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Abstract

The degree-4 Sum-of-Squares (SoS) SDP relaxation is a powerful algorithm that captures
the best known polynomial time algorithms for a broad range of problems including MaxCut,
Sparsest Cut, all MaxCSPs and tensor PCA. Despite being an explicit algorithm with relatively
low computational complexity, the limits of degree-4 SoS SDP are not well understood. For
example, existing integrality gaps do not rule out a (2 − ε)-algorithm for Vertex Cover or a
(0.878 + ε)-algorithm for MaxCut via degree-4 SoS SDPs, each of which would refute the noto-
rious Unique Games Conjecture.

We exhibit an explicit mapping from solutions for degree-2 Sum-of-Squares SDP (Goemans-
Williamson SDP) to solutions for the degree-4 Sum-of-Squares SDP relaxation on boolean vari-
ables. By virtue of this mapping, one can lift lower bounds for degree-2 SoS SDP relaxation to
corresponding lower bounds for degree-4 SoS SDPs. We use this approach to obtain degree-4
SoS SDP lower bounds for MaxCut on random d-regular graphs, Sherington-Kirkpatrick model
from statistical physics and PSD Grothendieck problem.

Our constructions use the idea of pseudocalibration towards candidate SDP vectors, while
it was previously only used to produce the candidate matrix which one would show is PSD
using much technical work. In addition, we develop a different technique to bound the spectral
norms of graphical matrices that arise in the context of SoS SDPs. The technique is much simpler
and yields better bounds in many cases than the trace method – which was the sole technique
for this purpose.
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1 Introduction

Sum-of-Squares (SoS) semidefinite programming hierarchy is one of the most powerful frame-
works for algorithm design. Its foundations lie in the so-called “Positivestellensatz” whose history
dates back to more than a century to the work of Hilbert and others. The algorithmic insight of
finding sum-of-squares proofs via the technique of semi-definite programming was only codified
at the turn of the century by Parrillo [Par00] and Lasserre [Las01] (also see [Sho87]).

Given a system of polynomial equations/inequalities P , the SoS SDP hierarchy yields a se-
quence of semi-definite programming relaxations to reason about the feasibility of P . The d-th
relaxation in the sequence referred to as the degree-d SoS SDP relaxation. Successive relaxations get
increasingly accurate in reasoning about P at the expense of computational complexity that grows
exponentially with the degree.

SoS SDP hierarchy is an incredibly powerful algorithmic technique. The best known approxi-
mation algorithms for a variety of combinatorial optimization problems including Maximum Cut,
all Max-CSPs and Sparsest Cut are all subsumed by the first two levels (degree-4) of the hierarchy.
More recently, there has been a flurry of work that uses SoS SDP hierarchy on problems in un-
supervised learning such as dictionary learning, estimating parameters of mixtures of Gaussians,
tensor PCA and linear regression.

The limits of SoS SDP hierarchy remain largely a mystery even at degree four. The degree four
SoS SDP relaxation could possibly yield a (2− ε)-approximation for Minimum Vertex Cover or
a (0.878 + ε)-approximation for Maximum Cut and thereby refute the notorious Unique Games
Conjecture. Despite the immense consequences, the integrality gap of degree-4 SoS SDP relax-
ations of Maximum Cut and Vertex Cover remain unresolved.

Understanding the precise limits of SoS SDP hierarchy has compelling implications even in the
context of average case problems. Specifically, the SoS SDP hierarchy can be serve as a lens to un-
derstand the terrain of average case complexity. For example, consider the problem of refuting a
random 3-SAT formula. Here the input consists of a random 3-SAT formula Φ with m = pn clauses
chosen uniformly at random on n variables. For all densities p that are larger than some fixed con-
stant, the formula Φ is unsatisfiable with high probability. The goal of refutation algorithm is to
certify that Φ is unsatisfiable. Formally, a refutation algorithm outputs 1 only on instances that are
unsatisfiable and it does so on a non-negligible fraction of random 3-SAT formulae. Although the
computational complexity of refuting random 3-SAT formulae conceivably varies with the density
p of clauses, it seems difficult to glean this structure using reductions – the central tool in worst-
case computational complexity. In particular, it is quite difficult to devise reductions that produce
random instances from simple probability distributions such as random 3-SAT, though this has
been sometimes achieved [BR13, BBH18]. In such a setting, the smallest degree of SoS SDP hierarchy
that can solve the refutation problem (henceforth referred to as just “SoS degree”) can serve as a
proxy for computational complexity. While SoS SDP hierarchy doesn’t capture all efficient algo-
rithms in every context, it unifies and subsumes many of the state-of-the-art algorithms for basic
combinatorial optimization problems.

This paradigm has been fruitful for random 3-SAT. Nearly matching upper and lower bounds
on SoS degree of refutation [Gri01b, Sch08, RRS17] have been established, thereby painting a pre-
cise picture of how the complexity of the problem changes with density of clauses. Specifically,
for all ω(1) < p < n3/2, the sum-of-squares degree is Θ̃(n/p2), yielding a complexity of 2Θ̃(n/p2).
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There is a rich landscape of average case problems with many having sharper computational
thresholds than random 3-SAT. For example, the random regular NAESAT promises to exhibit an
abrupt change in computational complexity as soon as the degree exceeds 13.5 [DMO+19]. Chro-
matic number of random d-regular graphs and community detection on stochastic block mod-
els are two other prominent examples with very sharp but conjectural computational thresholds.
Much is known about structural characterestics and phase transitions in the solution space as one
varies the underlying parameters in these models. Heuristically, certain phase transitions in the
solution space are conjectured to be associated with abrupt changes in the computational com-
plexity. The sum-of-squares SDP can be harnessed towards quantitatively demonstrating these
phenomenon.

1.1 Our Results

Our main result is an explicit mapping from solutions to degree-2 SoS SDP to solutions to degree-4
SoS SDP for boolean optimization. To formally state the theorem, let us begin by setting up some
notation.

First, the degree-d SoS SDP relaxation can be succinctly described in terms of pseudo-distributions.
Intuitively, a pseudo-distribution corresponds to a function that looks like an actual distribution over
solutions, to low-degree polynomial squares. The definition is succinct and simple enough that
we reproduce the formal definition here.

Definition 1.1. Fix a natural number d ∈ N. A degree d pseudo-distribution µ is a function µ :
{−1, 1}n → R satisfying

1. (Normalization)
Ex∈{−1,1}n [µ(x)] = 1

2. (Positivity on degree d squares)

Ex∈{−1,1}n [p2(x) · µ(x)] > 0 for all p ∈ R[x1, . . . , xn], deg(p) 6 d/2

The degree-d SoS SDP relaxation for maximizing a quadratic function A(x) = x† Ax can be
written succinctly as:

SoSd Relaxation: Maximize over degree d pseudo-distributions µ, Ex[µ(x) · A(x)]
While the above description of degree-d SoS SDP is accurate, we will now describe the associ-

ated semidefinite programs for degree two and four in detail. By the degree-2 SoS SDP for boolean
optimization, we refer to the Goemans-Williamson SDP relaxation, first introduced in the context
of the MaxCut problem. Specifically, a feasible solution to the degree-2 SoS SDP solution is given
by a p.s.d matrix X � 0 whose diagonal entries are identically 1. Formally, the set of degree-2 SoS
SDP solutions denoted by SoS2 is given by,

SoS2 = {X ∈ Rn×n|X � 0 and Xii = 1 for all i ∈ [n]}

The solution to a degree-4 SoS SDP for boolean optimization consists of a matrixM of dimen-
sion ( n

62) = 1 + (n
1) + (n

2). The matrixM is indexed by subsets of [n] = {1, . . . , n} of size at most
2. The set SoS4 is specified by the following SDP:

M[S, T] =M[S′, T′] for all S, T, S′, T′ ∈
(
[n]
6 2

)
such that S∆T = S′∆T′ (1)
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M[∅, ∅] = 1 (2)

M� 0 (3)

The above semidefinite programs are equivalent to the definition of SoS relaxations in terms of
pseudo-distributions. Specifically, the entries of the matrixM are pseudomoments upto degree four
of the pseudo-distribution µ. Formally, the entryM[S, T] corresponds to the following moment:

M[S, T] = Ex∈{−1,1}n

[
∏
i∈S

xi ∏
j∈T

xj

]

We are now ready to state the main theorem of this work.

Theorem 1.2 (Main theorem). There is an explicit map Φ : SOS2 → SOS4 such that Φ(X)[i, j] 1 is
given by

Φ(X)[i, j] =
Xij + X3

ij

1 + Cαmag · (1 + α4
row) · (1 + α2

spec)
(4)

where αmag, αrow and αspec are the maximum off-diagonal entry, maximum row norm and spectral norm
respectively of the degree two SDP solution X, and C is an absolute constant. Moreover for every pair of
subsets S, T ∈ ([n]62), Φ(X)[S, T] is an explicit function of {Xij|i, j ∈ S ∪ T}.

All the entries of Φ(X) are explicit constant degree polynomials in X. We refer the reader to
Section 2 for the definition of Φ and the proof of Theorem 1.2. Let us suppose we have an objective
value given by 〈A, X〉 = ∑i,j AijXij for a Hermitian matrix A. The corresponding objective value of
degree-4 SoS SDP is given by 〈A,M〉 = ∑i,j AijM[i, j]. We show the following bound on change
in objective value (see Lemma 2.5 in Section 2):

Theorem 1.3. Let α := Cαmag · (1 + α4
row) · (1 + α2

spec) where αmag, αrow and αspec are as defined in
Theorem 1.2, then for any Hermitian matrix A ∈ Rn×n,

〈A, Φ(X)〉 > 1
1 + α

〈A, X〉 − α

1 + α
·
(√

n‖A‖F − Trace (A)
)

The existence of a non-trivial and useful mapping from degree-2 SoS SDP solutions to degree-4
SoS SDP solutions comes as a surprise to the authors. Consider the following immediate conse-
quence of such a mapping. Given the degree-2 SoS SDP on an instance of MaxCut, the above
theorem yields an easily computable lower bound on the degree-4 SoS SDP value on the same
instance. For example, this yields an efficiently verifiable sufficient condition (checkable in time
O(n2)) under which the degree-4 SoS SDP yields no better bound than the degree-2 SoS.

We use the lifting theorem to recover lower bounds for degree-4 SoS SDP relaxations for a few
average case problems – which was the original motivation behind this work. The problems and
the corresponding lower bounds are described below.

1We are using Φ(X)[i, j] to denote Φ(X)[{i}, {j}].
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Sherrington–Kirkpatrick Model. Let W be a random n× n matrix with independent Gaussian
entries, let G := 1√

2

(
W + W†); we say that G is sampled from GOE(n), a distribution known as

the Gaussian Orthogonal Ensemble. A fundamental model in the study of spin glasses from sta-
tistical physics is the Sherrington–Kirkpatrick (SK) model where the energy of a system of n particles
in a state x ∈ {−1,+1}n states is given by −x†Gx. The Sherrington-Kirkpatrick (SK) model has
been extensively studied in various areas including the study of spin glasses, random satisfiability
problems, and learning theory [EB01, MPV87, Nis01, MPZ02, MM09, Mon18].

For the SK model, a quantity of particular interest is the minimum possible energy, i.e.,

OPT(G) = max
x∈{−1,1}n

x†Gx .

In a highly influential work, Parisi predicted in [Par79, Par80] that OPT(G) concentrates around
2 · P∗n3/2, where P∗ is an explicit constant now referred to as the Parisi constant. The value of P∗

is roughly 0.763166. This prediction was eventually rigorously proven twenty five years later in a
celebrated work of Talagrand [Tal06], thereby confirming that OPT(G) ≈ (1.52633 . . . ) · n3/2.

This brings us to our natural average case refutation problem, that of certifying an upper
bound on x†Gx for x ∈ {−1, 1}n. A natural refutation algorithm is the spectral refutation. Indeed

OPT(G) = max
x∈{±1}n

x†Gx 6 n · max
‖x‖=1

x†Gx = n · λmax(G),

the algorithm which outputs λmax(G) given G as input is an efficient refutation algorithm. Since
λmax(G) concentrates around 2

√
n, it certifies an upper bound OPT(G) 6 2n3/2 which is larger

than the true value of the optimum OPT(G) = 2P∗ · n3/2 = 1.52 · n3/2.
This raises the question whether efficient algorithms can certify an upper bound stronger than

the simple spectral bound? In this work, we show that the degree-4 SoS SDP fails to certify a
bound better than the spectral bound. To this end, we start with a feasible solution to the degree-2
SoS SDP relaxation for the SK model and apply our lifting theorem Theorem 1.2 to construct a
degree-4 SoS SDP solution.

Theorem 1.4 (Degree-4 SoS lower bound for Sherrington–Kirkpatrick). Let G ∼ GOE(n). With
probability 1− on(1), there exists a degree-4 SoS SDP solution with value at least (2− on(1)) · n3/2

In an independent and concurrent work, Kunisky and Bandeira [KB19] also obtained a degree-
4 SoS integrality gap for the Sherrington–Kirkpatrick refutation problem.

MaxCut in random d-regular graphs. Akin to the Sherrington–Kirkpatrick model, it is known
from the work of Dembo et al. [DMS+17] that the fraction of edges cut by the max-cut in a random
d-regular graph G on n vertices is concentrated around

1
2
+

P∗√
d
+ od

(
1√
d

)
+ on(1).

On the other hand, it was proved in [Fri03, Bor19] that the spectral refutation algorithm, which
outputs the maximum eigenvalue of LG

4m , certifies an upper bound of

1
2
+

√
d− 1
d

+ on(1).
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Once again the question remains whether more sophisticated refutation algorithms can beat the
spectral bound. Through our lifting theorem, we show that degree 4 SoS SDP is no better than
spectral algorithm asymptotically as d→ ∞2.

Theorem 1.5 (Degree-4 SoS lower bound for MaxCut in random d-regular graphs). Let G be a
random d-regular graph. For every constant ε > 0 with probability 1− on(1), there is a degree-4 SoS SDP
solution with MaxCut value at least

1
2
+

√
d− 1
d

(
1− ε− γ(ε)

d1/2

)
for some constant γ that depends only on ε.

The degree-2 SoS SDP solution for the SK model on which we apply our lifting theorem is
presented in Theorem 4.9. Analogously, Theorem 5.1 describes the degree 2 SoS SDP solution we
use for the MaxCut problem.

“Boolean Vector in Random Subspace” Problem. The refutation problem for the SK model is
closely tied to the following problem: given a random subspace V of dimension d in Rn, can we
certify that there is no hypercube vector {±1}n ‘close’ to V in polynomial-time? Formally, if ΠV

denotes the projection operator onto a random subspace, then let OPT(V) denote the maximum
correlation of a boolean vector with V , i.e.,

OPT(V) =
1
n

max
x∈{−1,1}n

x†ΠV x .

Using a simple ε-net argument, one can show that with high probability OPT(V) ∼ 2
π +γ(d/n) for

some function γ : [0, 1] → R+ such that limε→0 γ(ε) = 03. In other words, for a low dimensional
subspace with d� n, OPT(V) is close to 2/π with high probability over choice of V .

The spectral algorithm can only certify OPT(V) 6 ‖ΠV‖ = 1 which is a trivial bound. A
natural question is whether one can efficiently certify a stronger upper bound. We show that the
degree-4 SoS SDP fails to improve on the spectral bound by a non-negligible amount.

Theorem 1.6 (Boolean Vector in Random Subspace). If V is a random d-dimensional subspace where
d > n.99, then with probability 1 − on(1) there exists a degree-4 SoS SDP solution with value at least
1− on(1).

1.2 Related Work

Early work on lower bounds for sum-of-squares SDPs arose out of the literature on proof com-
plexity. In particular, these included lower bounds on sum-of-squares refutations of Knapsack
[Gri01a], Parity principle (non-existence of a perfect matching in a complete graph on odd num-
ber of vertices) [Gri01b] and 3XOR/3SAT [Gri01b]. For 3SAT/3XOR, it was proven by Grigoriev

2 We believe that Theorem 1.5 is not tight and conjecture that there should exist pseudoexpectations with objective

value 1
2 + (1− on(1))

√
d−1
d for all values of d.

3OPT(V) = ‖AV‖2
2→1, where columns of AV are an orthogonal basis for V . So for fixed unit x ∈ Rd, ‖AV x‖1

concentrates around
√

2/π with a subgaussian tail. A union bound over an ε-net of Rd completes the calculation.
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[Gri01b] and later independently by Schoenbeck [Sch08] that the polynomial time regime of Sum-
of-Squares fails to refute random instances whenever the density of clauses is o(

√
n). This lower

bound for 3SAT is the starting point of lower bounds for a host of other problems. Specifically,
the use of polynomial time reductions to convert integrality gaps for one problem into another,
first pioneered in [KV15], was shown to be applicable to the SoS SDP hierarchy [Tul09]. By har-
nessing the known reductions, Tulsiani [Tul09] recovers exponential lower bounds for a variety of
constraint satisfaction problems (CSP) starting from 3SAT.

More recently, Kothari et al. [KMOW17] obtained lower bounds for all CSPs corresponding
to predicates whose satisfying assignments support a pairwise independent distribution. This
class of CSPs is well beyond the reach of current web of NP-hardness reductions. 2-CSPs such as
MaxCut are not pairwise independent, and are thus not within the realm of known lower bounds
for SoS SDPs.

The problem of certifying the size of maximum clique on Erdos-Renyi random graphs (closely
related to the planted clique problem) has received much attention lately. Following a series of
works [DM15, HKP+18] that obtained the tight lower bounds for degree four, the breakthrough
tour-de-force of Barak et al. [BHK+19] obtained lower bounds for upto degree O(log n). In this
work, Barak et al. [BHK+19] introduced a heuristic technique for constructing candidate solutions
to Sum-of-Squares SDPs called pseudocalibration. Subsequently, the pseudocalibration technique
was used in [HKP+17] to show SoS lower bounds for Tensor PCA and Sparse PCA. Building on
ideas from pseudocalibration, Hopkins and Steurer [HS17] recovered conjectured computational
thresholds in community detection, while [IBCR20] use it towards showing LP extended formu-
lation lower bounds for Random 3SAT.

In an independent work, Kunisky and Bandeira [KB19] also obtained a degree-4 SoS integrality
gap for the Sherrington–Kirkpatrick refutation problem.

1.3 Technical overview

The mapping Φ alluded to in Theorem 1.2 is quite intricate and we are unable to motivate the
construction of the mapping in a canonical fashion. Instead, we focus on how the map Φ was first
constructed in the context of the Boolean Vector in Random Subspace problem.

Fix a randomly chosen subspace V of dimension d in Rn. With high probability, no boolean
vector x ∈ {−1, 1}n is close to V (every boolean vector x has correlation less than 2

π + on(1) with
V ). To prove that the degree 4 SoS SDP cannot refute the existence of a boolean vector in V , we
need to construct a degree 4 pseudodistribution µ such that,

Ex∈{−1,1}n [µ(x)x†ΠV x] ≈ n .

In words, the pseudo-distribution µ is seemingly supported on vectors x in the subspace V .

Pseudocalibration. We will now use the pseudocalibration recipe of Barak [BHK+16] to arrive
at the pseudo-distribution µ.

The idea is to construct a planted distribution Θ over pairs (x, V) where x ∈ {−1, 1}n, x ∈ V
and the subspace V is a seemingly random subspace. For example, a natural planted distribution
Θ would be given by the following sampling procedure:

• Sample x ∈ {−1, 1}n uniformly at random.

6



• Sample a uniformly random subspace W of dimension dim(W) = d − 1 and set V =

Span(W ∪ {x}).

It is clear that the pair (x, V) satisfies all the desired properties of the planted distribution.
Let Gr(n, d) denote the space of all d-dimensional subspaces of Rn. Let Θ denote the density

associated with the planted distribution, i.e., Θ is a function over Gr(n, d)× {−1, 1}n. 4

For any specific V ∈ Gr(n, d), notice that the restriction ΘV (x) = Θ(x, V) is up to a factor
normalization, a valid probability distribution over {−1, 1}n. Therefore, ΘV is a solution to the
degree d SoS SDP relaxation for all d, upto the normalization factor. Ignoring the issue of the
normalization factor for now, the candidate degree 4 moment matrix would be given by,

M∗
V [S, T] = Ex∈{−1,1}n

[(
∏
i∈S

xi

)(
∏
j∈T

xj

)
·Θ(x, V)

]
(5)

The matrix M∗ is clearly positive semidefinite for each V . To formally construct the Cholesky
factorization of M∗, one defines the vectors {VS : {−1, 1}n → R} to be the functions V∗S (x) =

∏i∈S xi · (Θ(x, V))1/2. The inner product between the vectors f , g is given by

〈 f (x), g(x)〉 = Ex∈{−1,1}n [ f (x)g(x)] .

With these definitions, we will have

M∗[S, T] = 〈V∗S , V∗T 〉 (6)

as desired. While the above ideal SDP solution and vectors satisfies most of the constraints, it fails
the normalization. In fact, the normalization factor ΓV = Ex∈{−1,1}n [ΘV (x)] is very spiky, it is zero
on almost all instances V except being very large on subspaces V containing a boolean vector.

The key insight of pseudocalibration is to project the planted density Θ to low-degree functions
in Θ, or equivalently truncate away the part of Θ that is high degree in the instance V . Let Θ6D

denote the low-degree truncation of the planted density Θ. For any V ∈ Gr(n, d), the pseudo-
calibrated pseudodensity Θ6D[V ] : {−1, 1}n → R is given by Θ6D[V ](x) = Θ6D(V , x). More
concretely, the candidate SDP solution specified by pseudo-calibration is

MV [S, T] = Ex∈{−1,1}n

[(
∏
i∈S

xi

)(
∏
j∈T

xj

)
·Θ6D[V ](x)

]
(7)

for all S, T. The feasibility of MV needs to be established, which often requires considerable
technical work, especially the proof of positive semidefiniteness ofMV .

A natural approach to prove psdness of MV is to construct the corresponding SDP vectors
(Cholesky factorization) by using a low-degree truncation of the ideal SDP vectors V∗S defined
above. Since MV is obtained by truncating an ideal solution M∗ to low-degree polynomials,
it would be conceivable that the low-degree truncation of the ideal SDP vectors yield Cholesky
factorization of MV . Unfortunately, this hope does not come to fruition and to our knowledge
does not hold for any problem.

4Technically, the density Θ needs to be represented by a distribution
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Representations. Executing the above strategy over Gr(n, d) is technically challenging since low-
degree polynomials over Gr(n, d) are complicated. To cope with the technical difficulty, it is better
to work with an explicit representation of the subspace V . Specifically, V can be represented by
a n× κ matrix Mκ in that V = Col-Span(Mκ). Any choice of κ > d would suffice to represent a
d-dimensional subspace V , and in our construction we will set κ → ∞.

With this representation, a candidate planted distribution (x, Mκ) is sampled as follows:

• Sample x ∈ {−1, 1}n uniformly at random.

• Sample d− 1 vectors w1, . . . , wd−1 ∈ Rn from the standard normal distribution N(0, 1)n. Let
M be the n× d matrix whose columns are x and w1, . . . , wd−1.

• Let Uκ ∈ Rκ×κ be a random unitary matrix, and let U6n
κ ∈ Rn×κ matrix denote the first n

rows of Uκ. Set Mκ = M ·U6n
κ

First, notice that x ∈ Col-Span(M) as needed. However, the representations are not unique in that
each subspace V has infinitely many different representations. Further, the original SoS optimiza-
tion problem depends solely on the subspace V , and is independent of the matrix Mκ representing
V .

At first, these redundant representations or inherent symmetries of the planted density, seem
to be an issue to be dealt with. It turns out that these redundancy in representations is actually
useful in constructing the SDP vectors!

Planted Distribution. Before proceeding, we will first simplify our planted distribution even
further. Since computations over random unitary matrices are technically difficult, we will select
a much simpler finite subgroup of the unitary group to work with. In particular, the planted
distribution Θ over pairs (x, M) is sampled as follows:

• Sample x ∈ {−1, 1}n uniformly at random.

• Sample d− 1 vectors w1, . . . , wd−1 ∈ Rn from the standard normal distribution N(0, 1)n. Let
M be the n× d matrix whose columns are x and w1, . . . , wd−1.

• Let H6n
κ denote the n× κ matrix obtained by taking the first n rows of the Hadamard matrix

Hκ. Let Z ∈ Rκ×κ denote a diagonal matrix with random {±1} entries. Set Mκ = MH6n
κ Z

The above construction uses HκZ instead of a unitary random matrix Uκ. In particular, the
continous unitary group is replaced with a finite set of 2κ transformations indexed by the familiar
{−1, 1}κ, making the calculations tractable.

Exploiting multiple representations. Applying the pseudo-calibration heuristic to the planted
density (x, Mκ) defined above, we get a candidate ideal SDP solutionMMκ

M∗
Mκ

[S, T] = Ex∈{−1,1}n

[(
∏
i∈S

xi

)(
∏
j∈T

xj

)
·Θ(Mκ, x)

]
(8)

This ideal SDP solution needs to be truncated to low-degree with Θ to be replaced by Θ6D. The
specifics of the low-degree projection used to define Θ6D are intentionally left vague at this time.
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The construction thus far is essentially the pseudocalibration heuristic albeit on a somewhat
complicated planted distribution. It is at this time that we will exploit the symmetries of the
planted density. Recall that the underlying subspace V depends only on Col-Span(Mκ) = Col-Span(M),
and so does the underlying SoS SDP relaxation. Therefore, it is natural to average out the above
pseudocalibrated solution over the various representations of V , i.e., define the solutionMV as,

M∗
V [S, T] = EZ

[
Ex∈{−1,1}n

[(
∏
i∈S

xi

)(
∏
j∈T

xj

)
·Θ[MH6n

κ Z](x)

]]
(9)

Analogous to the ideal SDP vectors (6), one can define SDP vectors V∗S here, but this time as
functions over both x and Z. That is if we V∗S (x, Z) = (∏i∈S xi) ·Θ[MH6n

κ Z](x) then,

M∗
V [S, T] = 〈V∗S (x, Z), V∗T (x, Z)〉

where 〈 f (x, Z), g(x, Z)〉 = EZEx∈{−1,1}n [ f (x, Z)g(x, Z)].
The above construction looks similar to (7) and (6) with one important difference. The quanti-

ties are a function of the matrix M defining the subspace and a set of redundancies in representa-
tion given by Z. In particular, low-degree truncation Θ6D can include truncation in the degree over
M and over Z separately.

Somewhat mysteriously, it turns out that by choosing a low-degree truncation (in both M and
Z) of both the ideal SDP solution M∗ and the ideal vectors V∗S , we can recover SDP solution
along with an approximate Cholesky factorization (analogous to (6)). While the above discussion
describes how we arrive at the definition of the mapping. The proof that the mapping works
amounts to showing that the truncated vectors yield an approximate Cholesky factorization of the
pseudo-calibrated matrix, which forms the technical heart of the paper. We defer the details of the
construction to Section 2.

Bounding Spectral Norm We exhibit a candidate SoS SDP solution M(1) and show that there
exists a psd matrix M(2) that is close in spectral norm to M(2). The difference M(1) −M(2) is
matrix with entries that are low-degree polynomials in the input M, and our goal is to upper
bound the spectral norm ‖M(2) −M(1)‖.

As is typical, this involves obtaining spectral norm bounds on matrices whose entries are
low-degree polynomials. Earlier works on Planted Clique [DM15, BHK+19] and others have de-
veloped technical machinery based on the trace method towards bounding spectral norms. We
present a simpler factorization based technique to obtain bounds on spectral norms here. Owing
to its simplicity, it is broadly applicable to more complicated ensembles of random matrices such
as those arising in sparse d-regular random graphs. Furthermore, in some cases, the technique
yields tighter bounds than trace method. For example, consider the following random matrix. Let
A ∈ Rn×n be a random symmetric matrix with Aii = 0 for all i and Aij being independent {±1}
entry otherwise. Consider the random matrix B ∈ R[n]2×[n]2 defined as,

B[(i1, i2), (j1, j2)] = Ai1 j1 · Ai2 j1 · Ai2 j2 .

The best known bounds for ‖B‖ using the trace method imply that ‖B‖ 6 n · (log n)c for some
constant c [DM15]. On the other hand, the factorization technique outlined in Section 3 can be
easily used to obtain a Θ(n) upper bound (specifically, an upper bound of 4n).

All our spectral norm bounds are obtained via the factorization method, starting from bounds
on the norm of the original matrix A.
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2 Lifts of a degree-2 pseudoexpectation

In this section, we describe how to obtain a degree-4 pseudoexpectation Ẽ4 from a degree-2 pseu-
doexpectation Ẽ2. We specify Ẽ4 via its pseudomoment matrixM whose rows and columns are
indexed by sets of size at most 2, withM[S, T] = Ẽ4

[
xS∆T]. LetM′ be the following n× n sub-

matrix of the degree-2 pseudomoment matrix:

M′[{i}, {j}] := Ẽ2[xixj] i, j ∈ [n].

SinceM′ is positive semidefinite, we can writeM′ in its Cholesky decomposition MM† where M
is some n× n matrix.

For each κ > n that is a power of 2, let H6n
κ denote the n× κ matrix obtained by taking the first

n rows of the Hadamard matrix Hκ. We first define a n× κ matrix Mκ := MH6n
κ . A key property

of M we use is:

Fact 2.1. 〈M[i], M[j]〉 = 〈Mκ[i], Mκ[j]〉 where M[t] denotes the t-th row of M since the rows of H6n
κ are

orthogonal unit vectors.

Fix a set of indeterminates z1, . . . , zκ obeying z2
i = 1. For each i ∈ [n], we define “seed polyno-

mials”
qi,κ(z) := ∑

j∈[κ]
Mκ[i, j]zj − 2 ∑

{j1,j2,j3}⊆[κ]
Mκ[i, j1]Mκ[i, j2]Mκ[i, j3]zj1 zj2 zj3

and for each subset S ⊆ [n] define “set polynomials”

qS,κ(z) := ∏
i∈S

qi,κ(z).

We now define matrixM(1) as follows:

M(1)[S, T] := lim
κ→∞

Ez∼{±1}κ [qS∆T,κ(z)] (10)

We prove that the limit on the right-hand side of the above expression exists in Corollary A.4.
We pick our pseudomoment matrixM as a mild adjustment toM(1). Specifically, we define

M := (1− η)M(1) + η · Id.

where we choose η later.
It is clear thatM satisfies the “Booleanness” and “symmetry” constraints. It remains to prove

thatM is positive semidefinite for appropriate choice of η.
Towards doing so, we define a new matrixM(2). Define “truncated polynomials”

pS,κ(z) := qS,κ(z)6|S|

where qS,κ(z)6τ denotes the projection of qS,κ onto the space of polynomials spanned by χT where
|T| 6 τ. And defineM(2) as:

M(2)[S, T] := lim
κ→∞

Ez∼{±1}κ [pS,κ(z)pT,κ(z)] (11)

Once again, we defer the proof that the limit on the right-hand side exists to Corollary A.4. M(2)

is PSD as it is the limit of second moment matrices, each of which is PSD.
To showM is PSD, we first bound the spectral norm ofM(1) −M(2).

10



Lemma 2.2. Let αspec := ‖M′‖2, αrow := maxi∈[n]

√
∑j 6=iM′[i, j]2, αmag := maxi,j:i 6=jM′[i, j]. There

is an absolute constant C > 0 such that α := Cαmag · (1 + α4
row) · (1 + α2

spec) and ‖M(1) −M(2)‖2 6 α.

Lemma 2.2 is an immediate consequence of Lemma 3.3, which Section 3 is dedicated to proving.

Corollary 2.3. Let α be as in the statement of Lemma 2.2. Then λmin(M(1)) > −α.

Proof. For any unit vector x,

x†M(1)x = x†
(
M(1) −M2 +M(2)

)
x

= x†
(
M(1) −M(2)

)
x + x†M(2)x

> −α (by Lemma 2.2 and PSDness ofM(2))

Set η := α
1+α . The PSDness ofM follows from Corollary 2.3 and the fact that adding η · Id to

any matrix increases all its eigenvalues by η.

Theorem 2.4. M� 0.

Lemma 2.5. Let α be as in the statement of Lemma 2.2. For any Hermitian matrix A ∈ Rn×n,

Ẽ4[x† Ax] >
(

1− α

1 + α

)
(Ẽ2[x† Ax]− α

√
n‖A‖F) +

α

1 + α
Trace (A) .

Proof. For a matrix L with rows and columns indexed by subsets of [n], we use the notation L1,1 to
denote the submatrix of L with rows and columns indexed by sets of size exactly equal to 1.

Ẽ4[x† Ax]− α

1 + α
Trace (A) = 〈M1,1, A〉 − α

1 + α
Trace (A)

=

(
1− α

1 + α

)
〈M(1)

1,1 , A〉

=

(
1− α

1 + α

)
(〈M(2)

1,1 , A〉+ 〈M(1)
1,1 −M

(2)
1,1 , A〉)

>
(

1− α

1 + α

)(
〈M(2)

1,1 , A〉 −
∥∥∥M(1)

1,1 −M
(2)
1,1

∥∥∥
F
· ‖A‖F

)
>
(

1− α

1 + α

)(
〈M(2)

1,1 , A〉 − α ·
√

n · ‖A‖F

)
(by Lemma 2.2)

Observe thatM(2)
1,1 is exactly equal to Ẽ2[xx†] and hence the statement of the lemma follows.

3 Spectral Norm Bounds

This section is dedicated to proving Lemma 2.2. We first make some structural observations about
E :=M(1) −M(2).

Observation 3.1. Suppose |S∆T| is odd. Then E [S, T] = 0.

11



Proof. Since qi,κ(z) is a sum odd degree terms in z, so is qS∆T,κ(z) when |S∆T| is odd, and so the
expected value of each term over the choice of random z is 0. Thus, M(1)

κ [S, T] = 0, and by
extension M(1)[S, T] = 0. Note that for any set S all terms in pS,κ have the same parity as |S|,
and thus all terms in pS,κ pT,κ have the same parity as |S|+ |T|, whose parity is the same as |S∆T|.
Thus,M(2)

κ [S, T] = 0 and consequently M(2)[S, T] = 0.

Observation 3.2. Suppose S = ∅ or T = ∅. Then E [S, T] = 0.

Proof. Without loss of generality, say S = ∅. Then M(1)[S, T] = limκ→∞ Ez∼{±1}d [qT,κ(z)] =

limκ→∞ q̂T,κ(∅). Similarly,M(2)[S, T] = limκ→∞ Ez∼{±1}d [pT,κ(z)] = limκ→∞ p̂T,κ(∅) = limκ→∞ q̂T,κ(∅).

Thus, we can split E into four parts.

E (1)[S, T] :=

{
E [S, T] S = T

0 otherwise

E (2)[S, T] :=

{
E [S, T] if |S| = |T| = 1, |S ∩ T| = 0

0 otherwise

E (3)[S, T] :=

{
E [S, T] if |S| = |T| = 2, |S ∩ T| = 1

0 otherwise

E (4)[S, T] :=

{
E [S, T] if |S| = |T| = 2, |S ∩ T| = 0

0 otherwise

Since E = E (1) + E (2) + E (3) + E (4), proving a spectral norm bound on each individual piece also
gives a bound of the spectral norm of E via the triangle inequality. In later parts of the section, the
following are proved.

Lemma 3.3. The following spectral norm bounds hold:

‖E (1)‖ 6 O(αmag)

‖E (2)‖ 6 O(α2
row · αmag)

‖E (3)‖ 6 O(αmag · (1 + αspec + α2
row))

‖E (4)‖ 6 O(αmag · (1 + α4
row) · (1 + α2

spec)).

In particular, this implies ‖E‖ 6 O(αmag · (1 + α4
row) · (1 + α2

spec)).∥∥∥E (1)∥∥∥ is bounded in Section 3.3,
∥∥∥E (2)∥∥∥ is bounded in Section 3.4,

∥∥∥E (3)∥∥∥ is bounded in Sec-

tion 3.5, and
∥∥∥E (4)∥∥∥ is bounded in Section 3.6.

Before diving into the proofs, we introduce the language of graphical matrices.
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a1

a2 a4

a3

b1

b2

b3

b4

Figure 1: Graph G

3.1 Graphical Polynomials and Graphical Matrices

Akin to [BHK+19], we give a way to associate matrices with constant sized graphs. To motivate
studying graphical matrices, we start with some simple examples. Let H be some graph with
vertex set [n]. Now, consider the graph G in the figure below.

Next, define an n2× n2 matrixQG , which is the “graphical matrix” of G with rows and columns
indexed by size-2 subsets of [n] where

QG [{i, j}, {k, `}] := #{subgraphs of H isomorphic to G so that a1, a2, a3, a4 map to i, j, k, `}.

Our reason for considering matrices that encode ‘constant-sized graph statistics’ such as the above,
which we call graphical matrices, is that we are able to naturally view M(1) and M(2) as a sum
of simple graphical matrices5. Thus, a natural way to obtain a handle on the spectral norm of
M(1) −M(2) is understanding the spectral behavior of the graphical matrices that constitute it.

3.1.1 Sketch of Graphical Matrices

We dig into the specific graphical matrices that arise in this section. We view the matrix Mκ as a
weighted bipartite graph with left vertex set [n] and right vertex set [κ], where the weight of the
edge between i ∈ [n] and j ∈ [κ] is Mκ[i, j] — we call this Bipartite(Mκ). Now, let G be a bipartite
graph on constant number of vertices where each left vertex of G is one or two of two colors,
row or column, and each right vertex is uncolored. The graphical matrix associated with G is the
n|row(G)| × n|column(G)| matrixQG with rows and columns indexed by subsets of [n] of size |row(G)|
and |column(G)| respectively where we obtain the S, T entry in the following way.

Enumerate over all subgraphs of Bipartite(Mκ) that are isomorphic to G, and vertices
colored row map into S and the vertices colored column map into T, take the product of
edge weights of each subgraph, and then take the sum over all subgraphs enumerated
over.

Symbolically,
QG [S, T] := ∑

H subgraph of Bipartite(Mκ)
H isomorphic to G
row(G) maps into S

column(G) maps into T

∏
{i,j}∈H

Mκ[i, j].

5Where H is replaced with a complete (n, L)-bipartite graph, and the edges are equipped with weights from the
matrix Mκ .
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3.1.2 Definitions

Definition 3.4 (Half-Glyph). A half-glyph HG is a bipartite (multi-)graph with a left vertex set
L(HG) := {`1, . . . , `|L(HG)|}, a middle vertex set M(HG) := {m1, . . . , m|M(HG)|} and edges E(HG).
We useHGa,b to represent the number of edges between `a and mb.

`1

`2

(a) Half-GlyphHG1

`1

`2

(b) Half-GlyphHG2

Figure 2: Half-Glyphs 6

Definition 3.5 (Half-Glyph Labeling). For a half-glyph HG, we call S : L(HG) → [n] a valid
labeling if

1. It is a injective map from L(HG) to [n].

2. S(`i) < S(`j) if and only if i < j.7

Remark 3.6. For simplicity, we represent each valid labeling as a size-|L(HG)| subset of [n].

Definition 3.7 (Cluster of M(HG)). For a half-glyph HG, we call a set of vertices {v1, . . . , v|B|} in
cluster B if they have the same neighborhood on L(HG), i.e., ∀i, j ∈ B,HG(`, i) = HG(`, j) for any
` ∈ L(HG). We let B(HG) = (B1, . . . , Bk) be the set of clusters in HG where k 6 κ is the number
of clusters.

Definition 3.8 (z-labeling of half-glyph). We say π : M(HG) → [κ] is a z-labeling if it is injective,
and if for each cluster Bi ∈ B(HG) and ma, mb ∈ Bi, π(ma) < π(mb) if and only if a < b. We
denote the set of z-labelings by Π(HG).

Definition 3.9 (κ-Graphical Polynomial of a Half-Glyph). For any κ, every half-glyph HG with a
valid labeling S is associated with a polynomial over indeterminates z = (z1, . . . , zκ) given by

βHG,κ,S(z) := ∑
π∈Π(HG)

∏
i∈L(HG)

∏
j∈M(HG)

(Mκ[S(i), π(j)] · zπ(j))
HGi,j

Definition 3.10 (Glyph). A glyph G is a multi-graph on the vertex set V(G) = L(G)∪M(G)∪R(G)
and edge set E(G), where L(G)∪R(G) = {v1, v2, . . . , v|L(G)∪R(G)|} and M(G) = {m1, m2, . . . , m|M(G)|}.
We use Ga,b to represent the number of edges between va and mb.

Remark 3.11. Our definition of cluster and z-labeling for half-glyph extends naturally to glyph.

We will refer to L(G) as left vertices, M(G) as middle vertices, and R(G) as right vertices of the
glyph. We emphasize that L(G) and R(G) need not be disjoint; in particular some vertices can be
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v1 v1

v2 v3

(a) Glyph G1

v1 v4

v2 v3

(b) Glyph G2

Figure 3: Glyphs

both left and right vertices. In the following figure, G1 and G2 are different glyphs because L and R
intersect in G1 but not in G2.

Observe that any glyph can be seen as being ”composed” of two half-glyphs: the left half-glyph
L(G) which is the induced subgraph on L(G) ∪ M(G), and the right half-glyph R(G) which is
the induced subgraph on R(G) ∪M(G). We now extend the definition of labeling and graphical
polynomial to glyphs.

Definition 3.12 (Glyph Labeling). For any glyph G, let S be a valid labeling for L(G), and T be a
valid labeling for R(G), S and T are G-compatible if they agree on L(G) ∩ R(G), i.e. S|L(G)∩R(G) =

T|L(G)∩R(G) and are disjoint on their symmetric difference, i.e. S(L(G) \ R(G))∩ T(R(G) \ L(G)) =
∅. For two G-compatible labelings S and T, let S ◦ T : L(G)∪ R(G)→ [n] denote the joint labelling
induced by both.

Definition 3.13 (κ-Graphical Polynomial of a Glyph). For any κ, for a glyph G with half-glyphs
L(G) and R(G) and a pair of compatible labelings S, T, we associate it with a polynomial over
indeterminates z = (z1, . . . , zκ) given by

βG,κ,S◦T(z) := ∑
π∈Π(G)

∏
i∈L(G)∪R(G)

∏
j∈M(G)

(Mκ[S ◦ T(i), π(j)] · zπ(j))
Gi,j

Definition 3.14. A glyph G is called well-glued if every middle vertex has even degree.

Remark 3.15. The κ-graphical polynomial of a well-glued glyph does not depend on z. Specifi-
cally,

βG,κ,S◦T = ∑
π∈Π(G)

∏
i∈L(G)∪R(G)

∏
j∈M(G)

Mκ[S ◦ T(i), π(j)]Gi,j

Definition 3.16 (κ-Graphical Matrix of a Well-Glued Glyph). For each well-glued glyph G, we
associate a matrix indexed by ( [n]

L(G))× ( [n]
R(G)) defined as

QG,κ[S, T] := 1[S, T are G-compatible] · βG,κ,S◦T

which we call the κ-graphical matrix of G.

Claim 3.17. Let G be a well-glued (A, B)-glyph. The limit limκ→∞QG,κ exists.

We defer the proof of the claim to Appendix A.

6We will use circles to represent vertices in L(HG) (and later L(G) and R(G)) that should be thought as vertices in
[n] and square to represent vertices in M(G) that should be thought as indeterminates z.

7This “order-preserving” requirement is an artifact of our proof.
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Definition 3.18 (Graphical matrix of a well-glued glyph). For a well-glued glyph G, we call the
matrix

QG := lim
κ→∞
QG,κ

the graphical matrix of G.

Definition 3.19. Given a well-glued glyph G and a length-2 walk that starts at u ∈ L(G) ∪ R(G),
takes an edge to middle vertex m ∈ M(G), and takes a different edge from m to u′ ∈ L(G)∪ R(G).
We call the length-2 walk a cyclic walk if u = u′; otherwise, we call it an acyclic walk.

We also give an explicit expression for the entries of QG .

Lemma 3.20. Let G be a well-glued glyph. Suppose any middle vertex of G has degree > 4, QG = 0.
Suppose all middle vertices of G have degree 2 and S ◦ T is a valid labeling of G and for i, j ∈ L(G) ∪ R(G)
let Pi,j be the collection of length-2 walks from i to j. Then:

QG [S, T] = ∏
i6j∈L(G)∪R(G)

〈M[S ◦ T(i)], M[S ◦ T(j)]〉|Pi,j|

|Pi,j|!
.

We also defer the proof of Lemma 3.20 to Appendix A.

3.2 Glyph Factorization and Spectral Norm Bound

A useful ingredient towards our goal is a generic way to bound the spectral norm of a graphical
matrix. In Lemma 3.20, we show that the entries of the graphical matrix of a well-glued graph can
be written as a product of inner products. We use this insight to factor the graphical matrices we
need to deal with into simpler matrices. We start with a few basic definitions of types of simple
matrices we encounter.

Definition 3.21 (Growth and shrinkage matrices). We call a matrix a growth matrix if it is block-
diagonal and each block is a subrow of MM†. We define a shrink matrix as one that can be written
as the transpose of a growth matrix.

Definition 3.22 (Swap matrices). We call a matrix a swap matrix if it is block diagonal and each
block can be written as either (a) W− Id where W is a principal submatrix of MM†, or (b) W where
W is a (not necessarily principal) submatrix of MM†.

Definition 3.23 (Residue matrices). We call a matrix a residue matrix if it is a diagonal matrix and
each entry is an off-diagonal entry of MM†.

Lemma 3.24. If L is a growth/shrinkage matrix, its spectral norm is bounded by αrow; if it is a swap
matrix, its spectral norm is bounded by αspec; and if it is a residue matrix, its spectral norm is bounded by
αmag.

Proof. Spectral norm bounds on growth and shrinkage matrices. Since the rows of a growth
matrix are disjointly supported, its spectral norm is equal to the maximum `2 norm of its rows. As
each row is a submatrix of MM†, αrow bounds the spectral norm of growth matrices (and shrink
matrices too).
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Spectral norm bounds on swap matrices. The spectral norm of a swap matrix is equal to the
maximum of the spectral norms of its blocks. If a block is simply a submatrix of MM†, its spectral
norm is bounded by αspec. We now treat the case where a block is of the form W − Id for principal
submatrix W. Any principal submatrix of MM† is PSD and its maximum eigenvalue is bounded
by αspec. Thus all eigenvalues of such a block are between −1 and αspec − 1. Combined with the
fact that αspec > 1 (which follows from the trace of MM† being n) we can conclude that the spectral
norm of any block is bounded by αspec.
Spectral norm bounds on residue matrices. Since a residue matrix is diagonal, its spectral norm is
bounded by the maximum magnitude entry, and since all nonzero entries are off-diagonal entries
of MM† a bound of αmag holds on the spectral norm.

Before jumping into the full proof, we illustrate the efficacy of our method on the following
toy example that will appear in our analysis of E (4). Consider the following glyph G with entries:

QG [{i, j}, {k, `}] = 1
3!
〈M[i], M[k]〉3〈M[j], M[`]〉

for i, j, k, ` ∈ [n] distinct and i < j, k < `.

i

j `

k

Figure 4: Glyph G

QG can be written as a product of simpler matrices — define matrices L1,L2,L3,L4 as follows.
For all i, j, k, ` distinct in [n] with i < j and k < `,

L1[{i, j}, {i, j, k}] := 〈M[i], M[k]〉
L2[{i, j, k}, {i, j, k}] := 〈M[i], M[k]〉
L3[{i, j, k}, {j, k}] := 〈M[i], M[k]〉
L4[{j, k}, {k, `}] := 〈M[j], M[`]〉

The above matrices are set to 0 wherever they are undefined. It can be verified that

QG = L1 · L2 · L3 · L4

A major advantage of glyph factorization is that it offers a unified framework to bound the
spectral norm of graphical matrices of the complex glyphs in terms of spectral norms of simpler
matrices. In our example, we have

‖QG‖ 6 ‖L1‖ · ‖L2‖ · ‖L3‖ · ‖L4‖ .

We wrap up by giving spectral norm bounds on Li, and we will generalize from them all the
basic glyphs that we will use throughout this section.
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Bounding ‖L1‖ and ‖L3‖. L1 and L3 are growth and shrinkage matrices respectively and hence
their spectral norms are bounded by αrow.

Bounding ‖L2‖. L2 is a residue matrix and hence its spectral norm is at most αmag.

Bounding ‖L4‖. L4 is a swap matrix and hence its spectral norm is at most αspec.
Combining the above gives ‖QG‖ 6 α2

row · αmag · αspec. More generally:

Lemma 3.25. Let G be a well-glued glyph whose graphical matrix factorizes as QG = L1 · . . . · Lk where
each Li is either a growth/shrinkage/swap residue matrix. Let the number of growth/shrinkage matrices be
t1, the number of residue matrices be t2, and the number of swap matrices be t3, then

‖QG‖ 6 αt1
row · αt2

mag · αt3
spec.

3.3 Spectral Norm Bounds on E (1)

Lemma 3.26 (E (1) has a small spectral norm).

‖E (1)‖ 6 O(αmag).

Proof. When |S| = |T| = 0 by Observation 3.2, E (1)[S, T] = 0. When S = T = {i} ⊆ [n],
Ez∼{±1}κ [pS,κ(z)pT,κ(z)] = 1 for all κ and hence,

E (1)[S, T] = lim
κ→∞

Ez∼{±1}κ [q∅,κ(z)]− Ez∼{±1}κ [pS,κ(z)pT,κ(z)] = 0

Next we treat the case when |S| = |T| = 2. In particular, we are interested in bounding the spec-
tral norm of E (1) restricted to entries indexed by S, T of size 2. This matrix can be written as Id− L
where L is the diagonal matrix obtained by setting the ({i, j}, {i, j})-entry to limκ→∞ Ez∼±{1}κ [p{i,j},κ(z)2].
L can be written as a sum of graphical matrices of constantly many glyphs G1, . . . ,GV where G1 is
illustrated below, and the remaining glyphs have at least one length-2 acyclic walk. This means
QG2 , . . . ,QGV are diagonal matrices with entries bounded in magnitude by αmag.

i

j

Figure 5: Glyph G1

Note that Lemma 3.20, the graphical matrix of G1 is the following diagonal matrix where

QG1 [{i, j}, {i, j}] = 〈M[i], M[i]〉〈M[j], M[j]〉 = 1

Hence, for S = T = {i, j}, we have

E (1)[S, T] = 1−
V

∑
t=1
QGt [S, T]
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= 1− 1−
V

∑
t=2
QGt [S, T]

∈ [−(V − 1)αmag, (V − 1)αmag]

Thus E (1) is a diagonal matrix with entries bounded by O(αmag), the desired bound follows.

3.4 Spectral Norm Bounds on E (2)

Lemma 3.27 (E (2) has a small spectral norm).

‖E (2)‖ 6 O(α2
row · αmag).

Proof. By Lemma 3.20, for any i 6= j ∈ [n],

E (2)[i, j] = lim
κ→∞

Ez∼{±1}n

[
q{i,j},κ

]
− Ez∼{±1}n

[
p{i},κ p{j},κ

]
=

4
3!
〈M[i], M[j]〉3

We can thus express E (2) as a product of simpler matrices 4
3!L1 · L2 · L3 where

L1[{i}, {i, j}] := 〈M[i], M[j]〉 (a growth matrix)

L2[{i, j}, {i, j}] := 〈M[i], M[j]〉 (a residue matrix)

L3[{i, j}, {j}] := 〈M[i], M[j]〉 (a shrinkage matrix)

The desired bound then follows from Lemma 3.25.

3.5 Spectral Norm Bounds on E (3)

Lemma 3.28 (E (3) has small spectral norm).

‖E (3)‖ 6 O(αmag · (1 + αspec + α2
row)).

Proof. Note that p{i,j},κ(z) can be written as a linear combination of graphical polynomials of the
following half-glyphs from Figure 6; in particular

p{i,j},κ = βA(i,j),κ + βB(i,j),κ − 2βC(i,j),κ − 2βC(j,i),κ + 4βD(i,j),κ + 4βE(i,j),κ

LetH be the restriction ofM(2) to the entries ({i, j}, {j, k}) for i, j, k distinct; then

H[{i, j}, {j, k}] = lim
κ→∞

Ez∼{±1}κ [p{i,j},κ(z)p{j,k},κ(z)]

Expanding out the above gives us an expression that is a sum of terms of the form

lim
κ→∞

Ez∼{±1}κ [βS1,κ(z)βS2,κ(z)],

which we denote S1 · S2 to make notation simpler. Note that the S1 · S2 is 0 if the number of
odd-degree right vertices in S1 and S2 are not equal, and thus after discarding such pairs

H[{i, j}, {j, k}] = A(i,j) · A(j,k) + B(i,j) · B(j,k) + 4C(i,j) · C(j,k) + 4C(j,i) · C(k,j) + 16D(i,j) · D(j,k)

+ 16E(i,j) · E(j,k)) + (4A(i,j) · E(j,k) + 4E(i,j) · A(j,k) − 2B(i,j) · C(j,k) − 2C(i,j) · B(j,k)
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i

j

(a) A(i,j)

i

j

(b) B(i,j)

i

j

(c) C(i,j)

i

j

(d) D(i,j)

i

j

(e) E(i,j)

Figure 6: Half-Glyphs for p{i,j},κ

− 2B(i,j) · C(k,j) − 2C(i,j) · B(k,j) + 4B(i,j) · D(j,k) + 4D(i,j) · B(j,k) + 4C(i,j) · C(k,j)

+ 4C(j,i) · C(j,k) − 8C(i,j) · D(j,k) − 8D(i,j) · C(j,k) − 8C(j,i) · D(j,k) − 8D(i,j) · C(k,j) (12)

We can writeH as a sum of matricesH1 +H2 + · · ·+H20 whereHt[{i, j}, {k, `}] contains the t-th
term of the above expression. We alternatively use the notation HM1·M2 for Ht where cM1 ·M2 is
the t-th term of the right hand side of (12), where c ∈ R.

We introduce the symmetrized graphical matrix Q̃G of an (A, B)-glyph G where A = {i, j} and
B = {j, k}. Let G1,G2,G3,G4 be copies of G with only ordering of left vertices changed such that
they satisfy

i lG1 j lG1 k

k lG2 j lG2 i

i lG3 j, k lG3 j

j lG4 i, j lG4 k

Q̃G is then defined as
QG1 +QG2 +QG3 +QG4 .

Note that if two glyphs are isomorphic, then they have the same symmetrized graphical matrix.
Ht breaks further into a linear combination of symmetrized graphical matrices. We use Glyphs(H)

to refer to the collection of all glyphs that appear when each Ht is written as a linear combination
of symmetrized graphical matrices. Symbolically,

H = ∑
16t620

Hi
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= ∑
16t620

∑
G∈Glyphs(H)

ct,GQ̃G

= ∑
G∈Glyphs(H)

(
∑

16t620
ct,G

)
· Q̃G

= ∑
G∈Glyphs(H)

αG · Q̃G . (13)

where αG := ∑16t620 ct,G . We now enumerate over all glyphs in Glyphs(H), determine all αG ,
classify glyphs as “ill-behaved” or “well-behaved”, and give bounds on the spectral norms of
symmetrized graphical matrices of well-behaved glyphs.

We define a matrix K whose rows are indexed by sets of size 2, i.e., by {i, j} for distinct i, j and
whose columns are indexed by ordered tuples (i, j) for distinct i, j, and its entries are defined as
follows.

∀i, j : K[{i, j}, (i, j)] = 1,K[{i, j}, (j, i)] = 1, remaining entries are 0.

A fact about K we will need is that its spectral norm is
√

2. This is a consequence of the fact that
its rows are orthogonal and have `2 norm equal to

√
2 each.

1. Glyph A2

Q̃A2 [{i, j}, {j, k}] = 〈M[i], M[j]〉〈M[j], M[k]〉

A2 appears in HA(i,j)·A(j,k)
and HB(i,j)·B(j,k) with coefficient 1 each. Thus, αA2 = 2. This glyph is

“ill-behaved”.

i

j

j

k

Figure 7: Glyph A2

2. Glyph B2

Q̃B2 [{i, j}, {j, k}] = 〈M[i], M[k]〉〈M[j], M[j]〉

B2 appears inHB(i,j)·B(j,k) with coefficient 1. Thus, αB2 = 1. This glyph is “ill-behaved”.

i

j k

j

Figure 8: Glyph B2

3. Glyph C2
1

Q̃C2
1
[{i, j}, {j, k}] = 1

2!
〈M[i], M[k]〉2〈M[i], M[j]〉〈M[j], M[k]〉
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C2
1 appears in HC(i,j)·C(k,j)

with coefficient 4. Thus, αC2
1
= 4. This glyph is “well-behaved” and

we can prove
‖Q̃C2‖ 6 α2

row · α2
mag

via the following factorization combined with Lemma 3.25:

Q̃C2
1
=

1
2!
· K · L1 · L2 · L3 · K†

where for all i, j, k distinct

L1[(i, j), (i, j)] := 〈M[i], M[j]〉 (a residue matrix)

L2[(i, j), (i, j, k)] := 〈M[i], M[k]〉 (a growth matrix)

L3[(i, j, k), (j, k)] := 〈M[i], M[k]〉 (a shrinkage matrix)

L4[(j, k), (j, k)] := 〈M[j], M[k]〉 (a residue matrix)

i

j

j

k

Figure 9: Glyph C2
1

4. Glyph C2
2

Q̃C2
2
[{i, j}, {j, k}] = 1

2!
〈M[i], M[j]〉〈M[j], M[j]〉2〈M[j], M[k]〉

C2
2 appears inHC(j,i)·C(j,k)

with coefficient 4. Thus, αC2
2
= 4. This glyph is “ill-behaved”.

i

j

j

k

Figure 10: Glyph C2
2

5. Glyph D2
1

Q̃D2
1
[{i, j}, {j, k}] = 1

2! · 2!
〈M[i], M[j]〉2〈M[j], M[k]〉2〈M[i], M[k]〉〈M[j], M[j]〉
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D2
1 appears in HD(i,j)·D(j,k) with coefficient 16. Thus, αD2

1
= 16. This glyph is “well-behaved”

and we can prove

‖Q̃D2
1
‖ 6 1

2!
α4

mag · αspec

via the following factorization combined with Lemma 3.25:

Q̃D2
1
=

1
2!
· 1

2!
· K · L1 · L2 · L3 · L4 · K†

where for i, j, k distinct

L1[(i, j), (i, j)] := 〈M[i], M[j]〉2 (two residue matrices )

L2[(i, j), (j, k)] := 〈M[i], M[k]〉 (a swap matrix)

L3[(j, k), (j, k)] := 〈M[j], M[j]〉 (an identity matrix)

L4[(j, k), (j, k)] := 〈M[j], M[k]〉2 (two residue matrices)

i

j k

j

(a) Glyph D2
1

i

j j

k

(b) Glyph D2
2

6. Glyph D2
2

Q̃D2
2
[{i, j}, {j, k}] = 2

3! · 3!
〈M[i], M[j]〉3〈M[j], M[k]〉3

D2
2 appears in HD(i,j)·D(j,k) and HE(i,j)·E(j,k) with coefficient 16 each. Thus, αD2

2
= 32. This glyph

is “well-behaved” and we can prove

‖Q̃D2
2
‖ 6 α2

row · α4
mag

via the following factorization combined with Lemma 3.25:

QD2
2
=

1
3! · 3!

· K · L1 · L2 · L3 · L4 · K†

where for i, j, k distinct

L1[(i, j), (i, j)] := 〈M[i], M[j]〉2 (two residue matrices)
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L2[(i, j), (j)] := 〈M[i], M[j]〉 (a shrinkage matrix)

L3[(j), (j, k)] := 〈M[j], M[k]〉 (a growth matrix)

L4[(j, k), (j, k)] := 〈M[j], M[k]〉2 (two residue matrices)

7. Glyph BC1

Q̃BC1 [{i, j}, {j, k}] = 〈M[i], M[j]〉〈M[j], M[j]〉〈M[j], M[k]〉

BC1 appears in HB(i,j)·C(j,k)
and HC(j,i)·B(j,k)

with coefficient −2 each. Thus αBC1 = −4. This
glyph is “ill-behaved”.

i

j

j

k

Figure 12: Glyph BC1

8. Glyphs BC2 and BC3

Q̃BC2 [{i, j}, {j, k}] = 〈M[i], M[k]〉〈M[j], M[k]〉2

Q̃BC3 [{i, j}, {j, k}] = 〈M[i], M[k]〉〈M[j], M[k]〉2.

BC2 appears in HB(i,j)·C(k,j)
with coefficient −2 and BC3 appears in HC(i,j)B(j,k)

with coefficient
−2. Thus, αBC2 = αBC3 = −2. These glyphs are “well-behaved” and we can prove

‖Q̃BC2‖ 6 2αspec · αmag ‖Q̃BC3‖ 6 2αspec · αmag.

We do so by illustrating a factorization of Q̃BC2 ; Q̃BC3 can be factorized in an identical way.

QBC2 = K · L1 · L2 · K†

where for i, j, k distinct

L1[(i, j), (j, k)] := 〈M[i], M[k]〉 (a swap matrix)

L2[(j, k), (j, k)] := 〈M[j], M[k]〉2 (two residue matrices)

9. Glyph BD1

Q̃BD1 [{i, j}, {j, k}] = 1
3!
〈M[i], M[j]〉3〈M[j], M[k]〉

BD1 appears in HBi,j·Dj,k with coefficient 4. Thus, αBD1 = 4. This glyph is “well-behaved”
and we can prove

‖Q̃BD1‖ 6
2
3!

α2
mag · α2

row.

via the following factorization combined with Lemma 3.25:

Q̃BD1 = K · L1 · L2 · L3 · K†
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i (or k)

j

j

k (or i)

Figure 13: Glyph BC2 (or BC3)

where for i, j, k distinct

L1[(i, j), (i, j)] := 〈M[i], M[j]〉2 (two residue matrices)

L2[(i, j), (j)] := 〈M[i], M[j]〉 (a shrinkage matrix)

L3[(j), (j, k)] := 〈M[j], M[k]〉 (a growth matrix)

i

j

j

k

Figure 14: Glyph BD1

10. Glyph BD2

Q̃BD2 [{i, j}, {j, k}] = 1
2!
〈M[i], M[j]〉2〈M[i], M[k]〉〈M[j], M[j]〉

BD2 appears in HBi,j·Dj,k with coefficient 4. Thus, αBD2 = 4. This glyph is “well-behaved”
and we can prove

‖Q̃BD2‖ 6 α2
mag · αspec.

via the following factorization combined with Lemma 3.25:

Q̃BD2 = K · L1 · L2 · L3 · K†

where for i, j, k distinct

L1[(i, j), (i, j)] := 〈M[i], M[j]〉2 (two residue matrices)

L2[(i, j), (j, k)] := 〈M[i], M[k]〉 (a swap matrix)

L3[(j, k), (j, k)] := 〈M[j], M[j]〉 (an identity matrix)
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i

j

j

k

Figure 15: Glyph BD2

11. Glyph CD1

Q̃CD1 [{i, j}, {j, k}] = 〈M[i], M[j]〉2〈M[j], M[k]〉2〈M[i], M[k]〉.

CD1 appears in HC(i,j)·D(j,k)
and HD(i,j)·C(j,k)

with coefficient −8 each. Thus, αCD1 = −16. This
glyph is “well-behaved” and we can prove

‖Q̃CD1‖ 6 2αspec · α4
mag.

via the following factorization combined with Lemma 3.25:

Q̃CD1 = K · L1 · L2 · L3 · K†

where for i, j, k distinct

L1[(i, j), (i, j)] := 〈M[i], M[j]〉2 (two residue matrices)

L2[(i, j), (j, k)] := 〈M[i], M[k]〉 (a swap matrix)

L3[(j, k), (j, k)] := 〈M[j], M[k]〉2 (two residue matrices)

i

j k

j

Figure 16: Glyph CD1

12. Glyphs CD2 and CD3

Q̃CD2 [{i, j}, {j, k}] = 1
3!
〈M[i], M[j]〉〈M[j], M[j]〉〈M[j], M[k]〉3

Q̃CD3 [{i, j}, {j, k}] = 1
3!
〈M[i], M[j]〉〈M[j], M[j]〉〈M[i], M[j]〉3
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CD2 appears inHC(j,i)·D(j,k)
with coefficient −8 and CD3 appears inHD(i,j)·C(k,j)

with coefficient
−8. Thus, αCD2 = αCD3 = −8. These glyphs are “well-behaved” and we can prove

‖Q̃CD2‖ 6
2
3!

α2
row · α2

mag ‖Q̃CD3‖ 6
2
3!

α2
row · α2

mag.

We do so by giving a factorization of Q̃CD2 and applying Lemma 3.25; an identical factoriza-
tion applies to Q̃CD3 .

Q̃CD2 =
1
3!
· K · L1 · L2 · L3 · K†

where for i, j, k distinct

L1[(i, j), (i, j)] := 〈M[j], M[j]〉 (an identity matrix)

L2[(i, j), (j)] := 〈M[i], M[j]〉 (a shrinkage matrix)

L3[(j), (j, k)] := 〈M[j], M[k]〉 (a growth matrix)

L4[(j, k), (j, k)] := 〈M[j], M[k]〉2 (two residue matrices)

i (or k)

j

j

k (or i)

Figure 17: Glyph CD2 (or CD3 )

Let H̃ be the restriction ofM(1) to the entries ({i, j}, {j, k}) for i, j, k distinct; then

H̃[{i, j}, {j, k}] = lim
κ→∞

Ez∼{±1}κ [q{i,j}(z)] = 〈M[i], M[k]〉+ 4
3!
〈M[i], M[k]〉3.

Note that E (3) = H̃ −H and so from (13) we can write

E (3) := − ∑
G∈Glyphs(H):
G well-behaved

αG · Q̃G +

H̃ − ∑
G∈Glyphs(H):
G ill-behaved

αG · Q̃G


Then

‖E (3)‖ 6 ∑
G∈Glyphs(H):
G well-behaved

|αG | · ‖Q̃G‖+

∥∥∥∥∥∥∥∥H̃ − ∑
G∈Glyphs(H):
G ill-behaved

αG · Q̃G

∥∥∥∥∥∥∥∥ (14)
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Since αmag 6 1, the first term is at most O(αmag · (1 + αspec + α2
row)). We call the second term as

E (3)sparse := H̃ − ∑
G∈Glyphs(H):
G ill-behaved

αG · Q̃G

and

∑
G∈Glyphs(H):
G ill-behaved

αG · Q̃G = 2Q̃A2 + Q̃B2 + 4Q̃C2
2
− 4Q̃BC1 .

Now we’re ready to bound ‖E (3)sparse‖.

E (3)sparse[{i, j}, {j, k}] = 〈M[i], M[k]〉+ 4
3!
〈M[i], M[k]〉3 − 2〈M[i], M[j]〉〈M[j], M[k]〉−

〈M[i], M[k]〉〈M[j], M[j]〉 − 4
2!
〈M[i], M[j]〉〈M[j], M[k]〉〈M[j], M[j]〉2

+ 4〈M[i], M[j]〉〈M[j], M[k]〉〈M[j], M[j]〉.

Since 〈M[j], M[j]〉 = 1,

E (3)sparse[{i, j}, {j, k}] = 4
3!
〈M[i], M[k]〉3.

We can factorize E (3)sparse as

E (3)sparse =
4
3!
K · L1 · L2 · L3 · K†

where for distinct i, j, k

L1[(i, j), (i, j, k)] = 〈Mi, Mk〉 (a growth matrix)

L2[(i, j, k), (i, j, k)] = 〈Mi, Mk〉 (a residue matrix)

L3[(i, j, k), (j, k)] = 〈Mi, Mk〉 (a shrinkage matrix)

and hence
‖E (3)sparse‖ 6 O(α2

row · αmag).

Plugging the above bound back in to (14) proves

‖E (3)‖ 6 O(αmag · (1 + αspec + α2
row)).

3.6 Spectral Norm Bounds on E (4)

Throughout this section, i, j, k, ` are distinct elements of [n] such that i < j and k < `.

Lemma 3.29 (E (4) has a small spectral norm).

‖E (4)‖ 6 O(αmag · (1 + α4
row) · (1 + α2

spec))
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Proof. When S and T are disjoint sets of size 2 each, we claim that E (4)[S, T] is equal to

lim
κ→∞

Ez∼{±1}κ [(qS,κ(z)− qS,κ(z)62)(qT,κ(z)− qT,κ(z)62)]

By definition,

M(1)
S,T −M

(2)
S,T = lim

κ→∞
Ez∼{±1}κ [qS,κ(z)qT,κ(z)− pS,κ(z)pT,κ(z)]

and note that

lim
κ→∞

Ez∼{±1}κ [(qS,κ(z)− qS,κ(z)62)(qT,κ(z)− qT,κ(z)62)]

= lim
κ→∞

Ez∼{±1}κ [qS,κ(z)qT,κ(z)]− Ez∼{±1}κ [qS,κ(z)qT,κ(z)62]

− Ez∼{±1}κ [qS,κ(z)62qT,κ(z)] + Ez∼{±1}κ [qS,κ(z)62qT,κ(z)62]

= lim
κ→∞

Ez∼{±1}κ [qS,κ(z)qT,κ(z)]− Ez∼{±1}κ [qS,κ(z)62qT,κ(z)62]

= lim
κ→∞

Ez∼{±1}κ Ez∼{±1}κ [qS,κ(z)qT,κ(z)]− Ez∼{±1}κ [pS,κ(z)pT,κ(z)]

= M(1)[S, T]−M(2)[S, T]

Thus, if we set ∆S,κ := qS,κ(z)− qS,κ(z)62, then E (4)S,T = limκ→∞ Ez∼{±1}κ [∆S(z)∆T(z)]. We can write
∆S as a linear combination of graphical polynomials of the following half-glyphs from Figure 18;
in particular

∆{i,j},κ = −2βT(i,j),κ +−2βT(j,i),κ − 2βW{i,j},κ + 4βD{i,j},κ.

Thus, E (4)[S, T] can be written as a linear combination of terms of the form

lim
κ→∞

Ez∼{±1}κ [βS1,κ(z)βS2,κ(z)],

which (just like in Section 3.5) we denote as S1 · S2. When S1 and S2 do not have the same number
of odd-degree right vertices, S1 · S2 is 0, so after discarding away such pairs:

E (4)[{i, j}, {k, `}] = 4
(

T(i,j) · T(k,`) + T(i,j) · T(`,k) + T(j,i) · T(k,`) + T(j,i) · T(`,k)

)
+

4
(

T(i,j) ·W{k,`} + T(j,i) ·W{k,`} + W{i,j} · T(k,`) + W{i,j} · T(`,k)

)
+

4W{i,j} ·W{k,`} + 16D{i,j} · D{k,`}. (15)

E (4) can then be written as
4H1 + 4H2 + 4H3 + 16H4

where

H1[{i, j}, {k, `}] := T(i,j) · T(k,`) + T(i,j) · T(`,k) + T(j,i) · T(k,`) + T(j,i) · T(`,k) (16)

H2[{i, j}, {k, `}] := T(i,j) ·W{k,`} + T(j,i) ·W{k,`} + W{i,j} · T(k,`) + W{i,j} · T(`,k) (17)

H3[{i, j}, {k, `}] := W{i,j} ·W{k,`} (18)

H4[{i, j}, {k, `}] := D{i,j} · D{k,`}. (19)

To attain an upper bound on ‖E (4)‖, we will upper bound ‖H1‖, ‖H2‖, ‖H3‖, ‖H4‖ and appeal
to a triangle inequality. Henceforth, we index the rows and columns of E (4) and its components
by ordered pairs (i, j) where i < j instead of a size-2 set {i, j}.
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(a) T(i,j)
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(b) W{i,j}

i

j

(c) D{i,j}

Figure 18: Half-Glyphs for ∆{i,j},κ

Spectral norm bound forH1. H1 can be further broken into a sum of four matricesH1,1 +H1,2 +

H1,3 +H1,4 where

H1,1[(i, j), (k, `)] = T(i,j) · T(k,`)

H1,2[(i, j), (k, `)] = T(i,j) · T(`,k)

H1,3[(i, j), (k, `)] = T(j,i) · T(k,`)

H1,4[(i, j), (k, `)] = T(j,i) · T(`,k).

We illustrate how to bound the spectral norm ofH1,1; the spectral norm bounds forH1,2,H1,3 and
H1,4, and their proofs, are exactly identical. An application of triangle inequality lets us conclude
a final bound on ‖H1‖.

It can be verified that

H1,1[(i, j), (k, `)] =
1
3!
〈M[i], M[k]〉3〈M[j], M[`]〉+ 1

2!
〈M[i], M[k]〉2〈M[i], M[`]〉〈M[j], M[k]〉

which lets us writeH1,1 as a sum of two graphical matrices. In particular,

H1,1 = QT T1 +QT T2

where

QT T1 [(i, j), (k, `)] =
1
3!
〈M[i], M[k]〉3〈M[j], M[`]〉
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(a) T T1
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(b) T T2

Figure 19: Graphical matrices arising out ofH1,1.

QT T2 [(i, j), (k, `)] =
1
2!
〈M[i], M[k]〉2〈M[i], M[`]〉〈M[j], M[k]〉.

We use factorizations of the graphical matrices combined with Lemma 3.25 to bound their
spectral norms. Concretely,

QT T1 =
1
3!
L(1)

1 · L
(1)
2 · L

(1)
3 · L

(1)
4

where

L(1)
1 [(i, j), (i, j, k)] := 〈M[i], M[k]〉 (a growth matrix)

L(1)
2 [(i, j, k), (i, j, k)] := 〈M[i], M[k]〉 (a residue matrix)

L(1)
3 [(i, j, k), (j, k)] := 〈M[i], M[k]〉 (a shrinkage matrix)

L(1)
4 [(j, k), (k, `)] := 〈M[j], M[`]〉 (a swap matrix)

which implies (via Lemma 3.25) that

‖QT T1‖ 6
1
3!

α2
row · αspec · αmag

Similarly,

QT T2 =
1
2!
L(2)

1 · L
(2)
2 · L

(2)
3

where

L(2)
1 [(i, j), (i, k)] := 〈M[j], M[k]〉 (a swap matrix)

L(2)
2 [(i, k), (i, k)] := 〈M[i], M[k]〉2 (two residue matrices)

L(2)
3 [(i, k), (k, `)] := 〈M[i], M[`]〉 (a swap matrix)

which implies (via Lemma 3.25) that

‖QT T2‖ 6
1
2!

α2
mag · α2

spec
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Therefore, by triangle inequality and the fact that αmag 6 1,

‖H1,1‖ 6 ‖QT T1‖+ ‖QT T2‖ 6 O(αmag(1 + α2
row)(1 + α2

spec))

and by applying triangle inequality on ‖H1,1 + · · ·+H1,4‖, it follows that

‖H1‖ 6 O(αmag(1 + α2
row)(1 + α2

spec)).

Spectral norm bound forH2. Following (17) we can writeH2 asH2,1 +H2,2 +H2,3 +H2,4 where

H2,1[(i, j), (k, `)] = T(i,j) ·W{k,`}

H2,2[(i, j), (k, `)] = T(j,i) ·W{k,`}

H2,3[(i, j), (k, `)] = W{i,j} · T(k,`)

H2,4[(i, j), (k, `)] = W{i,j} · T(`,k).

It can be verified that each H2,t can be written as a sum of two graphical matrices of glyphs iso-
morphic to T W , where

QT W [(i, j), (k, `)] =
1
2!
〈M[i], M[k]〉2〈M[i], M[`]〉〈M[j], M[`]〉〈M[k], M[`]〉.

which means H2 is the sum of 8 graphical matrices of glyphs isomorphic to T W . For each such
glyph G, ‖QG‖ can be obtain an identical bound to that we obtain on ‖QT W‖ using an identical
proof. Thus, from a triangle inequality, we can bound ‖H2‖ by 8C where obtain a bound of C on
‖QT W‖.

i

j

k

`

Figure 20: Glyph T W

Towards obtaining the bound, we factorize

QT W = L1 · L2 · L3 · L4 · L5

where

L1[(i, j), (i, j, k)] := 〈M[i], M[k]〉 (a growth matrix)

L2[(i, j, k), (i, j, k)] := 〈M[i], M[k]〉 (a residue matrix)

L3[(i, j, k), (j, k, `)] := 〈M[i], M[`]〉 (a swap matrix)
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L4[(j, k, `), (k, `)] := 〈M[j], M[`]〉 (a shrinkage matrix)

L5[(k, `), (k, `)] := 〈M[k], M[`]〉 (a residue matrix)

which gives (via Lemma 3.25)

‖QT W‖ = O(α2
row · αspec · α2

mag).

Spectral norm bound for H3. It can be verified that H3 is the sum of three graphical matrices
QWW1 +QWW2 +QWW3 where

QWW1 [(i, j), (k, `)] =
1

2! · 2!
〈M[i], M[k]〉2〈M[j], M[`]〉2〈M[i], M[j]〉〈M[k], M[`]〉

QWW2 [(i, j), (k, `)] =
1

2! · 2!
〈M[i], M[`]〉2〈M[j], M[k]〉2〈M[i], M[j]〉〈M[k], M[`]〉

QWW3 [(i, j), (k, `)] = 〈M[i], M[j]〉〈M[i], M[k]〉〈M[i], M[`]〉〈M[j], M[k]〉〈M[j], M[`]〉〈M[k], M[`]〉.

This implies that ‖H3‖ 6 ‖QWW1‖+ ‖QWW2‖+ ‖QWW3‖. WW1 andWW2 are isomorphic, and
an identical proof yields an identical bound on ‖QWW2‖ as ‖QWW1‖, and hence we only show
how to bound ‖QWW1‖ and ‖QWW3‖.

i

j

k

`

(a)WW1

i

j

k

`

(b)WW3

Figure 21: Graphical matrices arising out ofH3. WW1 andWW2 are isomorphic.

We can write

QWW1 =
1

2! · 2!
L(1)

1 · L
(1)
2 · L

(1)
3 · L

(1)
4 · L

(1)
5 · L

(1)
6

where

L(1)
1 [(i, j), (i, j)] := 〈M[i], M[j]〉 (a residue matrix)

L(1)
2 [(i, j), (i, j, k)] := 〈M[i], M[k]〉 (a growth matrix)

L(1)
3 [(i, j, k), (j, k)] := 〈M[i], M[k]〉 (a shrinkage matrix)

L(1)
4 [(j, k), (j, k, `)] := 〈M[j], M[`]〉 (a growth matrix)

L(1)
5 [(j, k, `), (k, `)] := 〈M[j], M[`]〉 (a shrinkage matrix)
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L(1)
6 [(k, `), (k, `)] := 〈M[k], M[`]〉 (a residue matrix)

which via Lemma 3.25 implies

‖QWW1‖ 6
1

2! · 2!
α4

row · α2
mag.

We also have:

QWW3 = L
(2)
1 · L

(2)
2 · L

(2)
3 · L

(2)
4 · L

(2)
5 · L

(2)
6

where

L(2)
1 [(i, j), (i, j)] := 〈M[i], M[j]〉 (a residue matrix)

L(2)
2 [(i, j), (i, j, k)] := 〈M[i], M[k]〉 (a growth matrix)

L(2)
3 [(i, j, k), (i, j, k)] := 〈M[j], M[k]〉 (a residue matrix)

L(2)
4 [(i, j, k), (j, k, `)] := 〈M[i], M[`]〉 (a swap matrix)

L(2)
5 [(j, k, `), (k, `)] := 〈M[j], M[`]〉 (a shrinkage matrix)

L(2)
6 [(k, `), (k, `)] := 〈M[k], M[`]〉 (a residue matrix)

which via Lemma 3.25 implies

‖QWW3‖ 6 α2
row · α3

mag · αspec

Putting the above bounds together with αmag 6 1,

‖H3‖ 6 O(α2
mag · (1 + α2

row) · (1 + αspec)).

Spectral norm bound for H4. It can be verified that H4 is the sum of four graphical matrices
QDD1 +QDD2 +QDD3 +QDD4 where

QDD1 [(i, j), (k, `)] =
1

3! · 3!
〈M[i], M[k]〉3〈M[j], M[`]〉3

QDD2 [(i, j), (k, `)] =
1

3! · 3!
〈M[i], M[`]〉3〈M[j], M[k]〉3

QDD3 [(i, j), (k, `)] =
1

2! · 2!
〈M[i], M[k]〉2〈M[j], M[`]〉2〈M[i], M[`]〉〈M[j], M[k]〉

QDD4 [(i, j), (k, `)] =
1

2! · 2!
〈M[i], M[`]〉2〈M[j], M[k]〉2〈M[i], M[k]〉〈M[j], M[`]〉.

The glyphs DD1 and DD2 are isomorphic and the glyphs DD3 and DD4 are isomorphic. We
bound ‖QDD1‖ and ‖QDD3‖; we can achieve the same bounds on ‖QDD2‖ (andQDD4 resp.) as we
do on QDD1 (and QDD3 resp.) via identical proofs.

We can factorize

QDD1 =
1

3! · 3!
L(1)

1 · L
(1)
2 · L

(1)
3 · L

(1)
4 · L

(1)
5 · L

(1)
6
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Figure 22: Graphical matrices arising out ofH4.

where

L(1)
1 [(i, j), (i, j, k)] := 〈M[i], M[k]〉 (a growth matrix)

L(1)
2 [(i, j, k), (i, j, k)] := 〈M[i], M[k]〉 (a residue matrix)

L(1)
3 [(i, j, k), (j, k)] := 〈M[i], M[k]〉 (a shrinkage matrix)

L(1)
4 [(j, k), (j, k, `)] := 〈M[j], M[`]〉 (a growth matrix)

L(1)
5 [(j, k, `), (j, k, `)] := 〈M[j], M[`]〉 (a residue matrix)

L(1)
6 [(j, k, `), (k, `)] := 〈M[j], M[`]〉 (a shrinkage matrix)

Hence,
‖QDD1‖ 6 O(α4

row · α2
mag).

And

QDD3 =
1

2! · 2!
L(2)

1 · L
(2)
2 · L

(2)
3 · L

(2)
4 · L

(2)
5 · L

(2)
6

where

L(2)
1 [(i, j), (i, j, k)] := 〈M[i], M[k]〉 (a growth matrix)

L(2)
2 [(i, j, k), (i, j, k)] := 〈M[i], M[k]〉 (a residue matrix)

L(2)
3 [(i, j, k), (i, j, k)] := 〈M[j], M[k]〉 (a residue matrix)

L(2)
4 [(i, j, k), (j, k, `)] := 〈M[i], M[`]〉 (a swap matrix)

L(2)
5 [(j, k, `), (j, k, `)] := 〈M[j], M[`]〉 (a residue matrix)

L(2)
6 [(j, k, `), (k, `)] := 〈M[j], M[`]〉 (a shrinkage matrix)
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which gives
‖QDD3‖ 6 O(α2

row · αspec · α3
mag).

Putting the above bounds together with αmag 6 1:

QH4 6 O(α2
mag · (1 + α4

row) · (1 + αspec)).

The lemma statement follows immediately from the spectral norm bounds onH1,H2,H3 and
H4, and a triangle inequality.

4 Degree-4 SoS Lower Bound for the Sherrington–Kirkpatrick Hamil-
tonian

4.1 Gaussian concentration

In this section, we give a brief review of standard concentration results related to Gaussian random
variables, vectors, and matrices.

As in previous sections, let M be a n× d matrix where each entry is independently sampled
from N

(
0, 1

d

)
and assume d < n.

Lemma 4.1 (Concentration of singular values of Gaussian matrices, [Ver10, Corollary 5.35]). Except
with probability 2 exp

(
− t2

2

)
,

√
n−
√

d− t√
d

6 smin(M) 6 smax(M) 6

√
n +
√

d + t√
d

.

Corollary 4.2. Except with probability 2 exp
(
−t2

2

)
,

‖MM†‖ 6 ‖M‖2 6
n + d + 2

√
dn + t2 + 2(

√
d +
√

n)t
d

Fact 4.3 (Concentration of norm of Gaussian vector). Let x be a vector of i.i.d. Gaussian entries. There
exist absolute constants α, β > 0 such that,

Pr
[
‖x‖ /∈

[√
d− t,

√
d + t

]]
6 α exp(−βt2).

An implication of the above fact is the following:

Corollary 4.4. Except with probability n−100, for all i,

〈Mi, Mi〉 ∈
[

1− 100

√
log n

d
, 1 + 100

√
log n

d

]

Lemma 4.5. Except with probability at least n−100, for all pairs of distinct i, j,

〈Mi, Mj〉 ∈
[
−100

√
log n

d
, 100

√
log n

d

]
.
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Lemma 4.6 ( d
n MM† approximates a projection matrix). With probability at least 1− 2e−d/2, for all

x ∈ Rn,

x† M
(

M† M
)−1

M†x =

(
1±O

(√
d
n

))
d
n

x† MM†x.

Note: M
(

MM†)−1 M†x is the projection matrix onto the column space of M.

Proof. By Lemma 4.1, except with probability 2e−d/2 all singular values of M lie in the interval[√
n− 2

√
d√

d
,
√

n + 2
√

d√
d

]
,

and hence ∥∥∥∥ d
n

M† M − I
∥∥∥∥ = O

(√
d
n

)
.

Rearranging the formula gives the desired claim.

Lemma 4.7. With probability at least 1− 2e−t2/2,∥∥∥MM†
∥∥∥2

F
>

(
1− 4

√
d + t√

n

)
n2

d

Proof. Recall that by Lemma 4.1, except with probability 2e−t2/2 all singular values of M lie in the
interval [√

n−
√

d− t√
d

,
√

n +
√

d + t√
d

]
and hence∥∥∥MM†

∥∥∥2

F
= ∑

16i6d
λ2

i

(
MMT

)
> d ·

(√
n−
√

d− t√
d

)4

>

(
1− 4

√
d + t√

n

)
n2

d
.

4.2 Degree-2 Pseudoexpectation for SubspaceBooleanVector

We call the following problem SubspaceBooleanVector. Given a n× d matrix M where each entry
is independently sampled from N

(
0, 1

d

)
, certify an upper bound on maxx∈{±1}n x† MM†x. Let

M be a n × d matrix where each entry is independently sampled from N
(
0, 1

d

)
. The degree-2

Sum-of-Squares relaxation is as follows:

max
Ẽ degree-2

Ẽ[x† MM†x] s.t. Ẽ[x2
i ] = 1.

Lemma 4.8. Except with probability n−90, there is a degree-2 pseudoexpectation Ẽ with pseudomoment

matrixM such that its maximum magnitude off-diagonal entry is at most 100
√

log n
d , the `2 norms of its

rows are bounded by
√

n log n
d , its spectral norm is bounded by 1.2 n

d , and

d
n

Ẽ[x† MM†x] >

(
1−O

(√
log n

d

)
−O

(√
d
n

))
n.
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Proof. A degree-2 pseudoexpectation Ẽ (that is due to [MS16]) can be constructed in the following

way. Let γ := 100
√

log n
d .

Ẽ[xS] =


1 when |S| = 0

0 when |S| = 1

(1− γ) (MM†)[i, j] when S = {i, j}

The pseudomoment matrixM of Ẽ can thus be written as[
1 0
0 (1− γ)MM† + D

]
where D is some diagonal matrix.

It remains to prove that Ẽ is a valid Boolean pseudoexpectation. It is clear that Ẽ satisfies the
Booleanness and symmetry constraints. It remains to prove thatM is PSD. And to do so, it suffices
to show that (1−γ)MM† + D is PSD. D[i, i] = 1− (1−γ)MM[i, i]. From Corollary 4.4 along with
a union bound over all diagonal entries of D we can conclude that for all i ∈ [n], 1 > D[i, i] > 0
with probability at least 1− n−99 which means D is PSD. (1−γ)MM† is clearly PSD, which means
M is PSD.

Next, we determine the objective value attained by Ẽ[·].

d
n

Ẽ[x† MM†x] =
d
n
〈MM†, (1− γ)MM† + D〉

=
d
n

(
(1− γ)〈MM†, MM†〉+ 〈MM†, D〉

)
>

d
n
(1− γ)‖MM†‖2

F.

From Lemma 4.7, the above is at least (1− γ)

(
1−O

(√
d
n

))
n except with probability at most

n−100.
Finally, we establish bounds on the maximum absolute off-diagonal entry, the row norm, and

the spectral norm ofM.
From Corollary 4.5 except with probability n−100 all off-diagonal entries ofM are bounded in

magnitude by 100
√

log n
d ; combined with the fact that the diagonal entries are equal to 1, we see

that the `2 norm of each row is bounded by
√

n log n
d . The spectral norm of ‖MM†‖ is bounded

by 1.1 n
d and each D[i, i] is between 0 and 1 except with with probability at most n−100. Thus, the

spectral norm ofM is bounded by 1.2 n
d except with probability at most n−100.

4.3 Degree-2 Pseudoexpectation for the Sherrington–Kirkpatrick Hamiltonian

Recall that G ∼ GOE(n) and M is a n× d matrix where each entry is independently sampled from
N
(
0, 1

d

)
.

Theorem 4.9. With probability 1− on(1), there is a degree-2 Boolean pseudoexpectation Ẽ such that

1
n3/2 Ẽ[x†Gx] > 2− on(1).
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The pseudomoment matrixM satisfies the following:

1. The off-diagonal entries ofM are bounded in magnitude by 100
√

log n
n.99 .

2. The `2 norms of rows ofM are bounded by
√

n.01 log n.

3. The spectral norm ofM is at most 1.2n.01.

Towards proving Theorem 4.9 we first recall the following facts from random matrix theory.

Fact 4.10 ([Erd11, Sec. 1.14]). The empirical distribution of eigenvalues of any G ∼ GOE(n) follows a
universal pattern, namely the Wigner Semicircle Law. For any real numbers a 6 b,

1
n

#{i : λi ∈ [a, b]} = (1± on(1))
∫ b

a
ρsc(x)dx

with probability 1− on(1), where ρsc(x) := 1
2π

√
max(4− x2, 0).

Corollary 4.11. For every ε > 0, there is δ > 0 such that λδn(G) > (2− ε)
√

n with probability 1− on(1).
In particular λn.99 > (2− on(1))

√
n.

Lemma 4.12. The distribution of the column space of M is that of a d-dimensional uniformly random
subspace in Rn.

Lemma 4.13 ([OVW16]). Let G ∼ GOE(n). Its sequence of normalized eigenvectors v1, v2, ..., vn has
the same distribution as choosing a uniformly random orthonormal basis of Rn, i.e., the distribution of first
choosing unit v1 uniformly at random on Sn−1, then choosing unit v2 uniformly at random orthogonal to
v1, then choosing unit v3 uniformly at random orthogonal to span{v1, v2} and so on.

Lemma 4.14. Let V be a uniformly random subspace of Rn of dimension d, and let ΠV be the projec-
tion matrix onto V . With probability 1− on(1) there is a degree-2 pseudoexpectation operator ẼV [·] over
polynomials in x on the hypercube {±1}n such that

ẼV

[
x†ΠV x

]
> (1− on(1))n.

Additionally, the pseudomoment matrix of Ẽ satisfies identical bounds on its off-diagonal entries, its row
norms and its spectral norm asM from the statement of Lemma 4.8.

Proof of Lemma 4.14. Let M be a random n× d matrix where each entry is sampled fromN (0, 1/d).
Consider the degree-2 pseudoexpectation ẼM for SubspaceBooleanVector on input M given by
Lemma 4.8. By Lemma 4.6, with probability 1− on(1)

d
n

ẼM [x† M(M† M)−1M†x] > (1− on(1))
d
n

Ẽ(2)
M [x† MM†x]

> (1− on(1))n

By Lemma 4.12, M
(

M† M
)−1 M† and ΠV are identically distributed and hence we are done.

We are now ready to prove Theorem 4.9.
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Proof of Theorem 4.9. Let {λ1, ..., λn.99} be the top δn eigenvalues of G, let V be the subspace spanned
by the top n.99 eigenvectors of G, and let ΠV be the projection matrix onto V . By Lemma 4.13, V is
a uniformly random n.99-dimensional subspace of Rn. Let ẼV be the promised pseudoexpectation
from Lemma 4.14.

1
n3/2 ẼV [x†Gx] > ẼV

[
λn.99

n3/2 〈ΠV , xx†〉
]
+ ẼV

[
λmin(G)

n3/2 〈ΠV⊥ , xx†〉
]

(by spectral theorem)

> (1− on(1))
λn.99

n3/2 ẼV

[
x†ΠV x

]
− on(1)

> (1− on(1))
λn.99√

n
− on(1) (by Lemma 4.14)

> 2− on(1). (by Corollary 4.11)

The bounds on off-diagonal entries, row norms and spectral norm of the pseudomoment matrix
of ẼV follow by plugging in d = n.99 into the bounds from Lemma 4.14.

4.4 Wrap-up

The degree-4 Sum-of-Squares lower bound is then an immediate consequence of Theorem 4.9 and
our lifting theorem Theorem 1.2/Theorem 1.3

Theorem 4.15 (Restatement of Theorem 1.4). Let G ∼ GOE(n). With probability 1 − on(1), there
exists a degree-4 SoS SDP solution with value at least (2− on(1)) · n3/2.

5 Degree-4 SoS Lower Bound for MaxCut in random d-regular graphs

In this section, we first give a degree-2 pseudoexpectation for MaxCut in random d-regular graphs,
which is used as a “seed” to derive a degree-4 pseudoexpectation from Theorem 1.2 and Theo-
rem 1.3.

This degree-2 pseudoexpectation is only a slight variant of the known construction of [CGHV15,
MS16].

Theorem 5.1. Let G be a random d-regular graph. For every constant ε > 0 with probability 1− on(1)
there is a degree-2 Boolean pseudoexpectation Ẽ such that:

Ẽ[x†(−AG)x] > (1− 2ε− on(1))2
√

d− 1n.

Additionally, the pseudomoment matrixM of Ẽ satisfies the following:

1. Its row norms are bounded by a constant γ(ε) which only depends on ε.

2. Its spectral norm is bounded by constant γ′(ε) which only depends on ε.

3. Its off-diagonal entries are bounded in magnitude by γ′′(ε)√
d

where γ′′(ε) is some constant that only
depends on ε.

We first develop some tools and then prove Theorem 5.1 in Section 5.6.
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5.1 The [CGHV15, MS16] construction

We first revisit the degree-2 pseudoexpectation for Max Cut due to [CGHV15, MS16]. Given a
random d-regular graph G on n vertices, we state the moment matrix of a degree-2 pseudoexpec-
tation. We call a vertex C-good if its radius-(2C + 1) neighborhood is a tree, and C-bad otherwise.

First, we define vector xv corresponding to vertex v. Let ρ, C, α be constants that we’ll set later.
If v is C-bad, then we let

xv[u] :=

{
1 if u = v

0 if u 6= v,

otherwise, we let

xv[u] :=

{
α · ρdG(u,v) if dG(u, v) 6 C

0 otherwise.

Finally, we also define a vector x∅ which is orthogonal to all {xv}v∈G.
Once ρ, C are chosen, we pick α so that the vectors xv for C-good v have unit norm. The degree-

2 pseudomoment matrixM is indexed by pairs of sets S, T such that |S|, |T| 6 1 and is defined as
follows:

M[S, T] := 〈xS, xT〉.

A nice feature of this solution is that one can derive a closed form for 〈xv, xw〉 when {v, w} is
an edge between two C-good vertices.

Lemma 5.2. Let {v, w} be an edge in G. Then

〈xv, xw〉 =

2 ·
(

d−1
d

)
· ρ ·

(
1− α2ρ2Cd(d− 1)C−1) if v, w are both C-good

0 otherwise

Proof. If either v or w is C-bad, then it is clear that 〈xv, xw〉 = 0. Thus, we assume they are both
C-good.

〈xv, xw〉 = ∑
u∈V(G)

xv[u] · xw[u]

= ∑
u∈V(G)

dG(u,v)<dG(u,w)6C

xv[u] · xw[u] + ∑
u∈V(G)

dG(u,w)<dG(u,v)6C

xv[u] · xw[u]

= α2ρ ·

 ∑
u∈V(G)

dG(u,v)<dG(u,w)6C

ρ2dG(u,v) + ∑
u∈V(G)

dG(u,w)<dG(u,v)6C

ρ2dG(u,w)


= α2ρ ·

(
2

C−1

∑
`=0

ρ2`(d− 1)`
)

= 2α2ρ ·
(

d− 1
d

)
·
(

1
α2 − ρ2Cd(d− 1)C−1

)
(since xv has unit norm)
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= 2 ·
(

d− 1
d

)
· ρ ·

(
1− α2ρ2Cd(d− 1)C−1

)

Remark 5.3. For any 0 < ε 6 1, if we choose ρ = − 1−ε√
d−1

, then for an edge between C-good
vertices {v, w} we would have

〈xv, xw〉 = −
2
√

d− 1(1− ε)

d
·
(

1− α2 ·
(

d
d− 1

)
· (1− ε)C)

)
.

One can make (1− ε)C arbitrarily small by increasing C, and additionally, increasing C only makes
α smaller. Further, since d

d−1 6 3
2 for d > 3, there exists a choice for C depending only on ε such

that

〈xv, xw〉 6 −(1− 2ε)
2
√

d− 1
d

.

For the purposes of our proof, we will also need bounds on |〈xv, xw〉|when v and w are within
distance C of each other. A similar calculation to that in the proof of Lemma 5.2 lets us show:

Lemma 5.4. Let v and w be any two vertices. We have

|〈xv, xw〉| 6
{
|ρ|dG(v,w)(dG(v, w) + 1) dG(v, w) 6 C

0 otherwise

Proof. If v or w are C-bad, then 〈xv, xw〉 = 0, in which case the bound holds. Thus, for the rest of
the proof we will assume v and w are both C-good. Let a be a C-good vertex and b be a vertex
with distance at most C from a. We use Pab denote the unique path of length at most C between
vertices a and b.

〈xv, xw〉 = ∑
u∈V(G)

xv[u] · xw[u]

= α2 ∑
s∈Pvw

∑
u∈V(G)

dG(u,v), dG(u,w)6C
s∈Pvu, s∈Pwu

ρdG(v,w)ρ2dG(s,u)

6 ∑
s∈Pvw

|ρ|dG(v,w)
C

∑
`=0

d(d− 1)`−1ρ2`

= ∑
s∈Pvw

|ρ|dG(v,w) (since xv has unit norm)

= |ρ|dG(v,w) · (dG(v, w) + 1)

5.2 Nonbacktracking Polynomials

We define a sequence of polynomials g0, g1, . . . which we call nonbacktracking polynomials below
(see, for example, [ABLS07]):
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Definition 5.5. Let the nonbacktracking polynomials be the following sequence of polynomials de-
fined recursively below.

g0(x) = 1

g1(x) = x

g2(x) = x2 − d

gt(x) = xgt−1(x)− (d− 1)gt−2(x) for t > 3.

An elementary fact about nonbacktracking polynomials, which earns them their name is:

Fact 5.6. For any d-regular graph G, gi (AG)uv = # of nonbacktracking walks from u to v.

We will be interested in gi(λ) for eigenvalues λ of AG. The following can be extracted from
[ABLS07, Proof of Lemma 2.3]:

Lemma 5.7. When x ∈ [−2
√

d− 1, 2
√

d− 1], |gi(x)| 6 2(i + 1)
√
(d− 1)i.

By a simple continuity argument, this implies:

Corollary 5.8. For any ε > 0, there exists δ > 0 such that |gi(x)| 6 2(i + 1)
√
(d− 1)i + ε when

x ∈ [−2
√

d− 1− δ, 2
√

d− 1 + δ].

5.3 Random graphs

We need the following two facts about random regular graphs.

Lemma 5.9 (Easy consequence of [Wor99, Theorem 2.5]). Let d > 3 be a fixed constant, let G be a
random d-regular graph on n vertices, and let C be any constant. Then w.h.p. the number of C-bad vertices
in G is O(log n).

Theorem 5.10 (Friedman’s theorem [Fri03, Bor19]). Let d > 3 be a fixed constant, and let G be a
random d-regular graph on n-vertices. Then with probability 1− on(1):

max{λ2(G), |λn(G)|} 6 2
√

d− 1 + on(1).

5.4 Construction

Stage 1. First choose constant ε > 0, and let ρ, C, α be chosen according to Remark 5.3 so that
each xv is a unit vector, and 〈xv, xw〉 6 −(1− 2ε) 2

√
d−1
d for every edge {v, w} between two C-good

vertices v and w. Next, define polynomial g as follows:

g(x) := α
C

∑
i=0

ρigi(x).
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Stage 2. LetW := g (AG)
2 − g(d)2 ·

(
~1~1†

n

)
.

Claim 5.11. W � 0.

Proof. Let d = λ1(G) > . . . > λn(G) denote the eigenvalues of AG in decreasing order. Decom-
posing AG in its eigenbasis lets us write

AG = λ1v1v†
1 + · · ·+ λnvnv†

n

where v1 =
~1√

n and v1, . . . , vn are an orthonormal basis. Consequently,

g(AG)
2 = g(d)2

~1~1†

n
+ · · ·+ g(λn)

2vnv†
n,

which means

W =
n

∑
i=2

g(λi)
2viv†

i ,

which is positive semidefinite since each g(λi)
2 is nonnegative.

Stage 3. Let SG be the collection of C-bad vertices in G. LetW ′ be the matrix obtained by zeroing
out all rows and columns in SG and then settingW ′[v, v] to 1 for all v ∈ V(G). Symbolically,

W ′[v, w] :=


1 if v = w

W [v, w] if v 6= w and v, w /∈ SG

0 otherwise

Remark 5.12. W ′ is a PSD matrix since it is a 2× 2 block diagonal matrix where each block is PSD.
In particular one block,W ′ [SG, SG], is an identity matrix and is thus PSD. The other block can be
seen to satisfy:

W ′ [V(G) \ SG, V(G) \ SG] � W [V(G) \ SG, V(G) \ SG] .

Thus, the other block is also PSD since it PSD-dominates a principal submatrix of the PSD matrix
W .

Remark 5.13. Note that while the vectors {xu}u∈V(G) didn’t play an explicit role in the construc-
tion, they have a role in the analysis.

5.5 Various norm bounds

In this section, we give bounds on the `2 norm of a subset of indices of rows/columns ofW ′ and
the spectral norm ofW ′.

Observation 5.14. For any pair of vertices v, w, |〈xv, xw〉 −W ′[v, w]| 6 κ(ε,d)
n where the κ(ε, d) is a

constant depending on ε and d.
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Lemma 5.15. LetW ′[u] be the u-th row ofW ′. Then when n, the number of vertices in the graph is large
enough,

‖W ′[u, V(G) \ {u}]‖2 6 γ(ε)

where γ(ε) > 0 is a constant that depends only on ε chosen in Stage 1 of the construction in Section 5.4.

Proof. If u is C-bad, then ‖W ′[u]‖2 = 1. When u is C-good,

‖W ′[u]‖2
2 = ∑

v∈V(G)

W ′[u, v]2

6 ∑
v∈V(G)

(
〈xu, xv〉+

κ(ε, d)
n

)2

(via Observation 5.14)

6 1 +
C

∑
`=1

d(d− 1)`−1
(

ρ`(`+ 1) +
κ(ε, d)

n

)2

(via Lemma 5.4)

= 1 +
d

d− 1

C

∑
`=1

[
(1− ε)2`(`+ 1)2

+ 2(−1)`(1− ε)`
√
(d− 1)`−1 · κ(ε, d)

n
+

κ(ε, d)2

n2

]
(plugging in ρ)

We bound the 3 terms above separately. First, note that

1 +
C

∑
`=1

(1− ε)2`(`+ 1)2

can be upper bounded by a constant γ1(ε) that depends only on ε (since as we noted in Remark 5.3
C depends only on ε). Next,

C

∑
`=1

2(−1)`(1− ε)`
√
(d− 1)` · κ(ε, d)

n

is bounded by κ1(ε,d)
n where κ1(ε, d) is a constant depending on ε and d. And finally,

C

∑
`=1

κ(ε, d)2

n2 6
κ2(ε, d)

n2

for constant κ2(ε, d) depending only on ε and d. Thus,

‖W ′[u, V(G) \ {u}]‖ 6 γ1(ε) +
κ1(ε, d)

n
+

κ2(ε, d)
n2

and for n large enough, we can bound the above by a constant γ(ε) depending on ε and not on
d.

Next, we upper bound the spectral norm ofW ′.

Lemma 5.16. When n, the number of vertices in V(G) is large enough, ‖W ′‖ 6 γ′(ε) where γ′(ε) is a
constant that depends only on ε chosen in Stage 1 of the construction in Section 5.4.
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Proof. First, recall the notation SG to denote the set of C-bad vertices in G and that up to permuta-
tion of rows and columns,W ′ has the following block diagonal structure:

W ′ =
[

A 0
0 B

]

where A = W [V(G) \ SG, V(G) \ SG] +
g(d)2

n · Id and B is an identity matrix. Thus, ‖W ′‖ 6
max{‖A‖, ‖B‖}. We already know that ‖B‖ 6 1, and thus it remains to obtain a bound on ‖A‖.

‖A‖ = ‖W [V(G) \ SG, V(G) \ SG]‖+
g(d)2

n
6 ‖W‖+ on(1)

=

∥∥∥∥∥ n

∑
i=2

g(λi)
2viv†

i

∥∥∥∥∥+ on(1)

6 max
i∈{2,...,n}

g(λi(G))2 + on(1).

Now, recall Friedman’s theorem Theorem 5.10, according to which whp λ2(G), . . . , λn(G) are all
in [−2

√
d− 1− on(1), 2

√
d− 1 + on(1)]. Thus it suffices to bound |g(x)| on the specified interval.

For the below calculation, assume x ∈ [−2
√

d− 1− on(1), 2
√

d− 1 + on(1)].

|g(x)| 6 α
C

∑
i=0

(
1− ε√
d− 1

)i

|gi(x)|

6 α
C

∑
i=0

2(i + 1)
(

1− ε√
d− 1

)i√
(d− 1)i + on(1) (by Corollary 5.8)

6 2α
C

∑
i=0

(i + 1)(1− ε)i + on(1)

which bounds ‖A‖ by a constant γ′(ε) only depending on ε (as C also depends only on ε) when n
is large enough.

5.6 MaxCut Wrap-Up

We are now finally ready to prove Theorem 5.1 and Theorem 1.5.

Proof of Theorem 5.1. Define Ẽ in the following way:

Ẽ[xS] =


1 if |S| = 0

0 if |S| = 1

W ′[u, v] if S = {u, v}.

Its pseudomoment matrix is then

M =

[
1 0
0 W ′

]
and hence is PSD. The bounds on the row norms and spectral norm onM follow from Lemma 5.15
and Lemma 5.16 respectively and the bound on the magnitude of off-diagonal entries follows
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from Lemma 5.4 and Observation 5.14. Finally, we show that the objective value is indeed at least
(1− 2ε− on(1))2

√
d− 1n. Our choice of parameters combined with Observation 5.14 tells us that

Ẽ[xuxv] 6 −(1− 2ε− on(1)) 2
√

d−1
d for edges {u, v} between C-good vertices. Since we additionally

know that the number of C-bad vertices is O(log n), the fraction of edges that are between C-good
vertices is 1− on(1). Consequently, it follows that

Ẽ[x†(−AG)x] > (1− 2ε− on(1))2
√

d− 1n.

Theorem 5.17 (Restatement of Theorem 1.5). Let G be a random d-regular graph. For every constant
ε > 0 with probability 1− on(1), there is a degree-4 SoS SDP solution with MaxCut value at least

1
2
+

√
d− 1
d

(
1− 2ε− γ(ε)

d1/2

)
for some constant γ that depends only on ε.

Proof. By applying our lifting theorem Theorem 1.2/Theorem 1.3 to the degree-2 pseudoexpecta-
tion Ẽ2 from Theorem 5.1, we obtain a degree-4 pseudoexpectation Ẽ4 such that

Ẽ4[x†(−AG)x] > (1− 2ε− γ(ε)

d1/2 )2
√

d− 1n (20)

where γ(ε) is a constant that depends only on ε. As a result:

1
4|E(G)| Ẽ4[x†(DG − AG)x] =

dn
4|E(G)| + Ẽ4[x†(−AG)x]

>
1
2
+

√
d− 1
d

(
1− ε− γ(ε)

d1/2

)
(by (20)).
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A Limits of graphical matrices

In this section, we prove Claim 3.17 and Lemma 3.20. We begin by first proving a couple of
technical lemmas.
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Lemma A.1 (The graphical polynomial of a well-glued glyph mimics inner products.). For any
well-glued glyph G whose right-hand-side vertices all have degree 2, let P be the collection of length-2
walks in G. For any valid glyph labeling S ◦ T of G,

βG,κ,S◦T = ∏
i6j∈L(G)∪R(G)

〈M[S ◦ T(i)], M[S ◦ T(j)]〉|Pi,j|

|Pi,j|!
± f (n,G)

κ

where Pi,j ⊆ P is the collection of length-2 paths that have endpoints i and j and f (n,G) is a value that
depends only on n and G but is independent of κ.

Proof. We use A to represent the set of all functions from M(G) to [κ] and Adistinct to represent the
set of all injective functions in A. Let τ(G) denote the number of automorphisms of G that keep
L(G) ∪ R(G) fixed. Observe that

βG,κ,S◦T =
1

τ(G) ∑
π∈Adistinct

∏
a∈L∪R(G)

∏
b∈M(G)

Mκ[S ◦ T(a), π(b)]Gab .

We now define a related quantity

β̃G,κ,S◦T :=
1

τ(G) ∑
π∈A

∏
a∈L∪R(G)

∏
b∈M(G)

Mκ[S ◦ T(a), π(b)]Gab .

We now show that βG,κ,S◦T and β̃G,κ,S◦T are equal up to additive error terms of O
(

1√
κ

)
.

β̃G,κ,S◦T − βG,κ,S◦T =
1

τ(G) ∑
π∈A\Adistinct

∏
a∈L∪R(G)

∏
b∈M(G)

Mκ[S ◦ T(a), π(b)]Gab . (21)

Each term in the RHS of (21) is the product of m(G) entries of Mκ where m(G) is the number of
edges in G. The magnitude of every entry of M from Section 2 is bounded by 1 since the rows are
unit vectors, and the magnitude of every entry of H6n

κ is equal to 1√
κ
, and thus the magnitude of

each entry of Mκ is bounded by n√
κ
. As a result, every term in the (21) is bounded by

(
n√
κ

)m(G)
=

nm(G)

κm(G)/2
(22)

A\Adistinct is the set of non-injective functions from M(G) to [κ] and hence has cardinality bounded
by |M(G)||M(G)| · κ|M(G)|−1. Since G is well-glued, every middle vertex has degree at least 2, and
hence |M(G)| 6 m(G)

2 . Thus, the number of terms in the sum in the RHS of (21) is at most

1
κ
·
(

κm(G)
2

) m(G)
2

(23)

The sum is then bounded by the product of the RHS of (22) and (23), which is

1
κ

(
n2m(G)

2

) m(G)
2

(24)
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It can be verified that

β̃G,κ,S◦T =
1

τ(G) ∏
i6j∈L(G)∪R(G)

〈Mκ[S ◦ T(i)], Mκ[S ◦ T(j)]〉|Pi,j|

and
τ(G) = ∏

i6j∈L(G)∪R(G)
|Pi,j|!.

The desired statement follows from our bound on β̃G,κ,S◦T − βG,κ,S◦T in (24).

Lemma A.2. Let G be a well-glued glyph that has some degree-> 4 right vertex. Then each entry of QG,κ

is entrywise bounded by the quantity f (n,G)
κ in the statement of Lemma A.1.

Proof. Each entry can be bounded in magnitude by O
(

f (n,G)
κ

)
via an identical argument to how

β̃S ,κ − βS ,κ is bounded in the proof of Lemma A.1.

The statements of Claim 3.17 and Lemma 3.20 follow from taking the κ → ∞ limit of the
statements of Lemma A.1 and Lemma A.2.

We now prove that the limits on the RHS of (10) and (11) exist. Towards proving this, we define
matricesM(1)

κ andM(2)
κ as follows:

M(1)
κ [S, T] = Ez∼{±1}κ [qS∆T(z)]

M(2)
κ [S, T] = Ez∼{±1}κ [pS(z)pT(z)].

Our definitions forM(1) andM(2) from (10) and (11) are equivalent to:

M(1) := lim
κ→∞
M(1)

κ

M(2) := lim
κ→∞
M(2)

κ .

Hence, it suffices to prove that the limits on the RHS of the above exist.
The following can be verified.

Claim A.3. M(1)
κ and M(2)

κ can be expressed as a linear combination of κ-graphical matrices of
well-glued glyphs.

Then as a consequence of Claim A.3 and Claim 3.17 we get:

Corollary A.4. limκ→∞M(1)
κ and limκ→∞M(2)

κ exist and can be expressed as a linear combination of
graphical matrices of well-glued glyphs. In particular, this establishes thatM(1) andM(2) are well-defined.

B Pseudocalibration

We recall some basic facts about Hermite polynomials first. For our convention, let hi(x) be the
i-th Hermite polynomial normalized so that it is monic. For α ∈ ZS

>0 and v ∈ RS, we use Hα(v) to
denote ∏i∈S hαi(vi).
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Fact B.1.

exp
(

tz− t2

2

)
=

∞

∑
i=0

1
i!

hi(z)ti

Suppose D0 and D1 are two distributions over n× d matrices. In D0, every entry is an inde-
pendent Gaussian. Let V be a matrix where the first column is a random {±1}n vector x, and the
rest of the matrix has Gaussian entries, let H be a Hadamard matrix normalized so it is unitary,
and let D be a random ±1 diagonal matrix — D1 is the distribution of M = V HD.

For each α ∈ Zn×d
>0 and L ⊆ [n], we care about computing E(x,M)∼D1

[
Hα(M)xL] since a relevant

Hermite coefficient is
E(x,M)∼D1 [Hα(M)xL]

‖Hα‖2 .
We carry out this computation below. For each i, let {gij}16j6d be an independent Gaussian

process where each Gaussian has variance d−1
d and all pairwise covariances are −1

d . The expression
is equal to

ED,x,gxL
d

∏
j=1

D∑16i6n αij
jj

n

∏
i=1

hαij

(
xi√

d
+ gij

)

=ExxLEg

d

∏
j=1

ED

[
D∑16i6n αij

jj

] n

∏
i=1

hαij

(
xi√

d
+ gij

)
If for any j, ∑16i6n αij is odd, then the expression is equal to zero. Thus for the rest of the compu-
tation assume this is not the case and the goal is to now compute

ExxL
n

∏
i=1

Eg

d

∏
j=1

hαij

(
xi√

d
+ gij

)
(25)

We zoom into the computation of Eg ∏d
j=1 hαij

(
xi√

d
+ gij

)
. We can find vectors v1, . . . , vd, each

of norm
√

d−1
d and pairwise dot products − 1

d , such that gij = 〈vj, g̃i〉 where g̃i is a vector of i.i.d.
standard Gaussians. We use zij to denote xi√

d
+ gij. On one hand, using Fact B.1, we have

Ez

d

∏
j=1

exp
(

tjzij −
1
2

t2
j

)
= ∑

k1,...,kd∈Z>0

(
1

k1! · · · kd!
· Ez

d

∏
j=1

hk j(zij)

)
tk1
1 · · · t

kd
d (26)

On the other hand, the LHS of the above expression simplifies to

Eg̃

d

∏
j=1

exp
(

tj

(
xi√

d
+ 〈vj, g̃i〉

)
− 1

2
t2

j

)

=
exp

(
xi√

d ∑d
j=1 tj

)
exp

(
1
2 ∑d

j=1 t2
j

) Eg̃ exp

(
g̃i1

(
d

∑
j=1

tjvj1

)
+ · · ·+ g̃id

(
d

∑
j=1

tjvjd

))

The expectation term can be simplified further as

Eg̃ exp

(
g̃i`

(
d

∑
j=1

tjvj`

))
=

d

∏
`=1

exp

1
2

(
d

∑
j=1

tjvj`

)2
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= exp

1
2

d

∑
`=1

(
d

∑
j=1

tjvj`

)2


= exp

(
1
2

(
d

∑
j=1

t2
j ‖vj‖2 + ∑

k 6=j
tktj〈vk, vj〉

))
As a result, we know that the LHS of (26) is equal to

exp
(

xi√
d ∑d

j=1 tj

)
exp

(
1
2 ∑d

j=1 t2
j

) exp

(
1
2

(
d

∑
j=1

t2
j

(
d− 1

d

)
− 1

d ∑
k 6=j

tktj

))

= exp

xi
∑d

j=1 tj√
d
− 1

2

(
∑d

j=1 tj√
d

)2


Applying Fact B.1 to the above and using (26), we get the identity

∞

∑
k=0

1
k!

hk(xi)

(
∑d

j=1 tj√
d

)k

= ∑
k1,...,kd∈Z>0

(
1

k1! · · · kd!
· Ez

d

∏
j=1

hk j(zij)

)
tk1
1 · · · t

kd
d (27)

Equating the coefficient of tk1
1 · · · t

kd
d on both sides of (27), we get

1
(k1 + · · ·+ kd)!

(
k1 + · · ·+ kd

k1, . . . , kd

)
hk1+···+kd(xi)(√

d
)k1+···+kd

=
1

k1! · · · kd!
· Ez

d

∏
j=1

hk j(zij)

which can be simplified to the equality

Ez

d

∏
j=1

hk j(zij) =
hk1+···+kd(xi)(√

d
)k1+···+kd

which in turn simplifies (25) into

ExxL
n

∏
i=1

h|αi |(xi)(√
d
)|αi |

where |αi| = ∑d
j=1 αij. Suppose there is i such that either (i) i 6∈ L and |αi| is odd, or (ii) i ∈ L and

|αi| is even, then the above expression is equal to 0. Otherwise, it is
n

∏
i=1

h|αi |(1)(√
d
)|αi |

The relevant Hermite coefficient is then

∏
(a,b)∈[n]×[d]

1
αab!

n

∏
i=1

h|αi |(1)

d|αi |/2

To summarize, we have

̂ẼM[xL](α) =

 ∏
(a,b)∈[n]×[d]

1
αa,b !

n
∏
i=1

h|αi |(1)

d|αi |/2 if |αi| = 1i∈L mod 2 and ∑n
i=1 αij is even for all j

0 otherwise.
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