst t segments have been recovered, we show how to recover the (t + 1)-th segment. Let
x be the vertex the walk is at after it has traversed the �rst t segments. The steps taken in Phase 1 can
be recovered from the length of the Phase since there is a unique path from any vertex to H . The steps
in Phase 2 alternate between stepping from V to U and from U to V . It is easy to recover the �rst step
of Phase 2 as well as any step from U to V ; a step ab from V to U that is not the �rst step of Phase 2 is
uniquely determined by the previous step, since a has 2 neighbors in U and by the nonbacktracking nature
of the walk there is only one choice for b. Note that Phase 3a is nonempty only if u is not in H and all the
steps are contained in the same branch as u. Since there is a unique shortest path between the start vertex
of Phase 3a and u, the steps taken in Phase 3a can be recovered from its length. Finally, it is easy to recover
the steps taken in Phase 3b since they are explicitly given in the encoding.
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Counting encodings. Now we turn our attention to bounding the total number of encodings. For given
�, � > 0 such that � + � = 2k(� + 1) we �rst bound the number of walks such that � steps occur in Phase
2 (i.e. are within H ) and � steps occur outside Phase 2 (i.e. are outside H ). Let v1, v2,… , v2k(�+1) be the
sequence of vertices visited by the walk in order. Since d(v1, H ) = d(v2k(�+1), H ), |d(vi , H ) − d(vi+1, H )| 6 1
always and |d(vi , H ) − d(vi+1, H )| = 0 for every step in Phase 2, the number of steps of the walk that occur
in Phase 3 of their respective segments is at most �

2 . In particular, the number of steps that occur in Phase
3b of their respective segments is bounded by �

2 . The following bounds hold:

• The number of possible encodings of the lengths of phases is bounded by (� + 1)8k .

• The number of possible encodings of the �rst step of Phase 2 of each segment is bounded by 22k .

• The number of possible encodings of the list of U -to-V steps in Phase 2 is bounded by (d − 1) �+12
because the steps taken in Phase 2 alternate between going from V to U and from U to V .

• The number of possible encodings of the list of steps in Phase 3b is bounded by k(� + 1)(d − 1)
�
2 .

The above bounds combined with the fact that there are at most 2k� choices for (�, �) pairs gives a bound
on the number of (2k × (� + 1))-linkages of

2(k(� + 1))2(� + 1)8k22k(d − 1)
�+1
2 (d − 1)

�
2 6 2(k(� + 1))2(� + 1)8k22k

√
d − 1

2k(�+1)+1
.

Thus,
�(T ) 6 lim sup

k→∞
(2(k(� + 1))

2(� + 1)8k22k
√
d − 1

2k(�+1)+1
)
1/k

= 4(� + 1)8
√
d − 1

2(�+1)

Consequently,

�(BX ) 6 lim sup
�→∞

�(T )1/2� 6 lim sup
�→∞ (4(� + 1)

8√d − 1
2(�+1)

)
1/2�

=
√
d − 1.

4 High-girth near-Ramanujan graphs with lossy vertex expansion

We will plant a high girth graph with low spectral radius within a d-regular Ramanujan graph. We will
show that such a construction is a spectral expander, but has low vertex expansion. By u ∼G v, we mean
that u and v are adjacent in the graph G. We will write u ∼ v when the graph is clear from context.

Consider a (2, d − 1) biregular bipartite graph H = (U , V , E), with vertex components U and V . U is the
degree-(d − 1) component and V the degree-2 component. Therefore if we de�ne  ∶= |U |, requiring  to
be even, then |V | = (d − 1) /2. Call the vertices of U and V {u1,… , u} and {v1,… , v (d−1)/2}, respectively.
We connect U and V in such a way to maximize the girth of H .

Lemma 4.1.
g(H ) > 2 logd−1  .

Proof. Because of the valency conditions on H , there is a graph H̃ on  vertices {ũ1,… , ũ}, where ũi ∼H̃ ũj
if and only if ∃vk ∈ H such that ui ∼H vk and uj ∼H vk . Namely, U corresponds to the vertex set of H̃ , and
V corresponds to the edge set. H̃ is d − 1 regular, and, as paths in H̃ of length r correspond to paths of
length 2r in H , g(H ) = 2g(H̃ ).
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Figure 1: H ′, with labeled components for d = 4,  = 4. Note that Ψ(U ) = (d +1)/2. To create G′, we connect
Q and R to a well spaced matching in G.

By a result of Linial and Simkin [LS19], there exists a graph H̃ that has girth at least c logd−2  , for any
c ∈ (0, 1), assuming  is even. Therefore by setting c = log(d − 2)/ log(d − 1), we have that g(H̃ ) > logd−1 
and g(H ) > 2 logd−1  .

We add a new set of vertices Q = {q1,… , q} and add a matching between Q and U , adding the edge
qiui for 1 6 i 6  . Similarly, we add another set of vertices R = {ri,j}, 1 6 i 6  (d − 1)/2, 1 6 j 6 d − 2.
For each 1 6 i 6  (d − 1)/2, we then add an edge from vi to each of ri,j for 1 6 j 6 (d − 2).

We call H ′ the graph on U ∪ V ∪ Q ∪ R. At this point vertices of U and V have degree-d , and vertices of
Q and R have degree-1. Also, note Ψ(U ) = (d + 1)/2. We wish to embed H ′ into a larger, high girth expander,
and show that this new graph maintains high girth and expansion, even though the set U is a lossy vertex
expander. Our argument follows that of [Kah95, Section 5], but instead of embedding individual vertices,
we will embed H ′.

Theorem4.2. For every d = p+1 for prime p > 3, there is an in�nite family of d-regular graphsGm = (Vm, Em)
on m vertices, such that ∃Um ⊂ Vm with Ψ(Um) = (d + 1)/2 for |Um | 6 m1/3, g(Gm) = ( 23 − om(1)) logd−1m, and
such that �(Gm) 6 2

√
d − 1 + O(1/logd−1m).

Proof. By the result of Lubotzky, Phillips and Sarnak [LPS88], for such d , there exists an in�nite family of
d-regular graphs, where graphs of n vertices have girth ( 43 − on(1)) logd−1 n and have spectral expansion
6 2

√
d − 1.

For a given graph G = (V , E) of this type of size n, we attach H ′ by removing a matching M ⊂ E,
M = {(a1,1, a1,2),… , (ak,1, ak,2)} for

k ∶=  (d − 1)(2 + (d − 1)(d − 2))/4. (1)

We take a matching such that the pairwise distance between edges in the matching is maximized in G.
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Lemma 4.3. In a d-regular graph on n vertices, there exists a matchingM of size k such that for every pair of
edges (ai1,1, ai1,2), (ai2,1, ai2,2) ∈ M , i1 ≠ i2,

d((ai1,1, ai1,2), (ai2,1, ai2,2)) > logd−1 n − logd−1  − On(1).

Proof. For a given pair of adjacent vertices (ai,1, ai,2), as our graph is d regular, there are at most 1+d (d−1)
r−1

d−2
vertices at distance at most r from ai,1, and at most (d − 1)r vertices at distance r from ai,2 and distance
r + 1 from ai,1. Therefore for any d > 4, the number of edges at distance at most r from a given edge is less
than 4(d − 1)r . We then greedily add edges by choosing an arbitrary edge with vertices at distance at least r
away from all already chosen edges. A kth such edge will exist as long as 4k(d − 1)r 6 n. For our k given
in (1) we can set r = logd−1 n − logd−1  − On(1).

To connect H ′ to G, we �rst delete the matchingM . Then for every vertex of Q and R, we add d −1 edges
to the set of vertices of M , connecting to each vertex of M exactly once. Namely, the induced subgraph on
(Q ∪ R) ∪M is a (d − 1, 1) biregular bipartite graph. Call G′ = (V ′, E′) the new graph formed from G and H ′.

We wish to show that G′ remains high girth and a good spectral expander. For the girth of G′, cycles
are either completely contained in H ′, completely contained in G, or a mix between the two. Cycles
in H ′ have length at least 2 logd−1  by Lemma 4.1. Cycles in G have length at least ( 43 − on(1)) logd−1 n
by the construction of [LPS88]. For cycles that are a mix of H ′ and G, we must go from one vertex of
H ′ to another vertex of H ′ through G. Therefore by Lemma 4.3, the length of such a cycle is at least
logd−1 n − logd−1  − On(1), giving

g(G′) > min{2 logd−1  , logd−1 n − logd−1  − On(1)}.

To show that the spectrum is not adversely a�ected, we follow the argument of [Kah95, Theorem 5.2],
with some adjustments. For our new graph, assume that there is an eigenvector g ⟂ 1 corresponding to an
eigenvalue |�| > 2

√
d − 1.

Call A the adjacency matrix of G′, and AG the adjacency matrix of G. Then we have

g∗Ag = g∗GAGgG + g
∗
H ′AgH ′ − 2

k
∑
i=1

g(ai,1)g(ai,2) + ∑
u∈Q∪R
ai,j∈M
u∼ai,j

g(u)g(ai,j)

where gG and gH ′ are the projections of g onto G and H ′, respectively.
We know that

|g∗GAGgG | 6 2
√
d − 1||gG ||2 +

d
n (

∑
u∈G

g(u)
)

2

by decomposing g into parts parallel and perpendicular to the all ones vector.
By a combination of Lemma 3.1 and Corollary 2.16, the spectral radius of H ′ is 2

√
d − 1, and therefore

we have

|g∗GAGgG | + |g∗H ′AgH ′ | 6 2
√
d − 1||g||2 +

d
n (

∑
u∈H ′

g(u)
)

2

as ∑G g(u) = −∑H ′ g(u), considering g ⟂ 1.
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To show that |�| = 2
√
d − 1 + O(1/ log n), we then need to show

1
‖g‖2

⎛
⎜
⎜
⎜
⎜
⎜
⎝

d
n (

∑
H ′

gH ′(u)
)

2

− 2
k
∑
i=1

g(ai,1)g(ai,2) + ∑
u∈Q∪R
ai,j∈M
u∼ai,j

g(u)g(ai,j)

⎞
⎟
⎟
⎟
⎟
⎟
⎠

= O(
1

log n)
. (2)

The �rst term of (2) can be bounded as

d
n (

∑
H ′

gH ′(u)
)

2

6
d
n
||H

′|| ‖gH ′‖2 6
 (2 + (d − 1)(d − 2))d

2n
‖gH ′‖2. (3)

The second term we can bound as
|||||
2

k
∑
i=1

g(ai,1)g(ai,2)
|||||
6 ∑

ai,j∈M
g(ai,j)2. (4)

Now we will bound the last term of (2) using Cauchy Schwarz.

||||||||||

∑
u∈Q∪R
ai,j∈M
u∼ai,j

g(u)g(ai,j)

||||||||||

6
√
(d − 1) ∑

u∈Q∪R
g(u)2

√
∑
ai,j∈M

g(ai,j)2. (5)

We use the following lemma to bound the right hand sides of (4) and (5). The lemma is a generalized
version of [Kah95, Lemma 5.1]. The result follows from the same proof, which we reproduce in the appendix
for completeness. Here, for two vectors a, b ∈ Rn, a 6 b if ∀i ∈ [n], a(i) 6 b(i).

Lemma 4.4 (Lemma 5.1 of [Kah95]). Consider a graph on a vertex setW , a subset X ofW , a positive integer
ℎ, and s ∈ L2(W ). Let Xi be the set of nodes at distance i from X . Assume the following conditions hold:

(1) For ℎ − 1 6 i, j 6 ℎ, all nodes in Xi have the same number of neighbors in Xj .

(2) If u ∈ Xℎ−1 and v ∈ Xℎ and u ∼ v, then s(u)/s(v) does not depend on the choices of u and v.

(3) s is nonnegative and As 6 �s on Ballℎ−1(X ), where � is a positive real number.

Then for any g ∈ L2(W ) such that |Ag(u)| = �|g(u)| for u ∈ Ballℎ−1(X ), we have

∑v∈Xℎ g(v)
2

∑v∈Xℎ s(v)
2 >

∑v∈Xℎ−1 g(v)
2

∑v∈Xℎ−1 s(v)
2 . (6)

To use the lemma, we set X0 = U ∪ V , and ℎ will vary from 2 6 ℎ 6 ⌊r/2⌋. Assuming that the girth of
G′ is at least r , the ⌊r/2⌋ neighborhoods of each vertex do not overlap.

Our test vector decays exponentially, with a small adjustment.

s(y) =

⎧⎪⎪⎪⎪
⎨⎪⎪⎪⎪⎩

1
(d−1)ℎ/2 Xℎ,U

2√
d−1 −

1
(d−1)3/2 y ∈ X0,V

(
2
d−2 −

2
(d−1)(d−2))

1
(d−1)(ℎ−1)/2 y ∈ Xℎ,V , ℎ > 1.
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For this assignment of values we have As 6 (2
√
d − 1)s. In fact, this inequality is sharp at all coordinates

except for y ∈ X1,V .
For this s, we have that ∑y∈Xℎ s(y)

2 is constant for ℎ = 1,… , ⌊r/2⌋. Also, recall Q ∪ R = X1 and M = X2.
By Lemma 4.4, as g corresponds to an eigenvalue |�| > 2

√
d − 1, the mass on each of �rst 2 layers of X can

only be at most 2/(r − 2) of the total mass.
Combining (3), (4), and (5), we can bound (2) as

(2) 6
 (2 + (d − 1)(d − 2))d

2n
‖gH ′‖2 + ∑

a∈X2
g(a)2 +

√
(d − 1) ∑

u∈X1
g(u)2

√
∑
a∈X2

g(a)2

6 (
 (2 + (d − 1)(d − 2))d

2n
+ (1 +

√
d − 1)

2
r − 2)

‖g‖2.

If we set  = n1/3 and r = 2
3 logd−1 n − On(1), for �xed d this becomes

O(
1

log n)
‖g‖2,

meaning that � 6 2
√
d − 1 + O(1/ log n). This also gives the desired bounds on vertex expansion and girth,

by setting U = Um. Because |V ′| = (1 + on(1))n, the bounds on Ψ(Um), g(G′) and �(G′) given in terms of n
do not change when they are given in terms of m.

5 Lossless expansion of small sets

In this section, we prove that su�ciently small sets in a high-girth spectral expander expand losslessly.

Theorem 5.1. Let G be a d-regular graph on n vertices with girth at least 2� logd−1 n + 4. Then for any set S
with n� vertices,

|)S|
|S|

> d − �(G) −
d�/�

2
−

d
n1−�

.

Proof. Let S be a set of vertices of size n� in G. Let eS denote the number of internal edges within S. Let ni
denote the number of vertices in )S that have i edges from S incident to it. Then: |)S| = n1 + n2 +⋯ + nd
and |E(S, )S)| = n1 + 2n2 +⋯ + dnd . Note that |E(S, )S)| is also equal to d |S| − 2eS . Now consider the graph
HS on vertex set S and edge set given by induced edges on S along with new edges introduced by adding
an arbitrary spanning tree for every set of i vertices that are neighbors of a vertex in )S with exactly i
neighbors in S. The number of edges in H (S) is equal to

eS + n2 + 2n3 +⋯ + (d − 1)nd = eS + |E(S, )S)| − |)S| = d |S| − eS − |)S|

and g(H (S)) > 1
2g(G) > � logd−1 n + 2. As a consequence of the expander mixing lemma (Lemma 2.8),

eS 6 (�(G) +
d |S|
n ) |S|

for some absolute constant c. Consequently,

|E(H (S))| > (d − �(G) −
d |S|
n ) |S| − |)S|,
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which means the average degree is lower bounded by

2(d − �(G) −
d |S|
n

−
|)S|
|S| )

.

Thus by the irregular Moore bound (Lemma 2.9),

g(H (S)) 6
2 log n�

log(2(d − �(G) −
d |S|
n − |)S|

|S| ) − 1)
+ 2

and hence
�

log(d − 1)
6

2�

log(2(d − �(G) −
d |S|
n − |)S|

|S| ) − 1)
.

This implies

d − �(G) −
d |S|
n

−
|)S|
|S|

−
1
2
6
d2�/�

2
,

and �nally by rearranging the above and plugging in |S| = n�

|)S|
|S|

> d − �(G) −
d2�/� − 1

2
−

d
n1−�

.

Remark 5.2. If G is a n-vertex d-regular Ramanujan graph with girth 4
3 logd−1 n (which is a condition

satis�ed by the Ramanujan graphs of [LPS88]) then for every set S of size n� for � < 1/3,

|)S|
|S|

> d(1 − od (1)).
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A Proof of Lemma 4.4

Proof. Let A be the adjacency matrix of W . Let Pℎ−1 and Pℎ(X ) be the orthogonal projections onto Xℎ−1 and
onto Xℎ, respectively. Let P6ℎ−1 and P6ℎ(X ) be the orthogonal projections onto Ballℎ−1(X ) and Ballℎ(X ),
respectively. We need to show that

‖Pℎg‖2

‖Pℎs‖2
>

‖Pℎ−1g‖2

‖Pℎ−1s‖2
.

Call Aℎ = P6ℎAP6ℎ (so Aℎ performs the adjacency operator on Ballℎ(X )). By the conditions of the lemma,
we know that there are constants �, � and  such that

PℎAℎs = Pℎs (7)

and
AℎPℎs = �Pℎs + �Pℎ−1s. (8)

By assumption,
Aℎs 6 �P6ℎ−1s + Pℎs. (9)

Therefore by applying P6ℎ−1 to both sides of (9),

P6ℎ−1Aℎs 6 �P6ℎ−1s

6 �P6ℎs − �Pℎs.

Now we apply Aℎ to both sides:

AℎP6ℎ−1Aℎs 6 �Aℎs − �AℎPℎs

6 �Aℎs − �(�Pℎs + �Pℎ−1s) by (8)
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6 (�2P6ℎ−1 + �( − �)Pℎ − ��Pℎ−1) s. by (9)

De�ne the matrix B ∶= �2P6ℎ−1 + �( − �)Pℎ − ��Pℎ−1 − AℎPℎ−1Aℎ. B has no positive entries on the o�
diagonal. Take any eigenvector  of B. Without loss of generality assume that  has a positive entry. Then
take i = argmaxu  (u)/s(u). As  6 ( (i)/s(i))s, (B )(i) > B( (i)/s(i))s)(i). The quantity on the right is
nonnegative, meaning that the eigenvalue with eigenvector  is nonnegative. As  was arbitrary, B is
positive semide�nite.

Because B is positive semide�nite,

g∗AℎP6ℎ−1Aℎg 6 g∗ (�2P6ℎ−1 + �( − �)Pℎ − ��Pℎ−1) g. (10)

For any orthogonal projection P , P2 = P . Therefore g∗AℎP6ℎ−1Aℎg = ‖P6ℎ−1Aℎg‖2. Moreover (10)
becomes

‖P6ℎ−1Aℎg‖2 6 �2‖P6ℎ−1g‖2 + �( − �)‖Pℎg‖2 − ��‖Pℎ−1g‖2.

By assumption, ‖P6ℎAℎg‖ = �‖P6ℎg‖. Therefore

( − �)‖Pℎg‖2 > �‖Pℎ−1g2‖. (11)

Moreover, as Aℎ and Pℎ are self adjoint, s∗AℎPℎs = s∗PℎAℎs, so �‖Pℎs‖2 + �‖Pℎ−1‖2 =  ‖Pℎs‖. Combining
this with (11), we obtain (6).
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