
Algorithms for Noisy
Broadcast Under Erasures

Sidhanth Mohanty
Carnegie Mellon University

Joint work with
Ofer Grossman

MIT
Bernhard Haeupler

Carnegie Mellon University

n processors

7

8

6

1

5

2

4

3

Ofer Grossman, Bernhard Haeupler, Sidhanth Mohanty

n processors

7

8

6

1

5

2

4

3

i

xi ∈ Σ

Ofer Grossman, Bernhard Haeupler, Sidhanth Mohanty

n processors

7

8

6

1

5

2

4

3

i

xi ∈ Σ

Goal: processors 1, ..., n should learn x1 x2 ... xn with high probability

Ofer Grossman, Bernhard Haeupler, Sidhanth Mohanty

9

Noisy Broadcast Model

7

8

6

1

5

2

43

View from processor 5

• Each processor i for 1 ≤ i ≤ n broadcasts
a character in Σ to all j

Ofer Grossman, Bernhard Haeupler, Sidhanth Mohanty

Noisy Broadcast Model

7

8

6

1

5

2

43

• Each processor i for 1 ≤ i ≤ n broadcasts
a character in Σ to all j

• For each i and j transmission is erased
with probability 0.1

View from processor 5

9

Ofer Grossman, Bernhard Haeupler, Sidhanth Mohanty

Noisy Broadcast Model

7

8

6

1

5

2

43

• Each processor i for 1 ≤ i ≤ n broadcasts
a character in Σ to all j

• For each i and j transmission is erased
with probability 0.1

View from processor 5

9 Erasure means transmission is
replaced with ? at random

Ofer Grossman, Bernhard Haeupler, Sidhanth Mohanty

Noisy Broadcast Model

7

8

6

1

5

2

43

• Each processor i for 1 ≤ i ≤ n broadcasts
a character in Σ to all j

• For each i and j transmission is erased
with probability 0.1

View from processor 5

9 Erasure means transmission is
replaced with ? at random

Note: less harsh than previously studied
substitutions where transmission is

replaced with a random character from Σ.
Ofer Grossman, Bernhard Haeupler, Sidhanth Mohanty

Trivial Attempt

7

8

6

1

5

2

43

• Processor i repeatedly broadcasts xi for
2log n rounds

9

Ofer Grossman, Bernhard Haeupler, Sidhanth Mohanty

Trivial Attempt

7

8

6

1

5

2

43

• Processor i repeatedly broadcasts xi for
2log n rounds

Round 1

9

Ofer Grossman, Bernhard Haeupler, Sidhanth Mohanty

Trivial Attempt

7

8

6

1

5

2

43

• Processor i repeatedly broadcasts xi for
2log n rounds

Round 2

9

Ofer Grossman, Bernhard Haeupler, Sidhanth Mohanty

Trivial Attempt

7

8

6

1

5

2

43

• Processor i repeatedly broadcasts xi for
2log n rounds

Round 3

9

Ofer Grossman, Bernhard Haeupler, Sidhanth Mohanty

Trivial Attempt

7

8

6

1

5

2

43

• Processor i repeatedly broadcasts xi for
2log n rounds

Round 4

9

Ofer Grossman, Bernhard Haeupler, Sidhanth Mohanty

Can we beat O(log n)?

• Yes! [Gallagher'88] shows O(log log n) rounds, even
under substitutions

• Under substitutions, no! [Goyal, Kindler, Saks'08]
shows Ω(log log n) rounds, even under substitutions

• Under erasures, yes! [this work]

Can we beat O(log log n)?

Ofer Grossman, Bernhard Haeupler, Sidhanth Mohanty

Main Result

Recap goal: processors 1, ..., n should learn x1 x2 ... xn with high probability

O(log* n) round algorithm for goal

O(1) round algorithm when |Σ| = Ω(poly(n))

Ofer Grossman, Bernhard Haeupler, Sidhanth Mohanty

Main Result

Recap goal: processors 1, ..., n should learn x1 x2 ... xn with high probability

O(log* n) round algorithm for goal

O(1) round algorithm when |Σ| = Ω(poly(n))

Focus of this talk!

Ofer Grossman, Bernhard Haeupler, Sidhanth Mohanty

Main Result

Recap goal: processors 1, ..., n should learn x1 x2 ... xn with high probability

O(log* n) round algorithm guarantee:
• SUCCESS All processors output x1 ... xn with probability ≥ 1–n–5
• FAILURE WITHOUT KNOWLEDGE Some processor outputs string

X ≠ x1 ... xn with probability ≤ 2–7n
• FAILURE WITH KNOWLEDGE With remaining probability all

processors output 'failed'

Ofer Grossman, Bernhard Haeupler, Sidhanth Mohanty

Main Result

Recap goal: processors 1, ..., n should learn x1 x2 ... xn with high probability

O(log* n) round algorithm guarantee:
• SUCCESS All processors output x1 ... xn with probability ≥ 1–n–5
• FAILURE WITHOUT KNOWLEDGE Some processor outputs string

X ≠ x1 ... xn with probability ≤ 2–7n
• FAILURE WITH KNOWLEDGE With remaining probability all

processors output 'failed'

Failure without knowledge is catastrophic
Ofer Grossman, Bernhard Haeupler, Sidhanth Mohanty

Main Algorithm Outline

Recap goal: processors 1, ..., n should learn x1 x2 ... xn with high probability

O(log* n) round algorithm outline:
A. Learning Phase: success probability of 1 – n–5 of all processors to

learn string
B. Validation Phase: if A. failed, probability 1 – 2–7n for all processors to

detect failure

Ofer Grossman, Bernhard Haeupler, Sidhanth Mohanty

Main Algorithm Outline

Recap goal: processors 1, ..., n should learn x1 x2 ... xn with high probability

O(log* n) round algorithm outline:
A. Learning Phase: success probability of 1 – n–5 of all processors to

learn string
B. Validation Phase: if A. failed, probability 1 – 2–7n for all processors to

detect failure

Ofer Grossman, Bernhard Haeupler, Sidhanth Mohanty

Learning Phase

Base case:
If n ≤ 10, each processor repeatedly broadcasts 10 times

Ofer Grossman, Bernhard Haeupler, Sidhanth Mohanty

Learning Phase: Recursion

Divide into n / log n groups of
size log n each and recurse on

each group

X1
X3

X4 X5

X7

'failed'

'failed'

'failed'
Roughly n / log5 n processors

part of failed group

Ofer Grossman, Bernhard Haeupler, Sidhanth Mohanty

Learning Phase: learning failures

Processor i transmits
• 1 if recursion was success
• 0 if recursion was failure

X1
X3

X4 X5

X7

'failed'

'failed'

'failed'

1 0

0

0

1

1

1

1

Only need to receive one
transmission from group to

know if they failed or
succeeded!

Ofer Grossman, Bernhard Haeupler, Sidhanth Mohanty

Learning Phase: correcting failures

i log2 n + 1 to (i + 1) log2 n
are responsible for

the i-th failed processor

• Each failed processor x broadcasts its
input bit

• Each processor responsible for x
broadcasts bit received by x

failed processors all processors

Processor i can infer input of x if it
receives at least one transmission from

processor responsible for x
Ofer Grossman, Bernhard Haeupler, Sidhanth Mohanty

Learning Phase: success amplification

X1
X3

X4 X5

X7

'failed'

'failed'

'failed'

Ofer Grossman, Bernhard Haeupler, Sidhanth Mohanty

Learning Phase: success amplification
C(X1)

C(X3)

C(X4) C(X5)

C(X7)

'failed'

'failed'

'failed'

C: code with decoding radius
0.25 and rate constant K

Processor from group t
broadcasts constant sized chunk

of C(Xt) in next 1/K rounds

Ofer Grossman, Bernhard Haeupler, Sidhanth Mohanty

Xi = a1 ... an

C
C(Xi) = L1 ... Ln

Each Lj has length 1 / K

Broadcast Lj in next 1 / K rounds

Ofer Grossman, Bernhard Haeupler, Sidhanth Mohanty

Learning Phase: success amplification
C(X1)

C(X3)

C(X4) C(X5)

C(X7)

'failed'

'failed'

'failed'

C: code with decoding radius 0.25
and rate constant K

Processor from group t
broadcasts constant sized chunk

of C(Xt) in next 1/K rounds

Processor i can reconstruct Xt as
long as it receives enough bits from

group t

Ofer Grossman, Bernhard Haeupler, Sidhanth Mohanty

Main Algorithm Outline

Recap goal: processors 1, ..., n should learn x1 x2 ... xn with high probability

O(log* n) round algorithm outline:
A. Learning Phase: success probability of 1 – n–5 of all processors to

learn string
B. Validation Phase: if A. failed, probability 1 – 2–7n for all processors to

detect failure

Ofer Grossman, Bernhard Haeupler, Sidhanth Mohanty

Technical Ingredients

Ingredient 1: Algorithm to compute the AND of x1 ... xn in O(1) rounds
with ≤ 2–Ω(n) failure probability

Processor i has string Xi as input
Ingredient 2: Algorithm to check if X1 = X2 = ... = Xn in O(1) rounds

with ≤ 2–Ω(n) failure probability

Ofer Grossman, Bernhard Haeupler, Sidhanth Mohanty

Technical Ingredients

Ingredient 1: Algorithm to compute the AND of x1 ... xn in O(1) rounds
with ≤ 2–Ω(n) failure probability

Processor i has string Xi as input
Ingredient 2: Algorithm to check if X1 = X2 = ... = Xn in O(1) rounds

with ≤ 2–Ω(n) failure probability

Ofer Grossman, Bernhard Haeupler, Sidhanth Mohanty

Ingredient 1: Algorithm to compute the AND of x1 ... xn in O(1) rounds
with ≤ 2–Ω(n) failure probability

Each processor i executes:
1. Broadcast xi
2. Broadcast the AND of all received bits from round 1
3. Output the AND of all received bits from round 2

Ofer Grossman, Bernhard Haeupler, Sidhanth Mohanty

Technical Ingredients

Ingredient 1: Algorithm to compute the AND of x1 ... xn in O(1) rounds
with ≤ 2–Ω(n) failure probability

Processor i has string Xi as input
Ingredient 2: Algorithm to check if X1 = X2 = ... = Xn in O(1) rounds

with ≤ 2–Ω(n) failure probability

Ofer Grossman, Bernhard Haeupler, Sidhanth Mohanty

Processor i has string Xi as input
Ingredient 2: Algorithm to check if X1 = X2 = ... = Xn in O(1) rounds

with ≤ 2–Ω(n) failure probability

Outline of processor i execution:
1. Encode Xi with C and split into chunks
2. Broadcast assigned chunk
3. Decode received string
4. Use ingredient 1 to check if decoded string matches Xi

C: code with decoding radius 0.25 and rate constant K

Ofer Grossman, Bernhard Haeupler, Sidhanth Mohanty

Xi = a1 ... an

C
C(Xi) = L1 ... Ln

Each Lj has length 1 / K

Ofer Grossman, Bernhard Haeupler, Sidhanth Mohanty

Processor i has string Xi as input
Ingredient 2: Algorithm to check if X1 = X2 = ... = Xn in O(1) rounds

with ≤ 2–Ω(n) failure probability

Outline of processor i execution:
1. Encode Xi with C and split into chunks
2. Broadcast assigned chunk
3. Decode received string
4. Use ingredient 1 to check if decoded string matches Xi

C: code with decoding radius 0.25 and rate constant K

Ofer Grossman, Bernhard Haeupler, Sidhanth Mohanty

Xi = a1 ... an

C
C(Xi) = L1 ... Ln

Each Lj has length 1 / K

Broadcast Lj in next 1 / K rounds

Ofer Grossman, Bernhard Haeupler, Sidhanth Mohanty

Processor i has string Xi as input
Ingredient 2: Algorithm to check if X1 = X2 = ... = Xn in O(1) rounds

with ≤ 2–Ω(n) failure probability

Outline of processor i execution:
1. Encode Xi with C and split into chunks
2. Broadcast assigned chunk
3. Decode received string
4. Use ingredient 1 to check if decoded string matches Xi

C: code with decoding radius 0.25 and rate constant K

Ofer Grossman, Bernhard Haeupler, Sidhanth Mohanty

Processor i receives n / K bit string

S = S1 ... Sn

with each Sj length 1 / K

Obtain codeword T within decoding
radius of S and let Yi be C–1(T), the

'decoded string'

Ofer Grossman, Bernhard Haeupler, Sidhanth Mohanty

Processor i has string Xi as input
Ingredient 2: Algorithm to check if X1 = X2 = ... = Xn in O(1) rounds

with ≤ 2–Ω(n) failure probability

Outline of processor i execution:
1. Encode Xi with C and split into chunks
2. Broadcast assigned chunk
3. Decode received string
4. Use ingredient 1 to check if decoded string matches Xi for all i

C: code with decoding radius 0.25 and rate constant K

Ofer Grossman, Bernhard Haeupler, Sidhanth Mohanty

Conclusions

• Ω(log n) lower bound in substitution model on
computing AND of n bits with probability exp(–Ω(n))
[Goyal-Kindler-Saks'08]

• Same problem has O(1) complexity in erasures model
and makes O(log* n) algorithm possible

• Can one show an Ω(log* n) lower bound?

Ofer Grossman, Bernhard Haeupler, Sidhanth Mohanty

