Algorithms for Noisy Broadcast Under Erasures

Sidhanth Mohanty Carnegie Mellon University

Joint work with

Ofer Grossman MIT Bernhard Haeupler Carnegie Mellon University

n processors

Goal: processors 1, ..., *n* should learn $x_1 x_2 ... x_n$ with high probability

• Each processor *i* for $1 \le i \le n$ broadcasts a character in Σ to all *j*

View from processor 5

• Each processor *i* for $1 \le i \le n$ broadcasts a character in Σ to all *j*

For each *i* and *j* transmission is erased with probability 0.1

View from processor 5

View from processor 5

• Each processor *i* for $1 \le i \le n$ broadcasts a character in Σ to all *j*

For each *i* and *j* transmission is erased with probability 0.1

Erasure means transmission is replaced with ? at random

View from processor 5

• Each processor *i* for $1 \le i \le n$ broadcasts a character in Σ to all *j*

For each *i* and *j* transmission is erased with probability 0.1

Erasure means transmission is replaced with ? at random

Note: less harsh than previously studied substitutions where transmission is replaced with a random character from Σ . Ofer Grossman, Bernhard Haeupler, Sidhanth Mohanty

• Processor *i* repeatedly broadcasts x_i for $2\log n$ rounds

• Processor *i* repeatedly broadcasts x_i for $2\log n$ rounds

Round 1

• Processor *i* repeatedly broadcasts x_i for $2\log n$ rounds

Round 2

• Processor *i* repeatedly broadcasts x_i for $2\log n$ rounds

Round 3

• Processor *i* repeatedly broadcasts x_i for $2\log n$ rounds

Round 4

Can we beat $O(\log n)$?

• Yes! [Gallagher'88] shows $O(\log \log n)$ rounds, even under substitutions

Can we beat $O(\log \log n)$?

- Under *substitutions*, no! [Goyal, Kindler, Saks'08] shows $\Omega(\log \log n)$ rounds, even under substitutions
- Under *erasures*, yes! *[this work]*

Recap goal: processors 1, ..., *n* should learn $x_1 x_2 ... x_n$ with high probability

$O(\log^* n)$ round algorithm for goal

O(1) round algorithm when $|\Sigma| = \Omega(\text{poly}(n))$

Recap goal: processors 1, ..., *n* should learn $x_1 x_2 ... x_n$ with high probability

O(1) round algorithm when $|\Sigma| = \Omega(\text{poly}(n))$

Recap goal: processors 1, ..., *n* should learn $x_1 x_2 ... x_n$ with high probability

$O(\log^* n)$ round algorithm guarantee:

- **SUCCESS** All processors output $x_1 \dots x_n$ with probability $\geq 1 n^{-5}$
- FAILURE WITHOUT KNOWLEDGE Some processor outputs string $X \neq x_1 \dots x_n$ with probability $\leq 2^{-7n}$
- **FAILURE WITH KNOWLEDGE** With remaining probability all processors output *'failed'*

Recap goal: processors 1, ..., *n* should learn $x_1 x_2 ... x_n$ with high probability

$O(\log^* n)$ round algorithm guarantee:

- **SUCCESS** All processors output $x_1 \dots x_n$ with probability $\geq 1-n^{-5}$
- FAILURE WITHOUT KNOWLEDGE Some processor outputs string $X \neq x_1 \dots x_n$ with probability $\leq 2^{-7n}$
- **FAILURE WITH KNOWLEDGE** With remaining probability all processors output *'failed'*

Failure without knowledge is catastrophic

Main Algorithm Outline

Recap goal: processors 1, ..., *n* should learn $x_1 x_2 ... x_n$ with high probability

$O(\log^* n)$ round algorithm outline:

- A. Learning Phase: success probability of $1 n^{-5}$ of all processors to learn string
- B. **Validation Phase:** if A. failed, probability $1 2^{-7n}$ for all processors to detect failure

Main Algorithm Outline

Recap goal: processors 1, ..., *n* should learn $x_1 x_2 ... x_n$ with high probability

$O(\log^* n)$ round algorithm outline:

- A. Learning Phase: success probability of $1 n^{-5}$ of all processors to learn string
- B. **Validation Phase:** if A. failed, probability $1 2^{-7n}$ for all processors to detect failure

Learning Phase

Base case:

If $n \leq 10$, each processor repeatedly broadcasts 10 times

Learning Phase: Recursion

Learning Phase: learning failures

Processor *i* transmits

- 1 if recursion was *success*
- 0 if recursion was *failure*

Only need to receive one transmission from group to know if they failed or succeeded!

Learning Phase: correcting failures

failed processors

all processors

 $i \log^2 n + 1$ to $(i + 1) \log^2 n$ are *responsible* for the *i*-th failed processor

 Each failed processor x broadcasts its input bit

• Each processor *responsible* for *x* broadcasts bit received by *x*

Processor i can infer input of x if it receives at least one transmission from processor responsible for x

Learning Phase: success amplification

Learning Phase: success amplification

 $C(X_1)$ 'failed' **C**: code with decoding radius $C(X_3)$ 0.25 and rate constant **K** $C(X_4)$ $C(X_5)$ $\overrightarrow{\text{Processor from group }t}$ broadcasts constant sized chunk of $C(X_t)$ in next 1/K rounds $C(X_7)$ 'failed'

Ofer Grossman, Bernhard Haeupler, Sidhanth Mohanty

'failed'

Each L_j has length 1/K

Broadcast L_j in next 1/K rounds

Learning Phase: success amplification

Main Algorithm Outline

Recap goal: processors 1, ..., *n* should learn $x_1 x_2 ... x_n$ with high probability

$O(\log^* n)$ round algorithm outline:

- A. Learning Phase: success probability of $1 n^{-5}$ of all processors to learn string
- B. Validation Phase: if A. failed, probability 1 2⁻⁷ⁿ for all processors to detect failure

Technical Ingredients

Ingredient 1: Algorithm to compute the **AND** of $x_1 \dots x_n$ in O(1) rounds with $\leq 2^{-\Omega(n)}$ failure probability

 $\begin{array}{l} \operatorname{Processor} i \text{ has string } X_i \text{ as input} \\ \text{Ingredient 2: Algorithm to check if } X_1 = X_2 = \ldots = X_n \text{ in } O(1) \text{ rounds} \\ \text{ with } \leq 2^{-\Omega(n)} \text{ failure probability} \end{array}$

Technical Ingredients

Ingredient 1: Algorithm to compute the **AND** of $x_1 \dots x_n$ in O(1) rounds with $\leq 2^{-\Omega(n)}$ failure probability

 $\begin{array}{l} \operatorname{Processor} i \text{ has string } X_i \text{ as input} \\ \text{Ingredient 2: Algorithm to check if } X_1 = X_2 = \ldots = X_n \text{ in } O(1) \text{ rounds} \\ \text{ with } \leq 2^{-\Omega(n)} \text{ failure probability} \end{array}$

Ingredient 1: Algorithm to compute the **AND** of $x_1 \dots x_n$ in O(1) rounds with $\leq 2^{-\Omega(n)}$ failure probability

Each processor i executes:Broadcast x_i Broadcast the AND of all received bits from round 1

1.

2.

3.

Output the **AND** of all received bits from round 2

Technical Ingredients

Ingredient 1: Algorithm to compute the **AND** of $x_1 \dots x_n$ in O(1) rounds with $\leq 2^{-\Omega(n)}$ failure probability

 $\begin{array}{l} \operatorname{Processor} i \text{ has string } X_i \text{ as input} \\ \text{Ingredient 2: Algorithm to check if } X_1 = X_2 = \ldots = X_n \text{ in } O(1) \text{ rounds} \\ & \text{with} \leq 2^{-\Omega(n)} \text{ failure probability} \end{array}$

Processor *i* has string X_i as input **Ingredient 2:** Algorithm to check if $X_1 = X_2 = ... = X_n$ in O(1) rounds with $\leq 2^{-\Omega(n)}$ failure probability

C: code with decoding radius 0.25 and rate constant K

Outline of processor *i* execution: Encode *X_i* with *C* and split into chunks Broadcast assigned chunk Decode received string Use **ingredient 1** to check if decoded string matches *X_i*

1.

2.

3.

4.

Each L_j has length 1/K

Processor *i* has string X_i as input **Ingredient 2:** Algorithm to check if $X_1 = X_2 = ... = X_n$ in O(1) rounds with $\leq 2^{-\Omega(n)}$ failure probability

C: code with decoding radius 0.25 and rate constant K

Outline of processor i execution:Encode X_i with C and split into chunksBroadcast assigned chunkDecode received stringUse ingredient 1 to check if decoded string matches X_i

1.

2.

3.

4.

Each L_j has length 1/K

Broadcast L_j in next 1/K rounds

Processor *i* has string X_i as input **Ingredient 2:** Algorithm to check if $X_1 = X_2 = ... = X_n$ in O(1) rounds with $\leq 2^{-\Omega(n)}$ failure probability

C: code with decoding radius 0.25 and rate constant K

Outline of processor i execution: Encode X_i with C and split into chunks Broadcast assigned chunk Decode received string Use ingredient 1 to check if decoded string matches X_i

1.

2.

3.

4.

Processor *i* receives n/K bit string $S = S_1 \dots S_n$ with each S_i length 1/K

Obtain codeword T within decoding radius of S and let Y_i be $C^{-1}(T)$, the 'decoded string'

Processor *i* has string X_i as input**Ingredient 2:** Algorithm to check if $X_1 = X_2 = ... = X_n$ in O(1) roundswith $\leq 2^{-\Omega(n)}$ failure probability

C: code with decoding radius 0.25 and rate constant K

Outline of processor *i* execution: Encode *X_i* with *C* and split into chunks Broadcast assigned chunk Decode received string

1.

2.

3.

<u>4</u>.

Use **ingredient** 1 to check if decoded string matches X_i for all i

Conclusions

- Ω(log n) lower bound in *substitution model* on computing AND of n bits with probability exp(-Ω(n)) [Goyal-Kindler-Saks'08]
- Same problem has O(1) complexity in *erasures model* and makes O(log* n) algorithm possible
- Can one show an $\Omega(\log^* n)$ lower bound?