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Abstract

We initiate the study of data dimensionality reduction, or sketching, for the q → p norms.

Given an n × d matrix A, the q → p norm, denoted ‖A‖q→p = supx∈Rd\~0
‖Ax‖p
‖x‖q

, is a natural
generalization of several matrix and vector norms studied in the data stream and sketching
models, with applications to datamining, hardness of approximation, and oblivious routing.
We say a distribution S on random matrices L ∈ Rnd → Rk is a (k, α)-sketching family if from
L(A), one can approximate ‖A‖q→p up to a factor α with constant probability. We provide
upper and lower bounds on the sketching dimension k for every p, q ∈ [1, ∞], and in a number
of cases our bounds are tight. While we mostly focus on constant α, we also consider large
approximation factors α, as well as other variants of the problem such as when A has low rank.
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1 Introduction

Data dimensionality reduction, or sketching, is a powerful technique by which one compresses a
large dimensional object to a much smaller representation, while preserving important structural
information. Motivated by applications in streaming and numerical linear algebra, the object is
often a vector x ∈ Rn or a matrix A ∈ Rn×d. One of the most common forms of sketching is oblivi-
ous sketching, whereby one chooses a random matrix L from some distribution S, and compresses
x to Lx or A to L(A). The latter quantity L(A) denotes a linear map from Rnd, interpreting A as
an nd-dimensional vector, to an often much lower dimensional space, say Rk for a value k� nd.

Sketching has numerous applications. For example, in the data stream model, one sees additive
updates xi ← xi + ∆, where the update indicates that xi should change from its old value by an
additive ∆. Given a sketch L · x, one can update it by replacing it with L · x + ∆ · L∗,i, where L∗,i
denotes the i-th column of L. Thus, it is easy to maintain a sketch of a vector evolving in the
streaming model. Similarly, in the matrix setting, given an update Ai,j ← Ai,j + ∆, one can update
L(A) to L(A) + ∆L(ei,j), where ei,j denotes the matrix with a single one in the (i, j)-th position,
and is otherwise 0. If L is oblivious, that is, sampled from a distribution independent of x (or
A in the matrix case), then one can create L without having to see the entire stream in advance.
Other applications include distributed computing, whereby a vector or matrix is partitioned across
multiple servers. For instance, server 1 might have a vector x1 and server 2 a vector x2. Given the
sketches Lx1 and Lx2, by linearity one can combine them, using L(x1 + x2) = Lx1 + Lx2. In these
applications it is important that the number k of rows of L is small, since it is proporational to the
memory required of the data stream algorithm, or the communication in a distributed protocol.
Here k is referred to as the sketching dimension.

Sketching vector norms is fairly well understood, and we have tight bounds up to logarithmic
factors for estimating the `p-norms ‖x‖p = (∑i |xi|p)1/p for every p ∈ [1, ∞]; for a sample of such
work, see [AMS96, BYJKS02, IW05, Ind06, KNW10, KNPW11] for work in the related data stream
context, and [PW12, ANPW13, LW13] for work specifically in the sketching model. Recently, there
is work [BBC+17] characterizing the sketching complexity of any symmetric norm on a vector x.
A number of works have also looked at sketching matrix norms. In particular, the Schatten p-

norms ‖A‖p =
(

∑rank(A)
i=1 σi(A)p

)1/p
have gained considerable attention. They have proven to be

considerably harder to approximate than the vector p-norms, and understanding their complexity
has led to important algorithmic and lower bound techniques. A body of work has focused on
understanding the complexity of estimating matrix norms in the data stream model with 1-pass
over the stream [A+13, LW16a], as well as with multiple passes [BCK+16], the sketching model
[LNW14, LW17], statistical models [KV16, KO17], as well as the general RAM model [MNS+18,
UCS16]. Dimensionality reduction in these norms also has applications in quantum computing
[Win05, HMS11], and are studied in nearest neighbor search data structures [And10].

1.1 Our Contributions

We consider the sketching complexity of a new family of norms, namely, the p → q norms of a
matrix. A common quantity that arises in various applications is the amount by which a linear
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map A “stretches” vectors. One way to measure this quantity is the maximum singular value of
A, which can be written as sup‖x‖2=1 ‖Ax‖2, and is just the Schatten-∞ norm, defined above. In
this work we consider a different way of measuring this stretch, which considerably generalizes
the operator norm.

For a linear operator A from a normed space X to a normed space Y , we define ‖A‖X→Y as
sup‖x‖X=1 ‖Ax‖Y . Of specific interest to us is the case where X = `d

q and Y = `n
p, and we denote

the corresponding norm of such an operator by ‖A‖q→p. Our objective is to study the sketching
complexity of approximating this norm.
Definition 1.1 ((k, α)-sketching family). Let S be a distribution over linear functions from Rn×d to
Rk and f a function from Rk to R. We call (S , f ) a (k, α)-sketching family for the q → p norm if
for all A ∈ Rn×d, PrL∼S

[
f (L(A)) ∈ (1/α, α) ‖A‖q→p

]
> 5

6 .

We provide upper and lower bounds on k. The details of the specific results we have are described
in Section 1.3.

1.2 Motivation

This problem is well-studied in mathematics when p = q as it simply corresponds to p-matrix
norm estimation1. An intriguing question is whether one can preserve ‖Ax‖p in a lower-dimensional
sketch space, given that the vectors x come from the unit ball of a smaller norm.

Apart from being mathematically interesting, this problem has a number of applications. The
operator norm is a special case when p = q = 2. The operator norm can be accurately estimated
by any subspace embedding for `2, discussed in detail in [CW13]. The dual of this norm is also
the Schatten-1 norm, which has received considerable attention in the streaming model [LW16a,
BCK+16]. The q→ p norm problem is a natural generalization of the operator norm problem, and
when p < 2, may be more appropriate in the context of robust statistics, where it is known that
the p norm for p < 2 is less sensitive to outliers, see, e.g., Chapter 3 of [Woo14] for a survey on
robust regression, and [SWZ17] for recent work on `1-low rank approximation.

The 2 → q norms arise in the hardness of approximation literature and an algorithm for some
instances of the problem was used to break the Khot-Vishnoi Unique Games candidate hard in-
stance [KV15]. Work by [BBH+12] gives an algorithm running in time exp(n2/p) for approximat-
ing 2 → p norms for all p > 4. These algorithms give a constant factor approximation when
promised the 2 → p norm is in a certain range (depending on the operator norm) rather than
providing a general estimate of the 2 → p norm. This same paper also discusses assumptions
on the the NP-hardness and ETH hardness of approximating 2 → p norms. The work of [BH15]
extends that of [BBH+12] to all p > 2. The work of [BV11] gives a PTAS for computing ‖A‖q→p if
1 6 p 6 q and A has non-negative entries, and gives an application of this to the oblivious routing
problem where congestion is measured using the `p norm. The paper also shows that it is hard to
approximate ‖A‖q→p within a constant factor for general A, and general p and q. Sketching may
allow, for example, for reducing the original problem to a smaller instance of the same problem,
which although may still involve exhaustive search, could give a faster concrete running time.

1See, e.g., https://en.wikipedia.org/wiki/Matrix_norm
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The 1→ q norm turns out to be the maximum of the q-norm of the columns of A, which is related
to the heavy hitters problems in data streams, e.g., the column with the largest q-norm may be
the most significant or desirable in an application. Likewise, the q → ∞ norms turn out to be
the maximum of the p-norms of the rows of A, where p is the dual norm to q, and therefore
have similar heavy hitter applications. The ∞ → q norm is maximized when x ∈ {−1, 1}n and
therefore includes the cut-norm as a special case, and is related to Grothendieck inequalities, see,
e.g., [BdOFV10, NRV14, BRS17].

Our main motivation for studying the p → q norms comes from understanding and developing
new techniques for this family of norms. Another family of norms that is well-studied in the data
stream literature are the cascaded norms, which for an n× d matrix A and parameters p and q, are
defined to be (∑i=1,...,n(‖Ai,∗‖p)q)1/q, where Ai,∗ denotes the i-th row of A. That is, we compute
the q-norm of the vector of p-norms of the rows of A. This problem originated in [CM05] and has
applications to mining multi-graphs; the following sequence of work established tight bounds up
to logarithmic factors for every p, q ∈ [1, ∞] [JW09, AKO11]. This line of work led to very new
techniques; one highlight is the use of Poincaré inequalities in proving information complexity
lower bounds, which has then been studied in a number of followup works [AJP10, Jay13, AKR15].

1.3 Our Results

After establishing preliminary results and theorems in Section 2, we give our results for constant
and large approximation factors. Our main theorem is as follows. Here `q∗ is the dual norm of `q,
that is, 1/q∗ + 1/q = 1 (when q = 1, q∗ = ∞, and vice versa).
Theorem 1.2. For all matrices A ∈ Rn×n with rank r and real values p, q ∈ [1, ∞], the table below gives
upper and lower bounds on k for a (k, Θ(1))-sketching family of various q→ p norms.

q→ p Norm p∗ → q∗ Norm Upper Bound Sec Lower Bound Sec
1→ [1, 2] [2, ∞]→ ∞ O(n log n) 3.1 Ω(n) 4.2

1→ [2, ∞] [1, 2]→ ∞ O(n2− 2
p log2 n) 3.1 Ω(n2− 2

p ) 4.3
[2, ∞]→ [1, 2] [2, ∞]→ [1, 2] O(n2) - Ω(n2) 4.4

2→ [2, ∞] [1, 2]→ 2 O(min{n1− 2
p r2 log n, n2}) 3.2 Ω(min{n, n1− 2

p r}) 4.5

[1, 2]→ [1, 2] [2, ∞]→ [2, ∞] O(n2) - Ω(min{n1− 2
q∗ r, n}) 4.5

[1, 2]→ [2, ∞] [1, 2]→ [2, ∞] O(n2) - Ω
(

n
log n

)
4.6

The constant factor hidden in Theorem 1.2 does not hold for all constants, the smallest constant it
holds for varies depending on the specific values of q, p.

We also have several results for large approximation factors summarized in the theorem below.
Theorem 1.3. There exists a

(
O
(

n2

α

)
, α
)

-sketching family for the 2 → p and ∞ → p norm and a(
O
(

n2

α2

)
, α
)

-sketching family for the q→ p norm for q > 1 and 1 6 p 6 2.

Our algorithms combine several insights, which we illustrate here in the case of the 2 → p
norm for p > 2 and when the rank of A is r: (1) we show by duality that ‖A‖2→p is the same
as ‖AT‖p∗→2, where p∗ satisfies 1

p∗ +
1
p = 1 and is the dual norm to p. Although the proof is

elementary, this plays several key roles in our argument. Next, we (2) use oblivious subspace
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embeddings S which provide constant factor approximations for all vectors simultaneously in an
r-dimensional subspace of `2, and enable us to say that with Cr rows for a constant C > 0, we have
‖SAT‖p∗→2 = Θ(1)‖AT‖p∗→2. Next, (3) we use that for a random Gaussian matrix G ∈ RC′r×Cr,
for a constant C′ > 0, with appropriate variance, it has the property that simultaneously for all
x ∈ RCr, ‖Gx‖1 = Θ(1) · ‖x‖2. This is a special case of Dvoretsky’s theorem in functional analysis.
Thus, instead of directly approximating ‖SAT‖p∗→2, we can obtain a constant factor approxima-
tion by approximating ‖GSAT‖p∗→1. This is another norm we do not know how to directly work
with, so we apply duality (1) again, and argue this is the same as approximating ‖ASTGT‖∞→p. A
key observation is now (4), that supx s.t. ‖x‖∞=1 ‖ASTGTx‖p is realized when x has each coordinate

equal to 1 or−1. Consequently, as x ∈ RC′r, it suffices to use any sketch T for the p-norm of a fixed
vector which fails with probability exp(−C′r), and estimate ‖TASTGTx‖p for each of the 2C′r pos-
sible maximizers x, and output the largest estimate. As there exist sketches T with O(n1−2/pr log n)
rows for this purpose, this gives us an overall sketching complexity of O(n1−2/pr2 log n).

We defer a discussion of our lower bound techniques to Section 4.

2 Preliminaries

In this section, we introduce the tools we use in this paper.
Definition 2.1 (Total Variation Distance). Given two distributions D and D′ over sample space Ω
with density functions pD and pD′ , the total variation distance is defined in two equivalent ways
as follows dTV(D,D′) = 1

2‖pD − pD′‖1 = supE |Prx∼D[E ]− Prx∼D′ [E ]|

The following result bounds the total variation distance between two multivariate Gaussians.
Lemma 2.2. [HP15, Lemma A4] Let λ be the minimum eigenvalue of PSD matrix Σ, then dTV(N (µ, Σ),N (µ′, Σ′)) 6

C√
λ
(‖µ− µ′‖2 + ‖Σ− Σ′‖F) for an absolute constant C.

We state a well known result that a Lipschitz function of a Gaussian vector is tightly concentrated
around its expectation, which is useful since `p norms are Lipschitz.
Theorem 2.3. [Tao12, Theorem 2.1.12] Let X ∼ N (0, In) be a Gaussian random vector and let f :
Rn → R be a 1-Lipschitz function. Then for some absolute constants C, c > 0, Pr[| f (X)− E[ f (X)]| >
λ] 6 C exp(−cλ2) Notice that this implies if f is t-Lipschitz, then Pr[| f (X) − E[ f (X)]| > λ] 6
C exp(−cλ2/t2)

It is possible to embed `n
2 into `

O(n)
p with constant distortion using a linear map when p ∈ [1, 2],

and we use the existence of such a linear map in our results.
Lemma 2.4. [Mat13, Theorem 2.5.1] For all p ∈ [1, 2], there is an absolute constant Cp such that for any
n, there is a linear map T : Rn → RCpn such that ‖T(x)‖p =

(
1± 1

2

)
‖x‖2. An important observation is

that this implies for any linear map A : Rn → Rn, we have ‖TA‖q→p =
(
1± 1

2

)
‖A‖q→2.

In the lemma below we make an important observation that highlights the connection between
several p→ q norms.
Lemma 2.5. For any p, q > 1 and d× n matrix A, ‖A‖q→p = ‖AT‖p∗→q∗ .
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Proof. Using the notation above for dual norms, we have

‖A‖q→p = sup{‖Ax‖q : ‖x‖p 6 1}
= sup{sup{y>Ax : ‖y‖q∗ 6 1} : ‖x‖p 6 1}
= sup{sup{x>A>y : ‖x‖p 6 1} : ‖y‖q∗ 6 1}
= sup{‖A>y‖p∗ : ‖y‖q∗ 6 1}
= ‖A>‖p∗→q∗

Throughout the paper, we make use of q∗ to refer to q
q−1 since ` q

q−1
is the dual norm of `q.

We give a characterization of the 1→ p and ∞ → p norm of a matrix. The proofs can be found in
Appendix A. For any d× n matrix A, we have
Lemma 2.6. ‖A‖1→p = maxi∈[n]{‖A∗,i‖p}.
Lemma 2.7. ‖A‖∞→p = maxx∈{±1}n ‖Ax‖p.

We introduce the machinery of ε-nets, a common tool in the study of random matrices (see [Ver10])
along with some relevant lemmas and defer the proofs to the full version’s Appendix.
Definition 2.8 (ε-net). Let X be a normed space. For S ⊆ V, we call a set N an ε-net for S if for all
v ∈ S, there is v′ ∈ N such that ‖v− v′‖X < ε.

For a linear operator A, we show that to bound ‖A‖X→Y , it suffices to bound ‖Ax‖Y for x taken
over an ε-net of the unit ball in X .
Lemma 2.9. Let X and Y be normed spaces and let A : X → Y be a linear map. Suppose N is an ε-net of
the unit ball in X , then ‖A‖X→Y 6 1

1−ε maxv∈N ‖Av‖Y .

We also give a way to construct ‘small’ ε-nets of unit balls.
Lemma 2.10. There is an ε-net of the unit ball B in an n-dimensional normed space X with at most

( 2+ε
ε

)n

elements.

Another tool we use is subspace embeddings, which we define below.
Definition 2.11. An oblivious subspace embedding family (OSE family) is a distribution S over
O(m)× n matrices such that for any subspace K ⊆ Rn of dimension m, PrS∼S [∀x ∈ K : ‖Sx‖2 =

Θ(1)‖x‖2] > 9
10 .

Lemma 2.12. [Sar06] There exist OSE families, where the matrices have dimension O(k)× n. Note that
this means for any rank-k matrix A, a randomly drawn S from such an oblivious subspace embedding family
satisfies ‖SAx‖2 = Θ(1)‖Ax‖2 simultaneously for all x with probability at least 99/100.

3 Sketching algorithms for constant factor approximations

3.1 Sketches for approximating ‖A‖1→p

We show how to use sketches for p-norms of vectors to come up with sketches for the 1→ p norm.
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Lemma 3.1. Let x be an arbitrary vector in Rn. If S is a distribution over t× n sketching matrices, and f :
Rt → R is a function such that PrS∼S

[
f (Sx) ∈

( 1
2‖x‖p, 2‖x‖p

)]
> 2

3 then there is an (O(nt log n), 2)-
sketching family (S ′, g) for the 1→ p norm of n× n matrices.

Proof. Proof in Appendix B.

Given an n-dimensional vector x, we have the following theorems from [KNW10] and [AKO11]
respectively.
Theorem 3.2 (Efficient sketches for small norms). When p ∈ [1, 2], there is a function f and a dis-
tribution over sketching matrices F with O(1) rows such that for S ∼ F , f (Sx) is a constant factor
approximation for ‖x‖p with probability at least 2/3.
Theorem 3.3 (Efficient sketches for large norms). When p > 2, there is a function f and a distribution
over sketching matrices F with O(n1−2/p log n) rows such that for S ∼ F , f (Sx) is a constant factor
approximation for ‖x‖p with probability at least 2/3.

Lemma 3.1 tells us the following as a corollary to Theorem 3.2 and Theorem 3.3.
Theorem 3.4. There is an (O(n log n), 2)-sketching family for the 1 → p norm when p ∈ [1, 2] and a
(O(n2−2/p) log2 n, 2)-sketching family for the 1→ p norm when p ∈ (2, ∞].

3.2 Sketches for approximating ‖A‖2→p for p > 2

We give a sketching algorithm for the 2→ p norm of A, whose number of measurements depends
on the rank r of d× n matrix A.
Theorem 3.5. There is an (O(n1−2/pr2 log n), Θ(1))-sketching family for the 2→ p norm.

Proof. Observe that ‖A‖2→p is equal to ‖AT‖p∗→2 by Lemma 2.5 and let S be a Cr× d matrix drawn
from an oblivious subspace embedding family, which exists by Lemma 2.12. From Theorem 2.4, let
G be a βr× Cr map such that for all x, ‖GSATx‖1 = Θ(1)‖SATx‖2. Combining with the subspace
embedding property, we get that ‖GSATx‖1 = Θ(1)‖ATx‖2 for all x, which is equivalent to saying
‖GSAT‖p∗→1 = Θ(1)‖A‖2→p. Another application of Lemma 2.5 gives us that ‖ASTGT‖∞→p =

Θ(1)‖A‖2→p. Since ASTGT is n× βr, ‖ASTGT‖∞→p = maxx∈{±1}βr ‖ASTGTx‖p.

Our final ingredient is the existence of an O(n1−2/p log n log(1/δ)) × n sketching matrix E and
estimation function f such that for any x, Pr[ f (Ey) = Θ(1)‖y‖p] > 1− δ [And17] when p > 2. We
set δ = 2−2βr and use a union bound over all 2βr vectors in {±1}βr to conclude

Pr[∀x ∈ {±1}βr : f (EASTGTx) = Θ(1)‖ASTGTx‖q] > 1− 2−βr

Pr

[
max

x∈{±1}βr
f (EASTGTx) = Θ(1)‖ASTGT‖∞→q

]
> 1− 2−βr

Consequently, we get a sketch that consists of O(n1−2/pr2 log n) measurements to get a Θ(1) ap-
proximation to ‖A‖2→p with probability at least 0.99.

6



4 Sketching lower bounds for constant factor approximations

4.1 Lower Bound Techniques

The way we prove most of our lower bounds is by giving two distributions over n× n matrices,
D1 and D2, where matrices drawn from the two distributions have q → p norm separated by a
constant factor κ with high probability, which means a (k,

√
κ)-sketching family can distinguish

between samples from the two distributions. We then show an upper bound on the variation
distance between distributions of k-dimensional sketches of D1 and D2. We then argue that if k is
too small, then the total variation distance is too small to solve the distinguishing problem. We
formalize this intuition in the following theorem.
Theorem 4.1. Suppose D1 and D2 are distributions over d× n matrices such that

(i) PrD∼D1 [‖D‖q→p < s] > 1− 1
n and PrD∼D2 [‖D‖q→p > κs] > 1− 1

n

(ii) for any linear map L : Rd×n → Rk, dTV(L(D1), L(D2)) = O
(

ka

nb

)
for constants s, κ, a, b, any (k,

√
κ)-sketching family for the q→ p norm must satisfy k = Ω(nb/a).

Proof. Let D be the distribution over matrices given by sampling from D1 with probability 1
2 and

drawing fromD2 with probability 1
2 . We shall fix a sketching operator L : Rd×n → Rk and consider

A drawn from a distribution D. Suppose f (L(A)) lies in (1/
√

κ,
√

κ)‖A‖q→p with probability at
least 5/6. It suffices to show that k must be Ω(nb/a) since the theorem statement then follows from
Yao’s minimax principle. We must have

PrA∼D1

[
f (L(A)) ∈

(
1√
κ

,
√

κ

)
‖A‖q→p

]
>

2
3

, PrA∼D2

[
f (L(A)) ∈

(
1√
κ

,
√

κ

)
‖A‖q→p

]
>

2
3

Thus, we have an algorithm that correctly distinguishes with probability at least 3
5 if A was drawn

from D1 or D2 by checking if f (L(A)) is greater than or less than
√

κs.

The existence of this distinguishing algorithm means the total variation distance between the dis-
tributions of L(D1) and L(D2) is at least 1

5 . From the theorem’s hypothesis, we know of a constant
C such that Cka

nb > 1
5 , which gives us the desired upper bound.

We also show an upper bound on the variation distance of sketches for two distributions that
we use throughout this paper. Define G1,d×n as the distribution over d × n Gaussian matrices
and G2,d×n[α] as the distribution given by drawing a Gaussian matrix and adding αu, where u is
a d-dimensional Gaussian vector to a random column. We write Gi instead of Gi,d×n when the
dimensions of the random matrix are evident from context.
Lemma 4.2. Let L be a linear sketch from Rd×n → Rk and let Hi be the distribution of L(x) where x is
drawn from Gi. Then dTV(H1,H2) 6 Cα2k

n for an absolute constant C.

Proof. We can think of L as a k × nd matrix that acts on a sample from G1 or G2 as though it
were an nd-dimensional vector. Without loss of generality, we can assume that the rows of L
are orthonormal, since one can always perform a change of basis in post-processing. Thus, the
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distribution H1 is the same as N (0, Ik). For fixed i and G a d × n matrix of unit Gaussians, the
distribution of L(G + αueT

i ) is Gaussian with covariance E[L(G + αueT
i )L(G + αueT

i )
T], equal to

I + α2LBi L
T
Bi

where LBi is the submatrix given by columns of L indexed (i − 1)d + 1, (i − 1)d +

2, . . . , id. Let H2,i be N (0, I + α2LBi L
T
Bi
). H2 is the distribution of picking a random i and drawing

a matrix from N (0, I + LBi L
T
Bi
).

We now analyze the total variation distance between H1 and H2 and get the desired bound from
a chain of inequalities.

dTV(H1,H2) =
1
2

∫
x∈Rk
|pH1(x)− pH2(x)|dx

6
1
2

∫
x∈Rk

∣∣∣∣∣ n

∑
i=1

1
n

pH1(x)− 1
n

pH2,i(x)

∣∣∣∣∣ dx

6
1
n

n

∑
i=1

1
2

∫
x∈Rk

∣∣pH1(x)− pH2,i(x)
∣∣ dx

6
1
n

n

∑
i=1

dTV(N (0, Ik),H2,i)

6
1
n

n

∑
i=1

Cα2‖LBi L
T
Bi
‖F [from Lemma 2.2]

6
1
n

n

∑
i=1

Cα2‖LBi‖
2
F

6
Cα2

n
‖L‖2

F =
Cα2k

n

4.2 Lower bounds for approximating ‖A‖1→p for 1 6 p 6 2

We follow the lower bound template given in Section 4.1.
Lemma 4.3. For any κ, there exist values sp such that with probability at least 1− 1/n, ‖G1‖1→p 6 sp

and ‖G2‖1→p > κsp, for 1 6 p 6 2, and G1 ∼ G1 and G2 ∼ G2[κ].

Proof. Recall that from Section 3.1, we know that ‖A‖1→p = maxi∈[n] ‖A∗,i‖p which means that it
suffices to give bounds on the maximum `p norm across columns of G1 and G2 respectively.

The `p norm is ζp-Lipschitz, where ζp is equal to n1/p−1/2 in the regime 1 6 p 6 2. For a given
vector of standard Gaussians g, the probability that ‖g‖p deviates from E

[
‖g‖p

]
by more than

βζp
√

log n is at most C′e−cβ2 log n from Theorem 2.3 where C′ is the constant C from the theorem,
which for large enough choice of β can be made smaller than 1/n2. By a union bound over all
columns, the probability that ‖G1‖1→p exceeds E[‖g‖p] + βζp

√
log n is at most 1/n. On the other

hand, consider the perturbed column vector of G2, which we denote g′. The probability that ‖g′‖2

is smaller than E[‖g′‖p]− β
√

1 + κ2ζp
√

log n =
√

1 + κ2(E[‖g‖p]− βζp
√

log n) is at most 1/n2 by
appropriate choice of β and Theorem 2.3, from which a lower bound on ‖G2‖1→p that holds with
probability at least 1− 1

n2 immediately follows.
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Since E[‖g‖p] is Θ(n1/p) and the deviations from expectations in upper bounds on ‖G1‖1→p and
lower bounds on ‖G2‖1→p are asymptotically less than the expectations.

The desired theorem is immediate from Lemma 4.3, Lemma 4.2, and Theorem 4.1 using D1 =

G1,n×n, and D2 = G2[κ].
Theorem 4.4. Suppose p ∈ [1, 2] and (S , f ) is a (k,

√
κ)-sketching family for the 1→ p norm where κ is

some constant, then k = Ω(n).

4.3 Lower bound for approximating ‖A‖1→p for p > 2

We follow the lower bound template given in Section 4.1.

Denote E[‖g‖p] as ηp. Let G1 be the distribution over n× n matrices given by i.i.d. Gaussians, and
G2[α, ηp] be the distribution over n × n matrices given by taking a Gaussian matrix and adding
αηp to a random entry.

Since the proofs are very similar to those in Section 4.1 and Section 4.2. We defer them to Ap-
pendix C.1.
Lemma 4.5. For any κ, there exists sp such that with probability at least 1 − 1

n , ‖G1‖1→p 6 sp and
‖G2‖1→p > κsp, such that G1 ∼ G1 and G2 ∼ G2[Cκ, ηp] for some absolute constant C and p > 2.
Lemma 4.6. Let L be a linear sketch from Rn×n → Rk and let Di be the distribution of L(x) where x is

drawn from Gi. Then dTV(D1,D2) 6
C′αηp

√
k

n for an absolute constant C′.

The theorem below immediately follows from Lemma 4.5, Lemma 4.6 and Theorem 4.1 using
D1 = G1 and D2 = G2[Cκ, ηp].
Theorem 4.7. Suppose (S , f ) is a (k, κ)-approximate sketching family for the 1 → p norm for p > 2
and some constant κ, then k = Ω

(
n2

η2
p

)
. In particular, using the fact that ηp is Θ(n1/p) for p < ∞ and

Θ(
√

log n) when p = ∞ gives k = Ω
(

n2− 2
p
)

when p < ∞ and k = Ω
(

n2

log n

)
when p = ∞.

4.4 Lower bound for approximating ‖A‖q→p when q > 2 and p 6 2

We use the known lower bound of Ω(n2) for sketching the 2→ 2 norm from [LW16b] to deduce a
lower bound on sketching the q→ p norm for q > 2 and p 6 2.
Theorem 4.8. Suppose q > 2 and p 6 2, and if (S , f ) is a (k(n), γ)-approximate sketching family for the
q→ p norm where γ is some constant, then k(n) = Ω(n2).

Proof. We prove this by showing that if the hypothesis of the theorem statement holds, then the
2→ 2 norm can be sketched in O(k) measurements.

Given an n × n matrix A for which we want to sketch the 2 → 2 norm, note that by The-
orem 2.4 there is a Cn × n matrix L1 such that ‖L1A‖2→q∗ = ( 1

β , β)‖A‖2→2 for a constant β,
and by Lemma 2.5 ‖L1A‖2→q∗ = ‖AT LT

1 ‖q→2, and another application of Theorem 2.4 gives us
another Cn × n matrix L2 for which ‖L2AT LT

1 ‖q→p = ( 1
β , β)‖AT LT

1 ‖q→2. Note that this means

9



‖L2 AT LT
1 ‖q→p =

(
1
β2 , β2

)
‖A‖2→2, so we can sketch A by drawing a random L from D and stor-

ing L(L2 AT LT
1 ), which uses k(Cn) measurements and serves as a sketch from which f can be used

to estimate ‖A‖2→2 within a constant factor, which means from [LW16b], k(Cn) must be Ω(n2),
which means k(n) = Ω(n2/C2) = Ω(n2).

4.5 Lower bounds for approximating ‖A‖q→p for p, q 6 2 and p, q > 2

In this section, we show a lower bound on the sketching complexity of ‖A‖q→p where A is a rank
r matrix, when both p and q are at most 2. A corresponding lower bound for when p and q are at
least 2 follows from Lemma 2.5. We achieve this by first showing a lower bound on the sketching
complexity of ‖A‖2→q and then use Dvoretzky’s theorem along with the relation between the
q→ p norm and the p∗ → q∗ norm to deduce the result.

We show a lower bound for sketching the 2 → q norm using the template from Section 4.1. We
use distributions D1 = G1,r×n and D2[α] = G2,r×n

[
α d√

r

]
, as defined in Section 4.1 where d is

max{n1/q,
√

r}.
Lemma 4.9. There exist values sq and tq such that with high probability, ‖G1‖2→q 6 sq and ‖G2‖2→q >
Cαsq for some absolute constant C, for q > 2, and G1 ∼ D1 and G2 ∼ D2[α].

Proof. Let N be a 1/3-net of the Euclidean ball in Rr with 7r elements, which exists by Lemma 2.10.
For a fixed x ∈ N, G1x is distributed as an n-dimensional vector with independent Gaussians,
whose q-norm is at most β1n1/q for some constant β1 in expectation and exceeds β1n1/q + β2

√
r

with probability at most 1
8r for appropriate constant β2, which follows from the q-norm being 1-

Lipschitz and Theorem 2.3. A union bound over all x ∈ N implies that with probability at least
1− (7/8)r, ∀x ∈ N : ‖G1x‖q 6 β1n1/q + β2

√
r.

Then by applying Lemma 2.9, we conclude that with probability at least 1− (7/8)r, ‖G1‖2→q 6
3
2 (β1n1/q + β2

√
r) 6 3

2 (β1 + β2)d. On the other hand, the perturbed row of G2, called g′ is dis-

tributed as
√

1 + α2 d2

r g for a vector of i.i.d. Gaussians g. If we take the unit vector u in the di-
rection of g′, then the entry of G2u corresponding to the perturbed row is concentrated around√

1 + α2 d2

r ‖g‖2 =
√

r + α2d2, which means ‖G2‖2→q > (1− o(1))
√

r + α2d2 > 0.9αd with high
probability.

The theorem below immediately follows from Lemma 4.9, Lemma 4.2 and Theorem 4.1.
Theorem 4.10. Suppose q > 2 and (S , f ) is a (k, γ)-sketching family for the 2 → q norm of rank r
matrices for some constant γ. Then k = Ω(nr/d2).
Theorem 4.11. Suppose p, q 6 2 and (S , f ) is a (k, γ)-sketching family for the q → p norm of rank r
matrices for some constant γ. Then k = Ω(nr/d2) where d = max{

√
r, n1/q∗}.

Proof. For a matrix A, from Lemma 2.5 we have that ‖A‖2→q∗ = ‖AT‖q→2, and from Theorem 2.4,
we know there is a Cr× r matrix L1 such that ‖L1AT‖q∗→p = Θ(1)‖A‖2→q∗ . We can use (S , f ) to
sketch L1 AT to obtain an (O(k), Θ(1))-sketching family for the 2→ q∗ norm, whose lower bound
from Theorem 4.10 gives us the desired lower bound.

10



4.6 Lower bounds for approximating ‖A‖q→p for 1 6 q 6 2 and p > 2

We prove the desired lower bound using the template from Section 4.1. Let D1 be a distribution
over n × n matrices where diagonal entries are Gaussians and off-diagonal entries are 0 and let
D2[α] be a distribution over n× n matrices where a matrix is drawn fromD1 and α

√
log n is added

to a random diagonal entry.
Lemma 4.12. There exists values sp,q, tp,q and α such that with probability at least 1− 1/n, ‖G1‖q→p 6
sp,q and ‖G2‖q→p > κsp,q for some desired constant factor κ separation, such that G1 ∼ D1 and G2 ∼
D2[α].

We give the proof of Lemma 4.12 in Appendix C.2.

Without loss of generality, we can assume that any sketch of G1 and G2 acts on diag(G1) and
diag(G2) respectively. Lemma 4.6 gives an upper bound of O(

√
k log n/

√
n) on the variation

distance between k-dimensional sketches of these distributions. Thus, from the variation distance
bound, Lemma 4.12 and Theorem 4.1, the desired theorem follows.
Theorem 4.13. Suppose q > 2 and (S , f ) is a (k, γ)-sketching family for the q → p norm of rank r
matrices for some constant γ, then k = Ω(n/ log n).

5 Sketching with large approximation factors

While our results primarily involve constant factor approximations, we give several preliminary
results studying large approximation factors for sketching the important cases of the 2→ q norm
and [1, ∞] → [1, 2] norms. Our goal is, given an approximation factor α(n), to give upper and
lower bounds on k for a (k, α(n))-sketching family for the respective norms. As a shorthand, we
will refer to α(n) as α.

5.1 Sketching upper bounds for large approximations of ‖A‖2→q

It is sufficient to give a (k, α)-sketching family for the ∞ → q norm. To see why, given an input
matrix A ∈ Rn×n, by Lemma 2.5 we have that ‖A‖2→q = ‖AT‖q∗→2. Using Theorem 2.4, there is a
linear map such that this is equal within a constant factor of ‖GAT‖q∗→1 = ‖AGT‖∞→q.
Theorem 5.1. Given a matrix A ∈ Rn×n, there exists a (O( n2

α ), α)-sketching family given by (S , f ) for
the ∞→ q norm.

Proof. Let B ∈ Z+ be some positive integer to be chosen later. Let the columns of our sketch matrix
S be indexed by sets given by {Bi}n/B

i=1 such that Bi = ((i− 1)B, iB]. For each column vBi , we define
i.i.d random variables {σij}B

j=1 such that σij = 1 with probability 1
2 and −1 with probability 1

2 . Let
the column vBi be as follows:

vBi [j] =

{
σij for j ∈ [(i− 1)B, iB]

0 o/w

11



We define our linear map L(A) to be L(A) = AS. Our function f : Rn/B → R simply optimizes
over {−1, 1}n/B and outputs ‖AS‖∞→q.

Since all σij ∈ {−1, 1} we have that f (L(A)) 6 ‖A‖∞→q since Sx for x ∈ {−1, 1}n/B has the
property that Sx ∈ {−1, 1}n.

We now show a lower bound on f (L(A)). To do so, we let Ti denote the column indices of A
such that the index is column i in its respective block. We then notice that there exists i ∈ [n/B]
such that ‖A∗,Ti‖∞→q > B

n ‖A‖∞→q. We get this by applying the triangle inequality ‖A‖∞→q 6
∑n/B

i=1 ‖A∗,Ti‖∞→q.

Let i∗ be the index that realizes this n/B-approximation to ‖A‖∞→q and let {s1}n/B
i=1 be the assign-

ment of signs that realizes the ∞→ q norm of A∗,Ti∗ .

f (L(A)) > ‖
B

∑
i=1

n/B

∑
j=1

sj A∗,Bj[i]‖q > ‖
n/B

∑
j=1

sj A∗,Bj[i∗]︸ ︷︷ ︸
y

+
B

∑
i 6=i∗

n/B

∑
j=1

sj A∗,Bj[i]︸ ︷︷ ︸
z

‖q

Notice that z is symmetric around the origin and hence we get that ‖y+ z+ y− z‖q 6
‖y+z‖q+‖y−z‖q

2
which implies that f (L(A)) > ‖y+ z‖q > Θ(1)‖y‖q > n

B‖A‖∞→q with probability at least 1
2 . Thus,

we get an O
(

n2

α

)
space sketch that gives us an α-approximation by setting B = n/α.

5.2 Sketching upper bounds for large approximations of ‖A‖q→p for q ∈ [1, ∞] and
p ∈ [1, 2]

We give a description of our sketch followed by the approximation factor. Towards the end of
defining our sketch, let B ∈ Z+ be some positive integer to be chosen later. Let the rows of our
sketch matrix S be indexed by sets given by {Bi}n/B

i=1 such that Bi = ((i − 1)B, iB]. For each row
vBi , we define i.i.d random variables {σij}B

j=1 such that σij = 1 with probability 1
2 and −1 with

probability 1
2 . Let the row vBi be as follows:

vBi [j] =

{
σij for j ∈ [(i− 1)B, iB]

0 o/w

Our algorithm simply outputs ‖SA‖q→p. The proof of the theorem below can be found in Sec-
tion D.
Theorem 5.2. Given a matrix A ∈ Rn×n, there exists an (Õ( n2

α2 ), α)-sketching family given by (S , f ) for
the q→ p norm for p ∈ [1, 2].

6 Further Directions

One interesting direction is to study the low-rank approximation problem with respect to the
q → p norm. An important open question in the literature is to find input sparsity time low rank
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approximation algorithms with respect to the 2→ 2 norm, and a natural step might be to try this
problem with for q→ p norms for certain q and p.

Another interesting problem would be to investigate algorithms for approximate nearest neigh-
bors with respect to the q→ p norm, in light of a question posed by [ANN+17] about what metric
spaces admit efficient approximate nearest neighbor algorithms, with matrix norms mentioned as
an object of interest.
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A Proofs from Section 2

Proof of Lemma 2.6. For any x that is unit according to `1,

‖Ax‖p = ‖A∗,1x1 + A∗,2x2 + . . . + A∗,nxn‖p

6 ‖A∗,1‖p|x1|+ ‖A∗,2‖p|x2|+ . . . + ‖A∗,n‖p|xn| 6 max
i∈[n]
{‖A∗,i‖p}

where the last inequality is because |xi| give a convex combination and is achieved for x = ei∗

where i∗ = arg maxi{‖A∗,i‖p}.

Proof of Lemma 2.7. For any x such that there is a coordinate xj that is strictly between 1 or −1, let
ε be min{1− xj, xj + 1}, consider

‖Ax‖p = ‖A∗,jxj + ∑
i 6=j

A∗,ixi‖p

6
(

1 + xj

2

)
‖A∗,j + ∑

i 6=j
A∗,ixi‖p +

(
1− xj

2

)
‖ − A∗,j + ∑

i 6=j
A∗,ixi‖p

where the inequality is due to the triangle inequality. Since ‖Ax‖p is at most a convex combination
of the p-norms after replacing xj with 1 or −1, we can make xj one of 1 or −1 without decreasing
the p-norm.

Proof of Lemma 2.9. Pick x∗ on the unit ball such that ‖Ax∗‖Y = ‖A‖X→Y . There is x ∈ N such
that ‖x∗ − x‖X < ε, which means

‖A(x∗ − x)‖Y 6 ‖A‖X→Y‖x− x∗‖X < ε‖A‖X→Y

On the other hand,

‖A(x∗ − x)‖Y > ‖Ax∗‖Y − ‖Ax‖Y > ‖A‖X→Y − ‖Ax‖Y

and hence

‖A‖X→Y − ‖Ax‖Y < ε‖A‖X→Y

‖A‖X→Y <
‖Ax‖Y
1− ε

6
1

1− ε
max
x∈N
‖Ax‖Y

Proof of Lemma 2.10. For x in a normed space X , we use the notation Bx(r) to denote {y : ‖x −
y‖X < r}, the ball of radius r around x.

Start with an empty set N and while there is a point x in the unit ball B that has distance at least
ε to every element in N, pick x and add it to N. This process terminates when every x ∈ B has
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distance less than ε to some element in N, thereby terminating with N as an ε-net. We claim that
the size of N meets the desired bound.

By construction, any y and y′ in N are at least ε apart, which means B = {Bx(ε/2) : x ∈ N} is a
collection of disjoint sets and note that ⋃

S∈B
S ⊆ B0(1 + ε/2)

By disjointness

Vol

(⋃
S∈B

S

)
= ∑

S∈B
Vol(S) = |N|Vol(B0(ε/2))

where Vol(S) is the volume of S according to the Lebesgue measure.

And thus, we obtain

|N| = Vol (
⋃

S∈B S)
Vol(B0(ε/2))

6
Vol(B0(1 + ε/2))

Vol(B0(ε/2))

=

(
1 + ε/2

ε/2

)n

=

(
2 + ε

ε

)n

which concludes the proof.

B Missing proofs from Section 3

Proof of Lemma 3.1. Draw c log n matrices S1, S2, . . . , Sc log n fromD independently where c is a con-
stant to be determined later. We define

S :=


S1

S2
...

Sc log n


g(Sx) := median{ f (S1x), f (S2x), . . . , f (Sc log nx)}

Let’s analyze the probability that g(Sx) falls outside Lx =
( 1

2‖x‖p, 2‖x‖p
)
. In order for that to

happen, more than half of f (S1x), . . . , f (Sc log nx) must lie outside Lx, and this happens to each
f (Six) with probability at most 1

3 . Using Hoeffding’s inequality, we know

Pr[g(Sx) /∈ L] 6 2 exp
(
− c log n

72

)
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which for appropriate choice of c can be bounded by 1
n2 .

For a matrix A with n columns, a union bound tells us that for all i, g(SA∗,i) falls in LA∗,i with
probability at least 1− 1

n . Combined with Lemma 2.6, it follows that h(SA) := maxi g(SA∗,i) is a
2-approximation to ‖A‖1→p with probability at least 1− 1

n .

C Missing Proofs from Section 4

C.1 Missing Proofs from Section 4.3

Proof of Lemma 4.5. We denote Cκ as α and set the exact value of α in the end of the proof. For
a fixed pair i, j let us denote the perturbation term αηpeie>j as Eij. Recall that from Section 3.1,
we know that ‖A‖1→p = maxi∈[n] ‖A∗,i‖p which means that it suffices to give bounds on the
maximum `p norm across columns of G1 and G2 respectively.

Since the `p norm is 1-Lipschitz for any p > 2, we can apply Theorem 2.3 to show concentration
around the expectation for ‖G∗,i‖p for any column i of a matrix G of i.i.d Gaussian entries. Hence
we have that for any column i, and some positive constant λ

Pr
[
‖G∗,i‖p > λE[‖G∗,i‖p]

]
6 C exp(−cλ2E[‖G∗,i‖p]

2)

Letting g be an n-dimensional vector of i.i.d Gaussians, since we know E[‖g‖p] = Ω(
√

log n),
there exists appropriate constant β such that for any column i of G1 we have that ‖(G1)∗,i‖p is less
than βE[‖g‖p] with probability at least 1− 1

n2 . By a union bound over all columns, the probability
that ‖G1‖1→p 6 βE[‖g‖p] is at least 1− 1

n .

For a matrix G2 = G + Eij drawn from G2[α, ηp], we know that the perturbed column j has norm
at least αηp−‖G∗,i‖p, which satisfies (α− β)E[‖g‖p] 6 ‖G2‖1→p. Setting α > (κ + 1)β gives us the
desired result.

Proof of Lemma 4.6. Recall perturbation term αηpeie>j was referred to as Eij. Just as in Lemma 4.2,
we can think of L as a k× n2 matrix that acts on a sample from G1 or G2[α] as though it were an n2-
dimensional vector. Without loss of generality, we can assume that the rows of L are orthonormal,
since as before we can always perform a change of basis in post-processing. Thus, the distribution
D1 is the same as N (0, Ik). For fixed i, j, the distribution of L(G + Eij) is Gaussian with mean
vector L(Eij) (the ijth column of the k × n2 matrix L scaled by αηp) and covariance Ik because of
the following.

Cov(L(G + Eij)) = E
(

L(G + Eij)− EL(G + Eij)
)>(L(G + Eij)− EL(G + Eij)

)
= E

(
L(G)− EL(G)

)>(L(G)− EL(G)
)

= CovG∼N (0,In)(G) = Ik

Thus, D2 is the distribution of picking a random i, j and drawing a matrix from N (L(Eij), Ik).
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We now analyze the total variation distance between D1 and D2 and get the desired bound from
a chain of inequalities.

dTV(D1,D2) =
1
2

∫
x∈Rk
|pD1(x)− pD2(x)|dx

=
1
2

∫
x∈Rk

∣∣∣∣∣∑i,j 1
n2 pD1(x)− 1

n2 pN (L(Eij),Ik)(x)

∣∣∣∣∣ dx

6
1
n2 ∑

i,j

1
2

∫
x∈Rk

∣∣∣pD1(x)− pN (L(Eij),Ik)

∣∣∣ dx

=
1
n2 ∑

i,j
dTV(D1,N (L(Eij), Ik))

=
1
n2 ∑

i,j
dTV(N (0, Ik),N (L(Eij), Ik))

6
1
n2 ∑

i,j
C′αηp‖L∗,ij‖2 [from Lemma 2.2]

=
C′αηp

n2 ‖L‖1,2

6
C′αηp

n2 · n‖L‖F = C′αηp ·
√

k
n

[by Cauchy-Schwarz]

C.2 Missing Proofs from Section 4.6

Proof of Lemma 4.12. We claim that for a diagonal matrix D, arg max‖x‖q=1 ‖Dx‖p is achieved when
x is one of the ei standard basis vectors ei. To see this,

‖Dx‖p
p =

n

∑
i=1
|diixi|p =

n

∑
i=1
|dii|p(|xi|q)p/q 6

n

∑
i=1
|dii|p|xi|q 6 max

i
|dii|p

which is achieved by picking x = ei∗ where choice of i = i∗ maximizes dii.

Thus, to analyze the q → p norm of G1, it suffices to analyze maxx∈{ei} ‖G1x‖p, which is the same
as ‖g‖∞ where g is a vector of i.i.d. Gaussians. We can extract from the proof of Lemma 4.5 that
‖g‖∞ is upper bounded by β

√
log n with probability at least 1− 1

n2 .

On the other hand, if the perturbation is at index (i, i) and we pick α = κ(β + 1), then ‖G2ei‖p is
at least κβ

√
log n with probability at least 1− 1

n2 implying the desired separation.
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D General approximation factors α

D.1 Sketching Matrix Construction and Upper Bounds

Let us first define our sketch and then analyze its performance. For the sketch S, we group the
rows of A into n

α2 groups of size α2. We label the groups by B1, . . . , Bn/α2 and let σ1i, . . . , σα2i be ±1
i.i.d random variables with equal probability for block Bi. Notice then that the ith row of SA given
by (SA)i,∗ is:

(SA)i,∗ , ∑
j∈Bi

σji Ai,∗

To analyze the performance of this sketch, we will need a helpful inequality describing the behav-
ior of a random signed sums of reals.

Theorem D.1. Khintchine’s Inequality [Haa81]

Let {xi}n
i=1 ∈ R be reals and let {si}n

i=1 be i.i.d ±1 random variables with equal probability and let
0 < t < ∞, we then have:

Ap

√
n

∑
i=1

x2
i 6 E

∣∣∣∣∣ n

∑
i=1

sixi

∣∣∣∣∣
p1/p

6 Bp

√
n

∑
i=1

x2
i

For some constants Ap, Bp that only depend on p.

Also recall that by Jensen’s inequality, we can relate two norms of a vector x ∈ Rn.

Remark D.2. For two positive reals, p > q > 1 and for a vector x ∈ Rn we have that: ‖x‖p 6

n
1
q−

1
p ‖x‖q

We then have the following theorems describing the sketching complexity of the sketch S for
1 6 p 6 2 and for p > 2.

Theorem D.3. For any 1 6 p 6 2 and for the maximizer x ∈ Rn of ‖A‖q→p the sketch S defined earlier
where each block Bi has size B has the property that

Θ(1)
1

B1− 1
p
‖SAx‖p 6 ‖Ax‖p 6 Θ(1)B

1
p−

1
2 ‖SAx‖p

with probability at least 99
100

Proof. Let us first show the first inequality in the theorem statement.

For some coordinate 1 6 i 6 n
B :

|(SAx)i|p =

∣∣∣∣∣∑j∈Bi

σj(Ax)j

∣∣∣∣∣
p

6

(
∑
j∈Bi

|(Ax)j|
)p
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By Remark D.2 relating ‖·‖1 and ‖·‖p

6 Bp−1 ∑
j∈Bi

∣∣(Ax)j
∣∣p

∴ ‖(SAx)i‖p =

(
n/B

∑
i=1
|(SAx)i|p

)1/p

6 B1− 1
p ‖Ax‖p

Notice that the first inequality holds irrespective of the vector x, it holds for all vectors. Now let
us show the second inequality of the theorem statement.

For some coordinate 1 6 i 6 n
B :

(
∑
j∈Bi

(Ax)p
j

)1/p

6 B
1
p−

1
2

(
∑
j∈Bi

(Ax)2
j

)1/2

[By Remark D.2] [1]

6 Θ(1)B
1
p−

1
2 E

∣∣∣∣∣∑j∈Bi

σj(Ax)j

∣∣∣∣∣
p1/p

[By Khintchine’s Ineq.] [2]

∴
n/B

∑
i=1

∑
j∈Bi

(Ax)p
j = ‖Ax‖p

p 6 Θ(1)Bp
(

1
p−

1
2

)
E‖SAx‖p

p

Notice that the second inequality of the theorem statement follows by Markov’s inequality.

Notice that the success probability of line [2] is constant for each block. To get constant success
probability over the entire set of blocks, we construct O(log(n)) i.i.d copies of each block Bi given
by {Bj

i}
O(log(n))
i=1 . We then pick j such that it is the index realizing the quantity medianj∈[O(log(n))]‖(Sj Ax)i‖p

where Sj corresponds the sketch with the jth copy of the blocks. Then, by standard concentration
bounds, we can get 1− 1

n/B success probability for each set of blocks Bi and then union bound
over the n

B blocks giving us constant success probability.

Theorem D.4. For any p > 2 and for the maximizer x ∈ Rn of ‖A‖q→p the sketch S defined earlier where
each block Bi has size B has the property that

Θ(1)
1

B1− 1
p
‖SAx‖p 6 ‖Ax‖p 6 Θ(1) ‖SAx‖p

The proof for Theorem D.4 is the same as that for Theorem D.3 except that there is no dilation
while upper bounding the ‖Ax‖p with the 2-norm in line [1] of the proof.

Notice that the above theorems imply that the sketch S is a
√

B-approximation when 0 6 p 6 2

and a B1− 1
p -approximation when p > 2 because it states that the sketch is stretching ‖Ax‖p

p by
at most some factor and dilating it by at most some factor and hence the approximation ratio is
simply the product of these factors.
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