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Abstract

The noisy broadcast model was first studied in [Gallager, TranInf’88] where an n-character
input is distributed among n processors, so that each processor receives one input bit. Com-
putation proceeds in rounds, where in each round each processor broadcasts a single character,
and each reception is corrupted independently at random with some probability p. [Gallager,
TranInf’88] gave an algorithm for all processors to learn the input in O(log log n) rounds with
high probability. Later, a matching lower bound of Ω(log log n) was given in [Goyal, Kindler,
Saks; SICOMP’08].

We study a relaxed version of this model where each reception is erased and replaced with a
‘?’ independently with probability p. In this relaxed model, we break past the lower bound of
[Goyal, Kindler, Saks; SICOMP’08] and obtain an O(log∗ n)-round algorithm for all processors
to learn the input with high probability. We also show an O(1)-round algorithm for the same
problem when the alphabet size is Ω(poly(n)).
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1 Introduction

In recent years, it is becoming increasingly common for computational tasks to be performed by
multiple processors in a distributed fashion. The communication channels of these networks may
have imperfections, which introduces noise to the system.

A formal version of a noise model was proposed by [EG87]: There are n processors: 1, 2, . . . , n and
each processor is given a bit. In each round, every processor broadcasts a bit to all other processors.
Every processor will receive the correct message with some probability, and may receive a different
(corrupted) message independently with probability p < 1/2 (i.e., each reception gets corrupted
with probability p). The goal is for the processors to collectively compute the XOR of all their
inputs. An algorithm that takes O(log log n) rounds for all processors to learn the full input (and
hence the XOR as well) was found by [Gal88]. A matching lower bound of Ω(log log n) rounds was
proven by [GKS08].

All of the prior works were concerned with substitution errors. In this paper, we study such networks
in the presence of erasure errors, where instead of messages getting corrupted into other messages,
instead messages may get dropped. Specifically, we study the following model: in a single round
each processor can broadcast a single bit b to all other processors. For each ordered pair (i, j),
independently with some probability p, the character that i transmitted is not received by j and
a ‘?’ is received instead. In other words, there is a string X ∈ {0, 1}n and processor i is given
the ith bit of X, called xi, and the goal is for each processor to learn X using as few rounds of
communication as possible. We call our noise model the erasure model.

1.1 Our results

We show that for any alphabet, each processor can learn the inputs of all other processors with high
probability within O(log∗ n) rounds. At the high level, the algorithm involves recursively running
the protocol on groups of size log n, and having each group encode its input using a constant rate
and constant relative distance error correcting code. Then, the group collectively transmits this
encoded string within a constant number of rounds. It can be shown that with high probability
every processor receives enough bits to decode the group’s input. There are groups for which not
enough processors learn the full string (i.e., the recursive call fails), and some technical steps are
needed to handle these ‘failed groups’. The protocol is described in full detail in section 2.

We note that in the presence of substitution errors, it was proven in [GKS08] that Ω(log log n) rounds
are required for all processors to learn the whole input. Since we show a O(log∗(n)) algorithm for the
problem in the presence of erasure errors, this shows a fundamental difference between substitution
errors and erasure errors in the broadcast model.

We then show that when the alphabet is of polynomial size, there is an O(1) round algorithm for
every processor to learn the full input. The algorithm involves treating the alphabets as elements
of a finite field Fq, and simulating multiplying the input vector with an appropriate random matrix.
Then , the processors receive a random system of linear equations which one can show has a unique
solution with high probability.

We then show that any symmetric function of the input can be computed within a constant number
of rounds via computing the Hamming weight.
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1.2 Related Work

A related problem was studied in [Gal88] where the broadcast model assumed was sequential, where
in one round only one processor can broadcast a bit. Additionally, the noise model assumed was
that of bit flips instead of erasures. That is, each transmitted bit is independently flipped with
probability p on the receiving end. In their model, [Gal88] shows that all the processors can learn
the entire input within O(log log n) rounds. However, it left open the question of whether a faster
protocol was possible.

The model of [Gal88] was studied further in [GKS08] where a lower bound of Ω(n log log n) was
proven for the total number of broadcasts, thereby establishing that Gallager’s protocol is optimal
up to constant factors. The lower bound is proved via a reduction to another model called the
generalized noisy decision tree, which is a variant of the noisy decision tree model introduced in
[FRPU94]. [GKS08] also studies whether more efficient protocols exist when the processors only
want to compute some specific function on the entire input and shows that the Hamming weight
can be computed with constant probability within O(n) broadcasts.

We note that it follows from the lower bound in [GKS08] that in a variant of our model where one
considers substitution errors instead of erasure errors, any protocol from which all the processors
learn the entire input must take Ω(log log n) rounds. In light of this lower bound, our result of
an O(log∗ n) protocol is interesting, as it shows a fundamental difference between substitution and
erasure errors in this broadcast model.

Recently, a work by Efremenko, Kol, and Saxena [EKS17] showed that under a model where the
processors can adaptively choose which processor will speak in each round, the lower bound of
[GKS08] breaks down.

Note that the work of Gallager [Gal88] shows that in the substitution model where a single processor
broadcasts to the rest in a round, any function can be computed within O(n log log n) rounds. A
work by Kushilevitz and Mansour [KM98] studies the question of which Boolean functions can
be computed within O(n log logn) broadcasts. They determine that threshold functions can be
computed with constant probability within O(n) broadcasts.

A paper by Feige and Killian [FK00] studied a harsher noise model than [Gal88], where an adversary
can arbitrarily ‘uncorrupt’ arbitrary corrupted bits, causing the noise to lose structure. In this
harsher model, they show an O(log∗ n) round protocol to compute the OR of all input bits. Newman
[New04] studies another noise model where each bit transmitted is independently flipped with an
unknown probability that is at most p and gives algorithms that use O(n) broadcasts and O(log∗ n)
rounds for certain classes of Boolean functions, including OR, AND, and functions with linear size
AC0 formulas.

In [ABE+16], the authors show efficient protocols to handle errors in the UCAST model, in which
instead of broadcasting bits, a processor can send a different message to each other processor.
They also show efficient protocols to handle errors when the communication network has certain
expansion properties. For general graphs of low degree, a protocol for handling errors was found in
[RS94], which was later shown to be optimal in [BEGH17].

Our model in the absence of errors is known as the Broadcast Congested Clique, which is a computa-
tional model often studied in distributed computing (see for example, [DKO14, MT16, CHKK+15,
BFARR15, JN17]. In this model, n processors each get a piece of the input, and they work together
to compute some function of this shared input. Computation proceeds in rounds, where in each
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round each processor can broadcast a short message to all other processors. Our work can be
interpreted as showing that when using messages of constant size, every protocol in the Broadcast
Congested Clique can be made resilient to erasure errors with a blowup of only O(log∗(n)). In the
case where messages are of logarithmic size, we show the Broadcast Congested Clique can be made
resilient to erasure errors with only a constant blowup.

1.3 Notation and conventions

In this section, we state some notational conventions we use. First, we describe the computational
model (without erasures), and then we formally define the model we consider with erasures.

The Computational Model: In a setting with n processors, each processor is identified with
a distinct number in [n]. Given a string X, which we denote using an upper case character, we
write the ith bit as xi, using the corresponding lower case character. To denote the substring of
X starting at position i and ending in position j we write X[i,j]. When we wish to compute some
function of a n-bit string X using n processors, assume xi is provided as input to processor i. In
the description of algorithms, Algo(x1, . . . , xn) refers to an algorithm that runs on n processors
where the ith processor is given xi as input.

In all our algorithms, we assume that each broadcast is repeated γ times where γ is some appro-
priately chosen constant.

Formally, we have:
Definition. We let the noisy parallel broadcast model be a model of computation where there are
n processors P1, . . . , Pn, and Pi receives input bit xi. In each round of computation, each processor
can broadcast one bit to all other processors. Each reception is corrupted with some constant
probability 0 ≤ p < 1, in which case the character ‘?’ is received instead of the bit which was sent.

In this paper, we study the complexity of computing certain functions in the above model. Specifi-
cally, for constant erasure probability p we show a bound of O(log∗(n)) for computing any function,
and a bound of O(1) for symmetric functions.

As part of our algorithm we use error correcting codes, so we include standard results and notations
for codes below: Error Correcting Codes: An error correcting code is described by functions
Enc : {0, 1}k → {0, 1}n and Dec : {0, 1}n → {0, 1}k.

The rate of an error correcting code is defined as n
k and the relative distance is defined as

minx,y∈C d(x,y)
n .

The quantity d(x,y)
2 is referred to as the decoding radius. The decoding function Dec : {0, 1}n →

{0, 1}k satisfies the property that Dec(c′) = y for any c′ within hamming distance d(x,y)
2 (i.e., the

decoding radius) from Enc(x).

We use the result of [Jus72] that error correcting code families of constant rate and constant
relative distance exist. In particular, for the sake of this paper, we assume the existence of an error
correcting code family E with relative distance 0.25 and rate some absolute constant K.

2 An O(log∗ n) algorithm for computing any function

We consider the following message-passing model. There are n processors, and in each round,
every processor transmits a single bit b to all other processors. Each processor receives each bit
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independently and at random with probability 1 − p. With probability p, the character ‘?’ is
received instead. If each processor starts with a single input bit, we ask how many rounds are
required so that every processor knows all input bits with high probability. We show a bound of
O(log∗(n)) for this problem. Specifically, we will show:
Theorem 1. For every 0 ≤ p < 1, there is an algorithm in the noisy broadcast parallel erasure
model that computes IDn with high probability within O(log∗(n) log 1

1−p) rounds.

Without loss of generality, we assume that p ≤ 0.01, since for any erasure probability p < 1,
repeating each message O(log 1

1−p) times can be used to effectively lower the probability of receiving
‘?’. We describe our algorithm for the case where the alphabet Σ = {0, 1}. The protocol generalizes
to larger alphabets in a straightforward manner.

We describe a protocol for n processors with the guarantees: at the end of the protocol, all n
processors can output the full string C with probability at least 1 − 1

n5 , and if the protocol fails
(that is, there is some processor who cannot output the full string C), then all n processors can
output ‘⊥’ with probability at least 1 − 1

27n
. For the rest of this section, we assume n ≥ n0 for a

sufficiently large n0.

We begin by describing algorithms for simpler subproblems.
Lemma 2. Let bi be the input to processor i, and let the erasure probability p be .01. Then there
is an O(1)-round algorithm and an absolute constant α such that all processors output the AND of
all bi with probability at least 1− 2−αn.

Proof. Algorithm: The algorithm is as follows: in each round, a processor i broadcasts ‘0’ either
if xi = 0 or if processor i has received at least one ‘0’ in at least one of the previous rounds.
Otherwise, processor i broadcasts 1. This is repeated for 100 rounds.

Processor j’s output is the AND of all bits it received.

Analysis: First, note that if all of the bi = 1, then all processors must output 1, no matter what
messages were corrupted, since all received bits of all processors must be 1.

Now, suppose there is an i for which bi = 0. Let t be the number of processors that received the
transmission of i in the first round. The probability that processor j receives only 1s in the second
round is at most pt.

We can use Hoeffding’s inequality to obtain

Pr
[
t <

n

2

]
≤ e−α′n

for some constant α′. Thus, the probability that there is some j that received only 1’s even if there
is a processor with a 0 is at most n(e−α

′n + pn/2), bounded above by e−αn for a constant α.

We note that the above protocol does not work in the substitution model (the model where a
message may be flipped with small probability, as opposed to being corrupted to a ‘?’). In fact, in
[GKS08] it was proven that computing the AND function with high probability in the substitution
model requires Ω(log log n) rounds.

We next show an O(1) round algorithm for Equality Testing. Each processor is given an n-bit
string Si as input, and the goal is for all processors to output 1 if all their inputs are equal and 0
otherwise with probability at least 1−2−Ω(n). Unless otherwise specified, each step of the algorithm
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is from the view of processor i. Roughly speaking, this step will be used in the main algorithm to
verify that all processors end up with the same output string S.

Algorithm 1: EqualityTest(S1, . . . , Sn)

Enc is the encoding function of a code C with relative distance 0.25 and constant rate K.

1. Transmit (Enc(Si))[(i−1)K+1,iK] over K rounds
2. Let At,i be the K-bit string received from processor t and Ai = A1,iA2,i . . . An,i. Set ci to 1

if Hamming distance between Ai and Enc(Si) is at most 0.06Kn and 0 otherwise
3. The processors run the AND protocol from Lemma 2 and output the AND of all ci

Lemma 3. When the erasure probability p ≤ .01, Algorithm 1 correctly solves Equality Testing
with probability at least 1− 2−βn for some absolute constant β.

Proof. Let A be the string collectively transmitted by all processors in Step 1. We know

d(Enc(Si),Enc(Sj)) ≤ d(Enc(Si), Ai) + d(Ai, A) + d(A,Aj) + d(Aj ,Enc(Sj))

≤ 2(d(Enc(Si), Ai) + d(Enc(Sj), Aj))

where the second inequality is because d(A,Ai) is the number of ‘?’s received, and lower bounds
d(Enc(Si), Ai).

If both d(Enc(Si), Ai) and d(Enc(Sj), Aj) are at most 0.06Kn, then d(Enc(Si),Enc(Sj)) is at most
0.24Kn, but since they are codewords of a code with relative distance 0.25, Enc(Si) = Enc(Sj),
implying Si = Sj . So if there is a pair i, j with Si 6= Sj , then either ci or cj must be 0. And then
from Lemma 2, with probability at least 1− e−αn, the processors correctly detect that there is a ci
equal to 0.

On the other hand, if all the strings are indeed equal, then cj is 0 only if processor j receives fewer
than 0.94Kn bits. We upper bound the probability that this happens by using Chernoff bound
along with a union bound over all processors.

nPr[processor i receives fewer than 0.88Kn bits] ≤ ne−α′′n ≤ e−α′n

where α′ is some constant. We let β = min{α, α′}.

Let X = x1x2 . . . xn be the input string and processor i is given xi and is required to output a tuple
(Xi, si), where Xi an n-bit string and s either 1, indicating success or 0, indicating failure, with
the goal of having all Xi = X and all si = 1. We say that an algorithm on a group of processors
succeeded if Xi = X and si = 1 for all i, failed with knowledge if ri = 0 for all i, and failed
without knowledge otherwise. We describe an algorithm for this problem where each step is
from the view of processor i unless otherwise specified. Recall that each broadcast is repeated γ
times to effectively reduce the erasure probability p to be at most .01. For simplicity, we assume
that n is a power of 2, and so log n is an integer. It is easy to generalize the algorithm to all values
of n.

At the high level, the algorithm proceeds as follows. We partition the processors into n/ log n sets
of size log n each (Step 2a). Then, we recursively compute the input on each of these subsets. Now,
some of these subsets will have succeeded, and some will have failed. For the ones that failed, we
now recompute the input, but this time we add more processors to be “helper processors”. That
is, the processors which succeeded in the recursive calls will now be used to aid the processors who
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failed in the recursive call by sending messages on their behalf. This can be seen in Step 2g, where
the processor sends x`i , which is the input to a processor which failed on the recursive call. This
idea of using successful processors to help others who failed helps ensure that within a constant
number of tries, with high probability all input bits will be known.

Algorithm 2: LearnInput(x1, . . . , xn)

Enc is the encoding function of a code C with relative distance 0.25 and constant rate K

1. Base Case: If n < 100
(a) Transmit xi repeatedly 100 times, and set string Si as per

(Si)j =

{
b if b was received in any transmission from j

random bit if all transmissions from j are ‘?’

and go to Step 3a.
2. Recursive Step:

(a) Recursively obtain (X ′i, r
′
i) = LearnInput

(
x⌊ i

logn

⌋
logn+1

, . . . , x⌊ i
logn

⌋
logn+logn

)
. We

call this set of processors the group of i.
(b) Broadcast r′i
(c) Set Ri by setting (Ri)j to 1 if only 1’s were received from j’s group (i.e., from the

processors which j computed the recursive call with) and 0 otherwise, for each j ∈ [n].
(d) Let i′ = i mod log n and transmit Enc(X ′i)[(i′−1)K+1,i′K] over the next K rounds.

(e) Let zi be the number of zeros in Ri and let j =
⌈
izi
n

⌉
and let `i be the index of the jth

zero in Ri. Create set Ms,i to be all t such that

n(s− 1)

zi
< t ≤ ns

zi

(f) Transmit xi.
(g) Broadcast what was received from `i, which is either ‘?’ or x`i . Let M ′j,i be the set of

characters received from Mj,i.
(h) Set Xi by setting (Xi)j to xi if j = i, by decoding the bits received in Step 2d if

(Ri)j = 1 and at least 0.88K log n bits were received from the group of j, to a random
bit if (Ri)j = 1 and fewer than 0.88K log n bits were received from group j in Step 2d,
and to 11∈M ′j,i if (Ri)j = 0. Proceed to Step 3a.

3. Verification of output
(a) Obtain vi = EqualityTest(X1, . . . , Xn) and output (Xi, vi).

We now prove the following proposition, from which Theorem 1 immediately follows.
Proposition 4. Algorithm 2 runs in O(log∗ n) rounds, succeeds (i.e., each processor outputs (X, 1),
where X is the input to all processors) with probability at least 1− 1

n5 and fails without knowledge
with probability at most 1

27n
.

Proof. We list conditions under which the protocol definitely succeeds, and show all these conditions
hold with probability at least 1 − 1

n5 . Define R as r′1r
′
2 . . . r

′
n from the output of Step 2a. Define

Ms as all j such that n(s−1)
z < j ≤ ns

z where z is the number of 0’s in R.

The protocol definitely succeeds if the following conditions hold:
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1. All but at most n
log3 n

groups succeed in the recursive call of Step 2a.

2. No group fails without knowledge in the recursive call of Step 2a, and Ri = R for all i.

3. For all j such that (R)j = 0, for all i, processor i receives at least one transmission from a
processor in M`j ,i in Step 2g where the `jth 0 in R occurs at (R)j .

4. Each processor receives at least 0.88K log n bits from each successful group in at least one
transmission in Step 2d of the algorithm.

Indeed, for any j in a successful group, all processors correctly learn the input to processor j because
Condition 4 is met. By Condition 2, for fixed s, Ms,i is the same for all i since Ms,i depends on Ri.
For any j in a failed group, by Condition 2, (R)j = (Ri)j = 0, and by Condition 3, each processor
receives at least one transmission of processor j’s input in Step 2g and so all processors correctly
learn the input to processor j.

We now proceed with showing a lower bound on the probability that all of these conditions hold.

We can see that Condition 1 holds with probability at least 1 − 1
n6 since by Chernoff bounds, the

number of failed groups exceeds n
log3 n

with probability at most 1
n6 .

Now suppose Condition 1 holds. A group fails without knowledge with probability at most 1
n7

by the guarantees of the protocol. The probability that there exists a group that failed without
knowledge, by the union bound, is therefore at most 1

n6 . If no group failed without knowledge,
the only way Ri cannot equal R is if there is a group Mj,i that processor i did not receive a single
bit from. The probability that processor i does not receive a single bit from this group is pγ logn,
which for appropriate γ is at most 1

n8 . Thus, the probability that there is some i, j pair such that
processor i does not receive a single bit from group j is at most 1

n6 by a union bound. So the
probability that Condition 2 is not met (given that Condition 1 is met) is at most 2

n6 .

Note that Ri = R means Ms = Ms,i for all i. It follows from Chernoff bounds that the number of
processors in Ms that receive the bit transmitted by processor s is at least log n with probability at
least 1− 1

n6 . The probability that processor i does not receive any bits from processors in Ms in any
of the repetitions of Step 2g is at most pγ logn, which can be made smaller than 1

n8 by setting γ to
be large enough. Now by taking a union bound over all pairs (i, s) we can conclude that Condition
3 does not hold with probability at most 1

n6 .

The probability that processor i receives fewer than 0.88K log n bits from group j in all repetitions
of Step 2d is at most 1

ncγ for some constant c by Chernoff bounds. A union bound across all
processor-group pairs tells us that Condition 4 does not hold with probability at most 1

ncγ−2 which
can be made smaller than 1

n6 with large enough γ.

Based on the bounds we obtained on the probability that each of Conditions 1, 2, 3, 4 don’t hold,
we can conclude that the probability that all the conditions hold is at least 1− 1

n5 .

It remains to show that the probability that the processors failed without knowledge is at most 2−7n.
If there is Xi such that Xi 6= X, then it differs from X in some index j, which means (Xi)j 6= (Xj)j
by construction of Xj implying Xi 6= Xj . Thus, a failure without knowledge happens only if Step
3a fails, which happens with probability at most e−βn, which can be made smaller than 2−7n by
choosing the number of repetitions γ to be a large enough constant.

The number of rounds this algorithm takes is given by T (n), which satisfies the recurrence relation
T (n) = T (log n) + L where L is a constant and with base case T (100) = O(1), which solves to
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T (n) = O(log∗ n).

3 An O(1) algorithm for large alphabets

For large alphabets, in the regime where the alphabet Σ is Fq and q = poly(n), we give a constant
round algorithm to have all processors learn the input X with probability at least 1− 1

poly(n) . Unless
otherwise specified, the algorithm is from the view of processor i. While our algorithm works for
any q that is polynomial in n, for simplicity of exposition we assume q ≥ n6 and that q is a prime.

Algorithm 3: LearnInputLargeAlphabet(x1, . . . , xn)

Let F be a function that encodes subsets of [6 log n] as elements of Fq

1. Let k = b6 log nc and determine Bi = {njk + 1, . . . , n(j+1)
k }, where j is chosen such that i ∈ Bi

2. Broadcast xi for 10 rounds
3. For each t from 1 to 10 and for each processor in Bi from which an entry was received in

round t of Step 2, choose the processor with probability 1
2(1−p) and choose i with probability

1
2 . Let Tt,i be the set of chosen elements.

4. For the next 20 rounds, processor i transmits all the
∑

b∈Tt,i xb (where the xb are added as

elements of Fq) and F (Tt,i)

5. Output Xi consistent with all received pairs
(∑

b∈Tt,i xb, F (Tt,i)
)

. If there is more than one

possibility for such an Xi, pick one at random.

Theorem 5. With probability at least 1 − 1
poly(n) , after running Algorithm 3, all processors will

know all other processors’ inputs. Furthermore, the algorithm terminates within O(1) rounds.

As a first ingredient towards proving Theorem 5, we prove the following lemma.
Lemma 6. If A is a 5k × k random binary matrix where each entry is i.i.d. generated by flipping
a fair coin, then with probability at least 1− e−0.4k, A is full rank.

Proof. Suppose V is a subspace of Fkq that is not equal to all of Fkq , then we can find standard
basis vector ei that is not in V . Then for any binary vector v, consider v′ with the bit at the
i-th coordinate flipped. Either v or v′ is not in V , which means at least half of the binary vectors
are not in V , which means each new vector has probability at least 1

2 of not being in V . If we
let V = span{vectors drawn so far}, then each draw has a probability at least 1

2 of increasing the
dimension. Suppose we flip 5k coins, the probability that the number of heads is at most k is an
upper bound on the probability of the span of 5k randomly drawn vectors not being the whole
space.

By Chernoff bounds, this probability is at most e−0.4k.

Proof of Theorem 5. Each Tt,i is a uniformly random subset of input bits of set Bi. Let xBi be a
k-dimensional vector of the inputs to processors in Bi, then the transmitted characters in Round 5
are of the form (〈aBi , xBi〉, F (Tt,i)) where aBi is a random binary vector, and F (Tt,i) is an encoding
of aBi . The transmitted characters can be viewed as elements in the vector AxBi , where A is a
matrix whose rows are the aBi . A single processor’s output of xBi is given by sampling rows of the
equation AyBi = AxBi where yBi is indeterminate and solving for yBi . If the number of sampled
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rows is at least 5k, then from Lemma 6 the probability that the sampled rows span Fkq and hence

give a unique solution to yBi is at least 1− 1
n2.4 .

The probability that the number of sampled rows for a group is less than 5k can be upper bounded
by 1

n5 using Chernoff bounds.

So by union bound over all group-processor pairs (i.e., all pairs (i, Bj)), we get a 1
poly(n) upper

bound on the failure probability.
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A An O(1) protocol for computing any symmetric function

We show that any symmetric function can be computed within O(1) rounds in the model. Sym-
metric functions are functions whose value doesn’t change under permutation of the input bits. In
other words, these functions only depend on the Hamming weight of the input string. Hence, an
algorithm for every processor to learn the Hamming weight of the string leads to an algorithm to
compute any symmetric function. Our algorithm is inspired by a similar algorithm (for a different
model) of [GKS08].
Theorem 7. There is an O(1) round algorithm in the noisy broadcast parallel erasure model that
computes Hamming Weight(X) with probability at least 0.75.

Our algorithm proceeds in two phases:

1. Divide the interval [0, n] into subintervals of length c
√
n and find which interval the Hamming

weight belongs to.

2. Figure out exactly which integer in the interval is the Hamming weight.

More precisely, the first step will give us three intervals, and we will show for at least two of these
intervals, with high probability all processors will end up with the same interval. Then, we will run
the second step (where we pinpoint the exact hamming weight) on each of the three intervals, and
take a majority vote to compute the final output.

We describe the first step below:
Lemma 8. With probability at least 1−exp(−Ω(n)), for at least two t in {1, 2, 3}, all Ci,t outputted
in Step 4 of Algorithm 4 are equal and correspond to an interval containing Hamming Weight(X).

Proof. By Chernoff bounds, the probability that hi deviates from the truth by t
√
n is at most

e−Ct
2

for an absolute constant C. This can be made smaller than 0.01 with appropriate choice of
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Algorithm 4: DetermineInterval(x1, . . . , xn)

A1, A2, . . . , Ak are disjoint intervals of size ≈ 2t
√
n covering [0, n], with t chosen later.

Let Ai be ∅ if i < 1 or i > k.
Bi := Ai ∪Ai+1 ∪Ai+2.
Bs := {Bi : i ≡ s mod 3}.
Enc is the encoding function of a code with relative distance 0.25 and constant rate K.

1. Transmit xi
2. Compute hi := number of 1’s received

1−p
3. For s = 0, 1, 2:

(a) Find interval in Bs containing hi, called I. I is encoded as a string sI (of size O(log n)).
(b) Let i′ = i mod log n and transmit Enc(sI)[K(i′−1)+1,Ki′] over K rounds

(c) Ci,s :=

{
sI if at least .88K log n bits were received in Step 3b

decoded string if fewer than .88K log n bits were received in Step 3b
4. Return Ci,0, Ci,1 and Ci,2.

a constant t. Then for at least two values of s, hi lies in the correct interval in Bs with probability
at least 0.99. Without loss of generality, say this happens for s = 0 and s = 1. Using Chernoff
bounds, we can show that for some constant c, with probability at least 1 − exp(−Ω(n)), at least
0.95 fraction of the processors decode the correct interval in B0 and B1.

And assuming at least 0.95 fraction of the processors decode the correct intervals in B0 and B1, we
can show once again using Chernoff bounds and union bound, that the number of bits from the
encoded string of the correct interval received by each processor is more than 0.9Kn with probability
at least 1− exp(−Ω(n)), which means with exponentially high probability, every processor decodes
the correct interval in B0 and B1.

For the second step, our goal is the following: given that every processor knows an interval [a, b] in
which the Hamming weight of the input string lies, it can recover the value of the Hamming weight
in O(1) rounds.
Lemma 9. On running Algorithm 5, all processors return the Hamming weight s of X with prob-
ability at least 0.9.

Proof. Define θ̂s to be the fraction of βi transmitted in Step 3 that are 1.

We can lower bound θ`+1 − θ` for x ≤ ` < y by c√
n

where c is some constant [GKS08, Lemma

41]. The probability that |θs − θ̂s| is at most c
8
√
n

can be made at least 0.99 with an appropriate

choice of the number of repetitions γ. Similarly, we can ensure that |θ̂s − θ̂s,i| is at most c
8
√
n

with

probability at least 0.99.

By Chernoff bounds, the fraction of processors for which |θ̂s − θ̂s,i| < c
8
√
n

is at least 0.95 with

probability at least 1−exp(−Ω(n)). Thus, conditioned on |θs− θ̂s| < c
8
√
n

, we have that for at least

0.95 of the processors, |θs − θ̂s,i| < c
4
√
n

. Further, the string S1S2 . . . Sn transmitted in Step 6 with

random erasures has distance less than the decoding radius of C of Enc(s) with probability at least
1− exp(−Ω(n)), in which case all processors can correctly output s.
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Algorithm 5: PinpointWeight(x1, x2, . . . , xn; [a, b])

[a, b] is the interval of length up to 3
√
n where the Hamming weight is promised to lie

Enc is the encoding function of a code C with relative distance 0.25 that maps log n bit strings
to K log n bit strings

Let θs be defined as the probability that when flipping s coins, each coming up heads with
probability 1− p, at least (1− p)

(
a+b

2

)
come up heads.

1. Transmit xi
Let Y be the number of 1’s received.

2. βi :=

{
1 if number of 1’s received is greater than (1− p)

(
a+b

2

)
0 otherwise

3. Transmit βi
4. Let θ̂s,i be the fraction of received bits from Step 3 that are 1 (i.e., the total number of 1’s

received, divided by the total number of 1’s or 0’s received).
5. ŝi = arg min` |θ` − θ̂s,i|
6. Let i′ = i mod log n and transmit Enc(ŝi)[K(i′−1)+1,Ki′] over K rounds

7. s̃i =

{
decoded string if at least .88K log n bits were received in Step 6

ŝi if fewer than .88K log n bits were received in Step 6

Since the condition |θs − θ̂s| < c
8
√
n

holds with probability at least 0.99, the required guarantees of

the Lemma hold.

Proof of Theorem 7. The processors run Algorithm 4 to obtain 3 candidate intervals I1, I2 and
I3, and with exponentially high probability, at least two of these candidate intervals contain the
Hamming weight. The processors run Algorithm 5 on each of the three intervals and processor i
obtains outputs n0, n1 and n2 respectively. With constant probability, at least two of n0, n1 and
n2 are the same and equal to the correct Hamming weight, and hence outputting the majority of
the three matches the guarantee.
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