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Abstract

We construct the first explicit two-sided vertex expanders that bypass the spectral barrier.
Previously, the strongest known explicit vertex expanders were given by d-regular Ramanu-

jan graphs, whose spectral properties imply that every small subset of vertices S has at least
0.5d|S| distinct neighbors. However, it is possible to construct Ramanujan graphs containing a
small set S with no more than 0.5d|S| neighbors. In fact, no explicit construction was known to
break the 0.5d-barrier.

In this work, we give an explicit construction of an infinite family of d-regular graphs (for
large enough d) where every small set expands by a factor of ≈ 0.6d. More generally, for large
enough d1, d2, we give an infinite family of (d1, d2)-biregular graphs where small sets on the
left expand by a factor of ≈ 0.6d1, and small sets on the right expand by a factor of ≈ 0.6d2. In
fact, our construction satisfies an even stronger property: small sets on the left and right have
unique-neighbor expansion 0.6d1 and 0.6d2 respectively.

Our construction follows the tripartite line product framework of [HMMP24], and instantiates
it using the face-vertex incidence of the 4-dimensional Ramanujan clique complex as its base
component. As a key part of our analysis, we derive new bounds on the triangle density of small
sets in the Ramanujan clique complex.
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1 Introduction

In this work, we study the problem of constructing explicit vertex expanders. Vertex expansion
refers to the property that every “small enough” set of vertices should have “many” distinct
neighbors. Henceforth, we restrict our attention to bipartite graphs. For dL > dR, we say that a
(dL, dR)-biregular graph G on (L, R) is a γ-one-sided vertex expander if every subset S ⊆ L of size at
most η|L| has at least γdL|S| distinct neighbors in R for some small constant η > 0. We say that
G is a γ-two-sided vertex expander if, additionally, every small subset S of the right vertices has at
least γdR|S| neighbors. When G achieves the golden standard of γ ≈ 1, in we say that it is a lossless
vertex expander.

A key motivation to study vertex expanders is for the construction of good error-correcting
codes. The seminal work of Sipser and Spielman [SS96] showed that from any one-sided lossless
expander, one can construct a good binary error-correcting code with a linear time decoding
algorithm. In the quantum setting, the work of Lin & Hsieh [LH22] showed that two-sided lossless
expanders with appropriate algebraic structure can be used to construct good quantum low density
parity check codes.

The above applications actually go through a weaker property than lossless expansion. Suffi-
ciently strong vertex expansion implies unique-neighbor expansion, the condition that every small set
S has many unique-neighbors, or vertices with exactly one edge to S. We say G is a γ-one-sided unique-
neighbor expander if every subset S of L of size at most η|L| has at least γdL|S| unique-neighbors in
R, and that G is a γ-two-sided unique neighbor expander if additionally every subset S of R of size at
most η|R| has at least γdR|S| unique-neighbors in L. Indeed, the above works show that any graph
with > 1

2 -one-sided unique-neighbor expansion yields good classical codes, and > 5
6 -two-sided

unique-neighbor expansion (and an algebraic property) yields good quantum LDPC codes.
In this work, we focus on the setting of two-sided vertex expanders, and specifically the task of

constructing such objects.

Where are the vertex expanders? There are a plethora of constructions of spectral expanders,
so it is natural to wonder whether one can obtain vertex expanders from them. Kahale [Kah95]
proved that a Ramanujan graph, i.e., a graph with optimal spectral expansion, is a 1

2 -two-sided
vertex expander, and demonstrated a near-Ramanujan graph on which this is tight. Unfortunately,
1
2 -two-sided vertex expansion falls just short of giving any unique-neighbors: in fact Kamber
& Kaufman [KK22] demonstrated that the algebraic Ramanujan graph construction of Morgen-
stern [Mor94] contains sublinear-sized sets with zero unique-neighbors.

On the other hand, a random biregular graph is a two-sided lossless expander with high
probability (e.g. [HLW06, Theorem 4.16]). However, the work of Kunisky & Yu [KY24, Section
4.6] gives hardness evidence that there is no efficient algorithm to certify that a random graph
has unique-neighbor expansion, and in particular, to certify that a random graph has > 1

2 -two-
sided vertex expansion, suggesting that there is no simple “algorithmic handle” for strong vertex
expansion, such as the eigenvalues of some simple matrix. This motivates studying constructions
with more “structure”.
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1.1 Our results

In this work, we construct explicit 3
5 -two-sided vertex expanders, breaking the spectral barrier.

In fact, we prove something stronger: our graphs actually have 3
5 -two-sided unique-neighbor

expansion. They additionally have an algebraic property relevant for constructing quantum codes.
While the expansion is not quite enough to instantiate the qLDPC codes of [HL22], which demand
5
6 -two-sided unique-neighbor expansion, we believe this is a large step in the right direction.

Theorem 1. For any ε > 0 and β ∈ (0, 1], there is a large enough d(ε, β) such that for all dL, dR ⩾ d(ε, β)

with dL
dR

∈ [β, β + ε], there is an explicit infinite family of (5dL, 5dR)-biregular graphs (Zm)m⩾1 with( 3
5 − ε

)
-two-sided unique-neighbor expansion.

Remark 1.1. Our construction Z on vertex set (L, R) can be verified to satisfy the following algebraic
property, relevant in the context of constructing quantum codes from vertex expanders via [HL22]:
There is a group Γ of size Ω(|L|+ |R|) that acts on L and R such that gv = v iff g is the identity element,
and {gu, gv} is an edge iff {u, v} is an edge in Z.

We use the same tripartite line product construction as in [HMMP24], which consists of a large
tripartite base graph and a constant-sized gadget graph. In [HMMP24], the base graph was
constructed using explicit bipartite Ramanujan graphs, whereas we instantiate it using the face-
vertex incidence graphs of the Ramanujan clique complex of [LSV05b, LSV05a]; see also the works
of Ballantine [Bal00], Li [Li04], Cartwright–Solé–Żuk [CSZ03] and Sarveniazi [Sar04]. See Section 1.3
for an overview of our analysis and the improvement over [HMMP24].

In service of proving Theorem 1, we derive bounds on the triangle density of small sets in
the Ramanujan complex of [LSV05b, LSV05a], which is of independent interest in the study of
high-dimensional expanders. In particular, we employ the 4-dimensional Ramanujan complex in
our construction, and state the triangle bounds for the 4-dimensional case below.

Lemma 1.2 (Triangle density bound in 4D Ramanujan complex, informal). Let X be any Fq-
Ramanujan complex on n vertices, and let U ⊆ X(0) be a subset of vertices of size at most δn where
q−25/4 > δ > 0. The number of size-5 faces with 3 or more vertices in U is at most O(q13/2 · |U|).

We refer the reader to Lemma 3.11 for the more general setting, and the proof is given in
Section 4.

1.2 Related work

Unique-neighbor expanders were first constructed by Alon & Capalbo [AC02], who gave several
constructions, one of which involves taking a line product of a large Ramanujan graph with the
8-vertex, 3-regular graph obtained by the union of the octagon and edges connecting diametrically
opposite vertices.

Another construction given in this work was a one-sided unique-neighbor expander of aspect
ratio 22/21, which was extended by recent work of Asherov & Dinur [AD23] to obtain one-sided
unique-neighbor expansion for arbitrary aspect ratio. These constructions were obtained via taking
the routed product of a large biregular Ramanujan graph and a constant size random graph. These
constructions were simplified by follow-up work of Kopparty, Ron Zewi & Saraf [KRZS24].
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The work of Capalbo, Reingold, Vadhan & Wigderson [CRVW02] constructed one-sided lossless
expanders with large degree and arbitrary aspect ratio via a generalization of the zig-zag prod-
uct [RVW00]. More recently, Golowich [Gol23] and Cohen, Roth & Ta-Shma [CRTS23] gave a much
simpler construction and analysis of one-sided lossless expanders based on the routed product.
These routed product constructions fundamentally fall short of achieving two-sided expansion for
linear size sets.

In the way of explicit constructions of two-sided vertex expanders, the work of Hsieh, McKenzie,
Mohanty & Paredes [HMMP24] constructs explicit γ-two-sided unique neighbor expanders for
an extremely small positive constant γ. Their construction also guaranteed two-sided lossless
expansion for sets of size at most exp(O(

√
log n)). This was improved to two-sided lossless

expansion for polynomial sized sets by [Che24].
A parallel line of works [TSUZ01, GUV09] construct one-sided lossless expanders in the case

where the left side is polynomially larger than the right. In the same unbalanced setting, the
recent work of [CGRZ24] show that the one-sided lossless expanders of [KTS22] that are based
on multiplicity codes [KSY14] are in fact two-sided lossless expanders. The setting of polynomial
imbalance is of interest in the literature on randomness extractors, but are not known to give good
quantum LDPC codes via [LH22].

1.3 Technical overview

In this section, we give a brief overview; see Section 2.2 for a more detailed overview of the analysis,
once more notation and context has been set up.

Our construction follows the tripartite line product framework of [HMMP24]. The first ingredient
is a large tripartite base graph G on vertex set L ∪ M ∪ R (denoting left, middle, and right vertex
sets), where we place a (k, DL)-biregular graph GL between L and M, and a (DR, k)-biregular
graph GR between M and R. The second ingredient is a constant-sized gadget graph H, which is a
(dL, dR)-biregular graph on vertex set [D1] ∪ [D2]. The tripartite line product between G and H is
the (kdL, kdR)-biregular graph Z on L and R obtained as follows: for each vertex in M, place a copy
of H between the DL left neighbors of v and the DR right neighbors of v (see Definition 2.2).

Since H has constant size, we can find an H that satisfies strong expansion properties by brute
force. It is thus convenient to view H as a random biregular graph. The bipartite graphs GL and GR

of the base graph are chosen to be appropriate bipartite expanders. In [HMMP24], they are chosen
to be explicit near-Ramanujan bipartite graphs, while in our case we set them to be the vertex-face
incidence graphs from high-dimensional expanders (Section 3), which give us additional structure.
Specifically, we choose them to be vertex-face incidence graphs of the 4D Ramanujan complex
of [LSV05b, LSV05a], and in particular, GL and GR are (5, DL)-biregular and (DR, 5)-biregular
respectively. See Section 2.1 for specific properties of the base graph that we need.

For a set S ⊆ L, we would like to lower bound the number of its unique-neighbors (in R) in
the final graph Z. The analysis starts by considering U = NGL(S) ⊆ M. Due to the “randomness”
of the gadget H (Definition 2.8), we expect that within the gadget for each u ∈ U, almost all
right-neighbors are unique-neighbors, i.e., ≈ dL · degS(u) unique-neighbors, where degS(u) =

|S ∩ NGL(u)|, as long as |S ∩ NGL(u)| is sufficiently small.
Therefore, we need to show that a large fraction of u ∈ U has degS(u) below some threshold.

We call this the left-to-middle analysis. Akin to [HMMP24], we split U into Uℓ (low-degree) and
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Uh (high-degree) and argue that e(S, Uh) is small. In our case, we show that GL satisfies triangle
expansion (Definition 2.4): the property that for any small U′ ⊆ M, there are very few vertices in L
with 3 or more edges to U′. Applying this to Uh shows that most vertices in S have at most 2 edges
to Uh and at least k − 2 edges to Uℓ. Then, barring collisions in R arising from different u, we have
that most vertices in S have ≈ (k − 2)dL unique neighbors within gadgets they are part of.

Next, we need to argue that the unique-neighbors in gadgets corresponding to different u ∈ U
do not have too many collisions in GR. We call this the middle-to-right analysis. For example,
suppose a vertex r ∈ R is a unique-neighbor within gadget Hu, if r is also a neighbor within Hu′ for
some other u′ ∈ U, then it is not a unique-neighbor of S in the final graph Z. If there is a collision
between u, u′ ∈ U, there must be a path between u → r → u′ in GR.

To bound the number of collisions, we construct a multigraph C on U placing an edge for each
length-2 path u → r → u′ arising from a collision. Based on spectral properties of the Ramanujan
complex (specifically skeleton expansion; see Definition 2.5 and Lemma 3.5), we can bound the
number of edges inside C: the simple version of C obtained by replacing every multiedge by a single
edge. To control the number of edges in C, we need to show that “not too many” edges occur with
“abnormally high” multiplicity.

To prove the statement about multiplicities, we exploit the fact that for a pair of vertices
u, u′ ∈ M, the set of its common neighbors is highly constrained in the graph arising from the
Ramanujan complex (Definition 2.3), and crucially, the property that neighborhoods of small sets
in H are “spread out”: i.e. for a vertex u ∈ M, and any small subset of its left neighbors Su, the
neighborhood of Su in the gadget graph H does not place “too many” vertices on the neighbors of
any fixed u′; this is articulated in Definition 2.8.

Why does using HDX do better than [HMMP24]? [HMMP24] use near-Ramanujan bipartite
graphs as the base graph. In their middle-to-right analysis, via sharp density bounds of small
subgraphs in bipartite spectral expanders, they bound the number of collisions each vertex u ∈
M partakes in by

√
DR. As a result, they require the gadget degrees dL, dR to be larger than√

DL,
√

DR by at least some constant factor, which hurts unique-neighbor expansion within gadgets
corresponding to u ∈ M such that degS(u) ≈

√
DL.

One of the key properties in the Ramanujan complex we use is: the square of the graph
GR restricted to M looks like ℓ-copies of an almost-Ramanujan graph of degree DR/ℓ, for some
“reasonably large” ℓ. As an upshot, the number of other vertices u′ ∈ M that u has a collision with is
at most

√
DR/ℓ. We can use this to show that as long as we choose our gadget degree dR ≫

√
DR/ℓ,

we can prove that for a typical vertex u ∈ M, only a small fraction of the unique-neighbors within
its gadget encounters a collision. The win over the approach of [HMMP24] comes from the ability
to choose dR such that

√
DR/ℓ ≪ dR ≪

√
DR. This improves the range of values of degS(u) for

which the gadget corresponding to vertex u experiences lossless expansion.

Going beyond 3
5 . For our construction, we choose k = 5 which gets us an expansion factor of

k−2
k = 3

5 in Theorem 1. One might ask if we could get a better expansion factor by choosing a
larger k. Unfortunately, our analysis requires us to balance certain parameters, and we were not
able to show that larger k satisfies the necessary inequalities. See Remark 2.14 for a discussion on
parameter choice.

We mention a few candidate ways to extend our analysis beyond 3
5 . First, if one could improve

the bounds on triangle density in small sets, that may allow larger k to satisfy the necessary
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inequality, thus improving the bound to k−2
k . One could also attempt to bound tetrahedron expansion

(or even larger faces) in place of triangle expansion, in hopes of satisfying the necessary inequalities
for appropriately larger k. However, in both approaches, a key difficulty seems to be that there
are very few bounds known for the incidences between planes of various dimensions, and those
known are extremely weak for the size of sets that naturally arise in the links of the Grassmanian
clique complex.

A concrete question in this direction is whether we can obtain tight subgraph density bounds
for the bipartite incidence graph between dimension i and j subspaces of P(Fk), for sets of size
qi(d−i)/2 and qj(d−j)/2. As we will see in Section 4, we need such tight bounds as these graphs appear
as “average” links in the Ramanujan complex.

1.4 Notation

We now establish some notational conventions we follow throughout the paper.
For an n-vertex graph G, we use AG to denote the adjacency matrix of G, and write its eigenval-

ues in descending order λ1(G) ⩾ . . . ⩾ λn(G). We say an eigenvalue of G to mean eigenvalue of the
adjacency matrix of G. When G is bipartite on left vertex set A, right vertex set B, and edge set E, we
write it as (A, B, E). We use G⊤ to denote the bipartite graph (B, A, E). Sometimes, when the edge
set is clear, we will simply denote G by (A, B).

We mildly deviate from standard notation for convenience, and define [k] := {0, 1, . . . , k − 1}.

2 Explicit construction of 3/5-two-sided unique-neighbor expanders

In this section, we prove our main theorem.

Theorem 2.1 (Formal Theorem 1). For any β ∈ (0, 1] and ε > 0, there exists d0 ∈ N such that for
any dL, dR ⩾ d0, there is an infinite family (Zm)m⩾1 of (5dL, 5dR)-biregular bipartite graphs on (L, R)
such that dR/dL ∈ [β, β + ε] for which Zm is a (3/5 − ε)-unique-neighbor expander. Further, there is an
algorithm that takes in n as input, and in poly(n)-time constructs some Zm from this family for which
|V(Zm)| = Θ(n).

In Section 2.1, we describe our construction and state a more general result (Theorem 2.11),
which directly implies Theorem 2.1. In Section 2.2, we give a proof overview for Theorem 2.11, and
we formally prove Theorem 2.11 in Section 2.3.

2.1 Construction

The construction is based on the “tripartite line product” in [HMMP24, Definition 7.6], instantiated
with more structured base and gadget graphs.

Definition 2.2 (Construction). The ingredients for our construction are:

• Two bipartite graphs GL = (L, M, EL) and GR = (R, M, ER), where GL is k-regular on L and
DL-regular on M, and the graph GR is k-regular on R, and DR-regular on M. For each vertex
v in M, we order its neighbors in L and R according to injective functions LNbrv : [DL] → L
and RNbrv : [DR] → R respectively.
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• A constant-sized gadget graph H, which is a bipartite graph with left vertex set [DL], and right
vertex set [DR]. The graph H is dL-regular on the left, and dR-regular on the right.

The final construction, which we call Z, is a bipartite graph on (L, R) constructed by taking each
vertex u ∈ M, and placing a copy of H between the left and right neighbors of u, which we will
denote as Hu. More concretely, for every u ∈ M, i ∈ [DL], and j ∈ [DR], we place an edge between
LNbru(i) and RNbru(j) if there is an edge between i and j in H. We emphasize that M is only used
in the construction of Z and does not appear in the final graph.

Choice of base graph. We choose GL and GR as (truncated) bipartite vertex-face incidence graphs
of the Ramanujan complex. We state the relevant properties of the base graph we use below, and
defer the proof that such a base graph indeed exists to Section 3.

Definition 2.3 (Structured bipartite graph). A (k, D)-biregular structured bipartite graph G =

(V, M, E) is a bipartite graph between V and M where:

1. Every vertex in V is degree-k and every vertex in M is degree-D.

2. For each vertex u ∈ M, there is an ordering of its neighbors specified by an injective function
Nbru : [D] → V.

3. The set M can be expressed as a disjoint union ⊔a∈[k]Ma such that each v ∈ V has exactly one
neighbor in each Ma.

4. For each pair of distinct a, b ∈ [k], there exists sG(a, b) (abbreviated to s) such that there are s
special sets (Ai ⊆ [D])i∈[s] of size between D

2s and 2D
s , such that for any u ∈ Ma and v ∈ Mb,

we have N(u) ∩ N(v) is either empty, or is equal to Nbru(Ai) for some i ∈ [s].

As a prelude to Section 3, we will construct structured bipartite graphs (V, M, E) to be the
incidence graph between vertices and (k − 1)-faces in the Ramanujan clique complex of [LSV05b,
LSV05a], where we set V to be the set of (k − 1)-faces and M to be the vertex set. Then, the
properties listed in Definition 2.3 will be satisfied naturally; see Theorem 3.4.

We now describe some quantities associated to a (k, D)-biregular structured bipartite graph
G = (V, M, E) that are of interest in the analysis.

Definition 2.4 (Small-set triangle expansion). We say that G is a τ-small-set triangle expander if for
some small constant η > 0, depending on k and D, and every U ⊆ M of size at most η|M|, the
number of vertices v ∈ V with 3 or more neighbors into U is at most τ · |U|.

Definition 2.5 (Small-set skeleton expansion). Let G̃ be the simple graph obtained by placing an
edge for every u, v ∈ M such that there is at least one length-2 walk (u, a, v) in G for a ∈ V. We say
that G is a λ-small-set skeleton expander if for some small constant η > 0, and every set U ⊆ M of
size at most η|M|, the largest eigenvalue of G̃[U] is at most λ.

In the following, we define notation for our construction.

Notation 2.6 (GL, GR, DL, DR, k, τ, λ, sL, sR). We choose our tripartite base graph on (L, M, R) with
the following two structured bipartite graphs: GL = (L, M, EL), which is (k, DL)-biregular, and
GR = (R, M, ER), which is (k, DR)-biregular. Let τ and λ be constants such that both GL and GR

are τ-small set triangle expanders, and λ-small-set skeleton expanders. We use sL(a, b) and sR(a, b)
to refer to sGL(a, b) and sGR(a, b) respectively.
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In Section 3, we prove the following about the existence of base graphs GL and GR. Concretely,
the below statement follows from Lemma 3.18.

Lemma 2.7. Given integers n0, k, prime power q, integers DL and DR that are multiples of k! and have
magnitude at most c · q(

k
2) for some small constant c > 0 as input, there is a poly(n0)-time algorithm that

constructs (L, M, R) where |M| = n = Θ(n0), and |R| = |L| · DL/DR, and outputs structured bipartite
graphs GL on (L, M) and GR on (M, R) such that:

DL, DR = Θk(1) · q(
k
2) ,

τ = Ok(1) · q(
k
2)−

k2
8 − 1

2 · max
0⩽i0<i1<i2<k

min

(i,j)∈

 (i1−i0,i2−i0),
(i2−i1,k+i0−i1),

(k+i0−i2,k+i1−i2)


q

1
8 ((i−j+2)2+(k−i−j)2) ,

λ = Ok(1) · q
1
2 ⌊

k2
4 ⌋ ,

sL(a, b), sR(a, b) ∈
[
qk−1, O(q⌊k2/4⌋)

]
∀a < b ∈ [k] .

Specifically for k = 5, we have DL, DR = Θ(q10), τ = O(q6.5) (see Corollary 4.9), λ = O(q3),
and sL, sR ∈ [q4, O(q6)].

Choice of gadget graph. We choose H as a constant-sized lossless expanders with some pseu-
dorandom properties, whose motivation will be clearer in the analysis. One should think of H as
being a random graph; the precise properties we need are articulated in Definition 2.8.

Definition 2.8 (Pseudorandom gadget). Let H be a (dL, dR)-biregular bipartite graph on vertex
set ([DL], [DR]). For each a, b ∈ [k], let (Ai ⊆ [DR])i∈[s] be the special sets from Definition 2.3 where
s = sR(a, b). Define D := DL + DR. We say H is a pseudorandom gadget if for every a, b ∈ [k], we
have the following properties:

1. For every S ⊆ [DL] such that |S| ⩽ DR/dL and for every W ⊆ [s] with |W| ⩾ s log D
dL

,

∑
i∈W

|N(S) ∩ Ai| ⩽ 32|W| · max
{

1
r
· dL|S|, log D

}
.

2. For any S ⊆ [DL] with |S| = oD(1) · DR/dL, we have |N(S)| ⩾ (1 − oD(1))dL|S|.

Definition 2.9 (Good gadget). A good gadget graph H is a (dL, dR)-biregular graph on ([DL], [DR])

such that H and H⊤ are both pseudorandom gadgets.

Lemma 2.10. For dL, dR ⩾ log2 D, and dR = oD(1) · DL, there exists a good gadget graph H.

In Section 5, we will prove Lemma 2.10 by showing that a random gadget satisfies the desired
properties with high probability.

Combining the parts. Finally, we state our main theorem below.

Theorem 2.11. Suppose for some δ > 0, we have:

1
λ
⩽ δ ⩽ oD(1) ⩽

1
2k

, max
a,b∈[k]

{
λ,
√

sL(a, b),
√

sR(a, b)
}

log2 D
δ

⩽ dL, dR ⩽
δD

τ log D
,
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λ ⩽ δ2 · min
a,b∈[k]

{sL(a, b), sR(a, b)} .

Let Z be a (kdL, kdR)-biregular graph instantiated according to Definition 2.2 with a base graph satisfying
the properties listed in Notation 2.6, and a good gadget graph. There is a constant η > 0 such that

• for every subset S ⊆ L(X), where |S| ⩽ η|L(X)|, S has (1 − δ − oD(1)) · (k − 2) · dL|S| unique-
neighbors in Z, and

• for every subset S ⊆ R(X) where |S| ⩽ η|R(X)|, S has (1 − δ − oD(1)) · (k − 2) · dR|S| unique-
neighbors in Z.

We are now ready to prove Theorem 2.1.

Proof of Theorem 2.1. The statement immediately follows by instantiating Theorem 2.11 with: (1)
the base graph from Lemma 2.7 with k = 5, q large enough so that dL, dR = Θ(q3.25), and DL, DR =

Θ(q10), and (2) the gadget graph from Lemma 2.10. By Lemma 2.7, the base graph is efficiently
constructible with τ = O(q6.5) and λ = O(q3) (see Corollary 4.9 for the bound on τ), and q4 ⩽
sL(a, b), sR(a, b) ⩽ O(q6) for all a, b ∈ [k]. The gadget graph is also efficiently constructible via a
brute force search over all graphs on ([D1], [D2]). Finally, the tripartite line product can also be
computed efficiently.

2.2 Proof overview of Theorem 2.11

For Theorem 2.11, we will only prove the unique-neighbor expansion for S ⊆ L(X); the argument
for S ⊆ R(X) is exactly the same. Similar to [HMMP24], we split the proof of Theorem 2.11 into
two parts: left-to-middle and middle-to-right. Given a set S ⊆ L(X), let U ⊆ M be the neighbors of
S in M in the base graph.

Left-to-middle analysis. We divide U into Uℓ (low-degree) and Uh (high-degree), and we would
like to prove that a large (close to k−2

k ) fraction of edges leaving S go into Uℓ. This is desirable
because in our gadget H (satisfying Definition 2.8), small subsets (of [D1]) expand losslessly while
we have no guarantees on large subsets.

To do so, we apply the small-set triangle expansion (Definition 2.4) of the base graph GL to Uh,
which roughly states that very few vertices in S have more than 2 edges to Uh. Since each vertex in
S has degree k, this implies that most vertices in S have at least k − 2 edges going to Uℓ, thus giving
a lower bound on e(S, Uℓ). This is articulated in Lemma 2.15.

Middle-to-right analysis. We need to argue that the unique-neighbors from each u ∈ U (within
the gadget Hu) do not have too many collisions. It is convenient to visualize such collisions as
follows: (1) for each u ∈ U, we draw blue edges from u to all its right neighbors that are unique-
neighbors of NL(u) within the gadget Hu; (2) we draw red edges from u to all its right neighbors
that are nonunique-neighbors of NL(u) within Hu. The following is a simple observation:

Observation 2.12. The set of unique-neighbors of S in the final graph Z is the set of vertices in R
incident to exactly one blue edge and no red edge.

We note that since vertices in Uℓ have low degree on the left, they will have many blue edges
going to R (almost (k − 2)dL|S| in total). We next need to prove that few collisions occur.
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Bounding collisions. We define a (multi-)graph C on vertex set U by placing a copy of the edge
{u, v} for each u ∈ Uℓ, v ∈ U, r ∈ R such that u has a blue edge to r and v has an (either blue or
red) edge to r. Then, the number of collisions is exactly e(C).

A collision between u, v ∈ U can occur only if u, v have common neighbors in R. In other
words, the graph C, defined as the graph obtained by removing parallel edges in C, is a subgraph
of G̃R — the simple graph on M obtained from length-2 walks in GR (see Definition 2.5). The most
natural attempt to bound e(C) is to use the small-set skeleton expansion of G̃R (Definition 2.5),
which implies that small subgraphs in G̃R have small average degree (see Lemma 2.17). However,
C can have multiplicities, which complicate the analysis.

Let us examine where the multiplicities may come from. An edge {u, v} in C can have mul-
tiplicites when they share several common neighbors in R in the bipartite graph GR. To analyze
the common neighborhood structure, we use the fact that GR satisfies Item 4 in Definition 2.3,
which states that the common neighborhood of u ∈ Ma and v ∈ Mb is either empty or equal to
some“special set”. We thus have the following crucial observation:

Observation 2.13. For u ∈ Ma and b ̸= a, consider the sGR(a, b) special sets in Item 4 of Definition 2.3
that correspond to subsets of NGR(u) ⊆ R. For any v ∈ Mb with {u, v} ∈ G̃R (i.e., NGR(u) ∩
NGR(v) ̸= ∅), the multiplicity of the edge {u, v} in C is at most the number of blue or red edges
from u that land in any special set.

In light of this, we can utilize Item 1 of Definition 2.8 of the gadget, which states that the blue or
red edges must be evenly spread among the special sets. For u ∈ Uℓ ∩ Ma, suppose it has degS(u)
edges to S on the left, then it has roughly dL · degS(u) blue or red edges going to R. Suppose u
has λ neighbors in Mb for a fixed b ∈ [k], which correspond to λ of the sR(a, b) special sets. Then,
Item 1 of Definition 2.8 states that the number of blue or red edges that land in the these special sets
is roughly as expected: λ/sR(a, b) · dL · degS(u). Moreover, by the small-set skeleton expansion of
G̃R (Definition 2.5), it is true that C[Uℓ], a subgraph of G̃R[Uℓ], has average degree at most λ. This
gives an upper bound on the total multiplicites of edges within Uℓ in C.

Collisions between Uℓ and Uh. Unfortunately, we no longer have the degree bounds for edges
between Uℓ and Uh in C. For u ∈ Uℓ ∩ Ma, if degC(u → Uh ∩ Mb) ⩽ λ/δ (for some δ = oD(1) not
too small), then we can still use the previous argument that only an oD(1) fraction of the blue or red
edges land in the special sets. However, if degC(u → Uh ∩ Mb) is large, we need a better argument.

We call such vertices saturated, denoted Usat. We no longer have upper bounds using the edge
multiplicities in C and the special sets. We must instead directly upper bound |Usat|. Consider the
bipartite graph between saturated vertices Uh ∩ Mb. The key observation is that the maximum
eigenvalue is also upper bounded by λ, and since the degrees of the saturated vertices are > λ/δ,
the average degree of Uh ∩ Mb in this graph is ≲ λ2

λ/δ ⩽ δλ (Lemma 2.18). In particular, this implies
that Usat and Uh ∩ Mb are very unbalanced — |Usat| ≲ δ2|Uh|. On the other hand, since the vertices
in Uh all have large degrees to S (in the graph GL), we also have an upper bound on |Uh| in terms
of eGL(S, U) = k|S|. This completes the proof.

Concrete parameters and requirements. To prove the triangle expansion, we analyze the (k − 1)-
dimensional Ramanujan complex of [LSV05b, LSV05a] (see Section 3) and show an upper bound of
τ|U| on the number of (k − 1)-faces in the complex containing a triangle in any small vertex set U
(see Lemma 3.11; the proof is carried out in Section 4). On the other hand, the skeleton expansion λ
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follows from known spectral properties of the Ramanujan complex (see Lemma 3.12). The concrete
bounds for DL, τ and λ are stated in Lemma 2.7.

Remark 2.14 (Parameter requirements). At a high level, we have two requirements. Let δ be some
small enough constant. For the left-to-middle analysis, we need to set the degree threshold for
Uh ⊆ M to be τ/δ in order to get meaningful bounds on Uh. Thus, for the low-degree vertices
to have good unique-neighbor expansion within each gadget H, we need τ

δ · dL < DL. For the
middle-to-right analysis, λ-expansion roughly means that any small subgraph has average degree
λ, hence we need dL > λ/δ (here, we ignore the multiplicities for simplicity). This gives

DL/τ ≫ dL ≫ λ .

Unfortunately, the above requirements restrict us to k ⩽ 5. Let q be the large prime power used in
the Ramanujan complex. From Lemma 2.7, we have:

• k = 3: DL = Ω(q3), τ = O(q1.5), and λ = O(q). (See also Lemma 4.4.)

• k = 5: DL = Ω(q10), τ = O(q6.5), and λ = O(q3). (See also Corollary 4.9.)

• k = 6: DL = Ω(q15), λ = O(q4.5), but the bound on τ we have is no better than O(q10.5).

We can see that for k = 6, the parameters do not satisfy the aforementioned requirements.

2.3 Proof of Theorem 2.11

We first introduce some notation.

• Fix a subset S ⊆ L of size ⩽ η|L|. Let U ⊆ M be the neighbors of S in M in GL, and let
ΓS = GL[S ∪ U] be the induced subgraph of S, U.

• We use Uh (“high”) to denote the set of vertices in U with degree (in ΓS) exceeding τ · 1
δ , and

we use Uℓ (“low”) to denote U \ Uh.

• For each u ∈ U, we draw blue edges from u to all its right neighbors that are unique-neighbors
of NL(u) within the gadget Hu. We will use Blue(u) to refer to the blue edges incident to u.

• We draw red edges from u to all its right neighbors that are nonunique-neighbors of NL(u)
within Hu. We will use Red(u) to refer to the red edges incident to u.

• We use G̃R to denote the simple graph on vertex set M obtained by placing an edge for every
u, v ∈ M such that there is at least one length-2 walk (u, a, v) in GR for a ∈ R.

We start with the left-to-middle analysis. The following lemma states that almost k−2
k fraction of

edges leaving S goes to the low-degree vertices Uℓ.

Lemma 2.15. Suppose δk ⩽ 1/2. The number of edges in ΓS incident to Uℓ is at least (1 − 4δ)(k − 2)|S|.

Proof. By definition of Uh, the number of edges from S to Uh is at least τ · |Uh|
δ . Define S⩾3 as the

vertices of S with at least 3 neighbors into Uh. By the small-set triangle expansion (Definition 2.4)
of GL, the number of vertices in S⩾3 is at most τ · |Uh|. Since every vertex in S⩾3 is degree-k, we
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have e(S⩾3, Uh) ⩽ kτ|Uh|. On the other hand, by definition of Uh, each vertex in Uh has at least τ/δ

edges to S, so e(S, Uh) ⩾ τ|Uh|/δ. Consequently, we have

e(S⩾3, Uh)

e(S, Uh)
⩽ δk .

Every vertex in S \ S⩾3 has at most 2 edges into Uh, and hence at least k − 2 edges into Uℓ. Thus,
we have:

e(S, Uℓ) ⩾ e(S \ S⩾3, Uℓ) ⩾
k − 2

2
e(S \ S⩾3, Uh) ⩾

k − 2
2

(1 − δk)e(S, Uh) .

Since b
a+b is monotone increasing in b for a, b > 0, we have:

e(S, Uℓ)

k|S| =
e(S, Uℓ)

e(S, Uℓ) + e(S, Uh)
⩾

k−2
2 (1 − δk)

k−2
2 (1 − δk) + 1

=
k − 2

k

(
1 − 2δ

1 − δ(k − 2)

)
,

which completes the proof.

Lemma 2.16. The number of vertices in R incident to exactly one blue edge and no red edges is at least
(1 − oD(1))(k − 2)dL|S|.

Before we prove the above lemma, we first show how to complete the proof of Theorem 2.11.

Proof of Theorem 2.11. The statement is immediate from Observation 2.12 and Lemma 2.16.

We will need the following folklore facts that we will apply to Uℓ.

Lemma 2.17. For a graph G, suppose λ is the maximum eigenvalue of the adjacency matrix, then there is
an orientation of the edges in G such that all vertices have outdegree at most λ.

Proof. Let A be the adjacency matrix of G, and let n be the number of vertices. Note that
λmax(A) ⩽ λ implies that all principal submatrices of A, i.e., induced subgraphs of G, have
maximum eigenvalue at most λ. Moreover, λmax(A) ⩽ λ implies that the average degree is at most
λ, since 2|E(G)| = 1⃗⊤ A⃗1 ⩽ λ∥⃗1∥2

2 = λn. We can thus find a vertex v with degree at most λ and
orient all its incident edges to point away from v. Then, we can remove v from G and repeat this
process, since all induced subgraphs of G have average degree at most λ. In the end, we obtain an
orientation of edges where all outdegrees are at most λ.

Lemma 2.18 ([HMMP24, Lemma 6.2]). Let G be a bipartite graph with average left-degree d1 and average
right-degree d2. Let λ be the maximum eigenvalue of the adjacency matrix. Then, (d1 − 1)(d2 − 1) ⩽ λ2.

Now, we prove Lemma 2.16.

Proof of Lemma 2.16. We will refer to a vertex r in R incident to exactly one blue edge and no red
edges as a blue unique-neighbor. By lossless expansion of the gadget H (Item 2 of Definition 2.8) and
Lemma 2.15, the number of blue edges from Uℓ to R is at least

∑
u∈Uℓ

(1 − oD(1))dL · degΓS
(u) = (1 − oD(1))dL · e(S, Uℓ) ⩾ (1 − oD(1)) · dL(k − 2)|S| ,
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where we use the fact that degΓS
(u) ⩽ τ

δ ⩽ D
dL log D (required in Definition 2.8) for all u ∈ Uℓ.

To control the number of blue unique-neighbors, we bound the number of blue edges to R that
“collide” with another edge using bounds on the edge density of small sets in G̃R.

Construct a (multi-)graph C on vertex set U by placing a copy of the edge {u, v} for each u ∈ Uℓ,
v ∈ U, r ∈ R such that u has a blue edge to r and v has an (either blue or red) edge to r. Let C be
the graph obtained by removing duplicate edges from C. By Observation 2.12, the number of blue
unique-neighbors is at most

(1 − oD(1)) · (k − 2)dL|S| − 2e(C) .

It suffices to show that e(C) ⩽ oD(1) · kdL|S|. To bound e(C), we write it as eC(Uℓ) + eC(Uℓ, Uh)

(note that there are no edges within Uh in C), and bound each term separately.
We first bound e(Uℓ). By λ-small-set skeleton expansion of G̃R, the largest eigenvalue of C[Uℓ]

is bounded by λ. Consequently, by Lemma 2.17, there is an orientation of the edges of C[Uℓ] such
that all vertices have outdegree bounded by λ. Pick such an orientation and let O(v) denote the set
of outgoing edges incident to a vertex v. We can write:

eC(Uℓ) = ∑
v∈Uℓ

∑
e∈O(v)

multiplicity(e) .

Fix a ̸= b ∈ [k]. We will write s := sR(a, b) for simplicity (when a, b ∈ [k] are clear from context). For
v ∈ Ma, define Ob(v) as the set of e ∈ O(v) directed towards a vertex in Mb. By Observation 2.13,
we can bound ∑e∈Ob(v) multiplicity(e) by the number of blue or red edges that land in any |Ob(v)|
of the special sets. Since |Ob(v)| ⩽ λ < λ

δ (here, we use a loose bound of λ
δ on |Ob(v)| for

convenience later), we can apply the bound in Item 1 of Definition 2.8 with |S| = degΓS
(v) and

|W| = max{λ
δ , s log D

dL
} and get

∑
e∈Ob(v)

multiplicity(e) ⩽ 32
k

∑
b=1

max
{

λ

δ
,

s log D
dL

}
· max

{
1
s
· dL · degΓS

(v), log D
}

⩽ 32
k

∑
b=1

max

{
λ

δs
,

λ log D
δdL degΓS

(v)
,

log D
dL

,
s log2 D

d2
L degΓS

(v)

}
· dL · degΓS

(v)

⩽ oD(1) · dL · degΓS
(v) .

(1)

Here, we use the assumptions on the parameters listed in Theorem 2.11: λ ⩽ δ2s, and dL ⩾
1
δ max{λ,

√
s} log2 D ⩾ log2 D.

Summing over all b ∈ [k] gives at most a k factor, and ∑v∈Uℓ
degΓS

(v) ⩽ k|S|. Thus, we have

eC(Uℓ) ⩽ oD(1) · kdL|S| .

We now turn our attention to showing a bound on e(Uℓ, Uh), which we can write as:

∑
a,b∈[k]

eC(Uℓ ∩ Ma, Uh ∩ Mb) .

Again, we fix a, b and prove a bound on the summand. Call a vertex v ∈ Uℓ ∩ Ma saturated if
degC(v → Uh ∩ Mb) >

λ
δ , and call a vertex unsaturated otherwise. We use Usat and Uunsat to denote

the saturated and unsaturated vertices in Uℓ ∩ Ma respectively.
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For any unsaturated vertex, its degree in C is at most λ
δ , and thus, the exact same calculation as

Eq. (1) shows that

eC(Uunsat, Uh ∩ Mb) ⩽ oD(1) · kdL|S| .

Now, we bound the contribution of saturated vertices. Here, we only have the naive bound

eC(Usat, Uh ∩ Mb) ⩽ ∑
u∈Usat

degΓS
(u) · dL ⩽

τ

δ
· dL|Usat| ,

since degΓS
(u) ⩽ τ

δ for all u ∈ Usat ⊆ Uℓ. It remains to bound |Usat|.
Consider the bipartite graph between Usat and Uh ∩ Mb, within C. We know that (i) the top

eigenvalue of this bipartite graph is at most λ, by λ-small-set skeleton expansion of G̃R, and (ii)
every vertex in Usat has degree at least λ

δ . Thus, by Lemma 2.18, the average degree of Uh ∩ Mb is
at most δλ + 1 which is at most 2δλ by the assumption that δλ ⩾ 1. In particular, we have

|Usat| ⩽ |Uh ∩ Mb| ·
2δλ

λ/δ
⩽ 2δ2|Uh| .

On the other hand, since every vertex u in Uh has degΓS
(u) ⩾ τ, we have τ|Uh| ⩽ eΓS(S, Uh) ⩽ k|S|.

This implies that

eC(Usat, Uh ∩ Mb) ⩽ 2δ · kdL|S| ⩽ oD(1) · kdL|S| ,

since δ ⩽ oD(1). Summing up contributions from all a, b ∈ [k] gives an extra k2 factor.
Combining all of the above, we get that e(C) ⩽ oD(1) · kdL|S|, completing the proof.

3 Construction of the base graph

We first list the properties of the Ramanujan complex of [LSV05b, LSV05a] that we use to construct
our base graph. For standard terminology pertaining simplicial complexes, see, e.g., [ALOV19,
Section 2.4]. Moreover, we recall the definitions and approximations (for large q) of Gaussian

binomial coefficients: [k]q = qk−1
q−1 ∼ qk−1, [k]q! = [1]q[2]q · · · [k]q ∼ q(

k
2), and

[
k
i

]
q =

[k]q !
[i]q ![k−i]q ! ∼

qi(k−i), and note that
[

k
i

]
q ⩽

[
k

⌊k/2⌋

]
q
∼ q⌊k2/4⌋.

Definition 3.1 (Cayley clique complex). Let Γ be a group, and let S be a symmetric set of generators
of Γ. We use H = Cayk(Γ, S) to denote the (k − 1)-dimensional complex constructed by choosing
each {u0, . . . , uk−1} ⊆ Γ as a face iff for every a, b ∈ [k], uau−1

b ∈ S. We refer to H as the Cayley
clique complex on Γ with generating set S.

Definition 3.2 (Incidence graph). The incidence graph IncH of a simplicial complex H is a bipartite
graph between the vertices and (k − 1)-faces of H, where there is an edge between a vertex v and a
face e if e contains v.

Definition 3.3 (Unweighted skeleton). The unweighted skeleton SkelH of a complex H refers to the
simple graph with vertex set Γ obtained by placing an edge between u and v if they share a face.

Theorem 3.4 ([LSV05b, LSV05a]). Fix a prime power q and integer k ⩾ 2. There is an algorithm that, on
input an integer e > 1 (with qe > 4k2 + 1), constructs:
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• The group Γ = PGLk
(
Fqe
)
, which has cardinality n := 1

qe−1 ∏0⩽i⩽k
(
qek − qei) ∼ qek2−1.

• A set of generators S = S1 ⊔ · · · ⊔ Sk−1 ⊂ Γ, where |Si| =
[

k
i

]
q ∼ qi(k−i) (the Gaussian binomial

coefficient, equal to the number of subspaces of dimension k in Fk
q); hence |S| ∼ q⌊k2/4⌋.

The algorithm runs in time poly(n). The resulting Cayley complex Cayk(Γ, S), called the Ramanujan clique
complex, is a k-partite (k − 1)-dimensional simplicial complex with the following properties.

• The vertex set V, of size n, has equal-size parts V0, V1, . . . , Vk−1.

• For each 0 < i < k, the generating set Si creates directed edges that go from Va to Va+i (all part indices
are taken mod k).

• Let Ai denote the directed subgraph on V consisting of just those edges created by Si, so Ai is
out-regular of degree

[
k
i

]
q ∼ qi(k−i).

• Thought of as adjacency matrices, A1, . . . , Ak−1 commute (and are normal); thus they are simulta-
neously diagonalizable. For each of the n eigenvectors, there is an “eigentuple” λ⃗ of eigenvalues
(λ1, . . . , λk−1) ∈ Ck−1 associated to A1, . . . , Ak−1.

• We say that an eigentuple is trivial if |λi| =
[

k
i

]
q for all i. The eigenvectors corresponding to the

trivial eigentuple take on a constant value on each part.

• Every nontrivial eigenvalue of Ak has modulus at most (k
i)
√

qi(k−i).

• For any i and any vertex v ∈ Vi, the link of v can be identified with the spherical building P(Fk
q).

Here, P(Fk
q) is the (k − 1)-partite (k − 2)-dimensional simplicial complex whose vertices are all the

non-trivial subspaces of Fk
q (i.e., not {0} and not Fk

q), and a t-face corresponds to a chain of subspaces
W0 ⊂ W1 ⊂ W2 ⊂ · · · ⊂ Wt. The j-dimensional subspaces exactly correspond to the neighbors of v
in Vi+j.

We now use the known properties of the Ramanujan complex listed above in Theorem 3.4 to
prove that for any pair of parts i and j, the bipartite graph of the 1-skeleton of the Ramanujan clique
complex is O(1)-Ramanujan.

Lemma 3.5. For i, j ∈ [k] such that i > j, let A denote the adjacency matrix of the bipartite graph between
Vi and Vj. We have:

λ2(A) ⩽ 2
(

k
i − j

)√
q(i−j)(k−i+j) .

Proof. Let v be a nontrivial eigenvector of A. Observe that (Ai−j + Aj−i)v = (1 + 1[i − j =

j − i])Av + w, where the support of w is disjoint from that of Av. Thus: ∥Av∥ ⩽
∥∥(Ai−j + Aj−i

)
v
∥∥ .

Now, observe that for any t ∈ [k], we have
〈

vt, 1⃗t

〉
= 0 where vt and 1⃗t denote their respective

restrictions to Vt. Consequently, v must be orthogonal to all the trivial eigenvectors of Ai−j +

Aj−i, and hence must be spanned by its nontrivial eigenvectors. By the bound on the nontrivial
eigenvalues from Theorem 3.4, we have:∥∥(Ai−j + Aj−i

)
v
∥∥ ⩽ 2

(
k

i − j

)√
q(i−j)(k−i+j) .

Consequently, we have λ2(A) ⩽ 2( k
i−j)
√

q(i−j)(k−i+j).
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3.1 Properties of the spherical building

Observation 3.6. The 1-skeleton of P(Fk
q) is a (k − 1)-partite graph with vertex sets V1, V2, . . . , Vk−1,

where Vi consists of i-dimensional subspaces in Fk
p. Thus, |Vi| =

[
k
i

]
q, which are the Gaussian

binomial coefficients. For i < j, the bipartite graph between Vi and Vj in the 1-skeleton has left and

right degree
[

k−i
j−i

]
q
≈ q(j−i)(d−j) and

[
j
i

]
q
≈ qi(j−i) respectively.

Remark 3.7. For example, when k = 3, we have |V1| = |V2| =
[

3
1

]
q = q2 + q + 1, and the bipartite

graph between V1 and V2 has left and right degree
[

2
1

]
q = q + 1.

Lemma 3.8 (Corollary 7.1 of [GHK+22]). Let 1 ⩽ i < j ⩽ k − 1. The bipartite graph between Vi and Vj

has second eigenvalue

λ2 =

√
qj−i

[
j−1
j−i

]
q

[
k−i−1

j−i

]
q
≈ q(j−i)(k+i−j−1)/2 .

3.2 Construction of base graph from Ramanujan complex: balanced case

We first specify how to construct a structured bipartite graph, which is immediately useful in the
“balanced” setting.

Definition 3.9 (Construction of structured bipartite graph). We describe a procedure that takes in
nonnegative integers n0, k, and prime power q, and for n = Θ(n0) and D = |P(Fk

q)|, constructs
vertex sets V, M, along with a (k, D)-biregular bipartite graph G on (V, M).

• We find e such that n :=
∣∣PGLk

(
Fqe
)∣∣ is Θ(n0). Run the algorithm from Theorem 3.4 to

construct the group Γ = PGLk
(
Fqe
)

along with generators S = S1 ⊔ · · · ⊔ Sk−1, closed under
inverses.

• Let M = Γ, and let V be all the (k − 1)-faces in the Cayley complex Cayk(Γ, S), and define G
as the graph where we place an edge between m ∈ M and v ∈ V if m ∈ v.

• Identify elements in [D] with k-sets of the form {id, s1, . . . , sk−1} where si ∈ Si, and sas−1
b ∈ S

for all a, b ∈ [k]. Here, id is the identity element of Γ. For each m ∈ M, we define Nbrm as the
function that maps {id, s1, . . . , sk−1} to {m, ms1, . . . , msk−1}, which is a clique, and hence one
of the right neighbors of m.

It remains to prove that the base graph constructed via the above procedure has useful properties.

Lemma 3.10. The graphs G produced in Definition 3.9 is a structured bipartite graph in the sense of
Definition 2.3 with parameters D = [k]q! and sG(a, b) =

[ k
b−a
]

q ∈ [qk−1, O(q⌊k2/4⌋)] for a < b ∈ [k].

Lemma 3.10 can be proved by mechanically verifying that G indeed satisfies all the claimed
properties; we omit the details.

Lemma 3.11. The graph G produced in Definition 3.9 is a τ-small-set triangle expander for

τ = Ok(1) · q(
k
2)−

k2
8 − 1

2 · max
0⩽i0<i1<i2<k

min

(i,j)∈

 (i1−i0,i2−i0),
(i2−i1,k+i0−i1),

(k+i0−i2,k+i1−i2)


q

1
8 ((i−j+2)2+(k−i−j)2) .
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We defer the proof of Lemma 3.11 to Section 4.

Lemma 3.12. The graph G produced in Definition 3.9 is a λ-small-set skeleton expander for

λ := Ok(1) · q
1
2 ⌊

k2
4 ⌋ .

Lemma 3.12 follows from Lemma 3.5 along with Lemma 3.13 below.

Lemma 3.13. Let G be an n-vertex d-regular graph with largest nontrivial eigenvalue λ. Let H be any
subgraph of G with edges incident to at most εn vertices. The largest eigenvalue of H is at most λ + εd.

Proof. Let v be the top eigenvector of AH. Since AH is a nonnegative matrix, by the Perron–
Frobenius theorem, all entries of v are nonnegative. Further, the entries of v are 0 on isolated
vertices in H, which ensures that v is supported on at most εn vertices. We have:

λmax(AH) = v⊤AHv ⩽ v⊤AGv = v⊤
(

AG − d
n

11⊤
)

v +
d
n
⟨v, 1⟩2 ⩽ λ + εd ,

where the second step uses nonnegativity of v and AG − AH, and the final step uses Cauchy–
Schwarz on v and 1supp(v).

3.3 Imbalanced case

In the sequel, Γ and S = S1 ⊔ · · · ⊔ Sk−1 be as in Definition 3.9.

Definition 3.14 (Face generator). We call σ = {s0 = id, s1, . . . , sk−1} a face generator if si ∈ Si, and
for every i, j ∈ [k], s−1

i sj is in S. Given a collection F of face generators, we use TruncCay(Γ, F) to
denote the complex obtained by including every face of the form mσ for m ∈ Γ and σ ∈ F.

Observation 3.15. Observe that for any collection F of face generators, the set of (k − 1)-faces in
the complex TruncCay(Γ, F) is a subset of the set of (k − 1)-faces in Cayk(Γ, S).

Definition 3.16 (Equivalence relation on face generators). We say face generators σ1 and σ2 are
equivalent if for some s ∈ S, we have σ1 = s−1σ2.

Observation 3.17. Any equivalence class can have at most k elements. This is because id is
contained in both σ1 and σ2, and thus, for σ1 = s−1σ2 to contain id, s must be in σ2, for which there
are only k choices.

Lemma 3.18. There exists an integer j ∈ [1, k] such that for any prime power q, and integer D <
1
k |P(Fk

q)| = Θ
(

q(
k
2)
)

that is divisible by j, there is a set F of face generators of size exactly D such that
the bipartite vertex-face incidence graph G of TruncCay(Γ, F) is a structured (k, D)-biregular graph, and
further, G is a τ-small-set triangle expander and a λ-small-set skeleton expander for τ as in Lemma 3.11 and
for λ as in Lemma 3.12.

Proof. Define F (S) as the collection of all face generators on S. Observe that F (S) is in one-to-one
correspondence with faces incident to any fixed m ∈ Γ, and hence |F (S)| = |P(Fk

q)|. We construct
F be starting with F (S) and deleting a subcollection of generators. First, partition F (S) into
equivalence classes based on the equivalence relation in Definition 3.16. For some 1 ⩽ j ⩽ k, at
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least 1
k |F (S)| many face generators belong to an equivalence class of size j. We construct F of size

D < 1
k |F (S)| by choosing all the face generators from D/j arbitrary equivalence classes of size j.

We first prove that G is (k, D)-regular: observe that G is k-left-regular by definition. To see that
it is D-right-regular, first observe that for any m ∈ Γ, m is contained in D faces of the form mσ for
σ ∈ F. We claim that there if a face f that contains m, then it must be of the form mσ for some σ ∈ F.
Observe that f must be of the form m′σ′ for some m′ ∈ Γ and face generator σ′ in an equivalence
class of size j to be included in the complex. Since m′σ′ contains m, m′−1m is in σ′, and hence in S.
Since S is closed under inverses, m−1m′ is also in S. Now, we choose σ = m−1m′σ′. We see that σ is
a valid face generator since it contains id, and for any a, b ∈ σ, we have

a−1b = a′−1m′−1mm−1m′b′ = a′−1b′ ∈ S.

Additionally, since m−1m is in S, σ and σ′ belong to the same equivalence class, which implies that
σ must be in F, since σ′ is in F.

Finally, the claim that G is a structured bipartite graph in the sense of Definition 2.3 is a
straightforward verification that we omit, and the small-set triangle and skeleton expansion
properties follow from the fact that G is a subgraph of the graph constructed in Definition 3.9
combined with Lemmas 3.11 and 3.12.

4 Bounding triangles

In this section, we prove Lemma 3.11. Fix a prime power q and integers k, e ⩾ 2. Let X denote
the resulting Ramanujan clique complex as constructed in Theorem 3.4. Recall that we denote the
vertex set of X by X(0) = V0 ∪ V1 ∪ · · · ∪ Vk−1, where Vi is the vertices in the i’th part. All Vi’s have
the same size, which we denote in this section by n. Let dij denote the degree of a left vertex in the

bipartite graph (Vi, Vj) induced by the 1-skeleton of X. Recall that dij =
[

k
(j−i)k

]
q
≈ q(j−i)k(k−(j−i)k),

where in general we use ak ∈ {0, 1, . . . , k − 1} to denote the number a reduced modulo k.
Our goal in this section is to upper bound the number of triangles contained in any small set

U ⊆ X(0). Our bounds follow from spectral bounds on edge density in the Ramanujan graph and
in its links. The proof strategy loosely resembles the one taken in the proof of [DH24, Theorem
10.14].

4.1 Edge density of small sets in the Ramanujan complex

We will first prove some statements related to the edge density in small sets.

Lemma 4.1. Let δ < 1
qk2/4

and α ∈ N. Let Ui,α ⊆ Vi and Uj ⊆ Vj be such that |Ui,α| ⩽ δn and |Uj| ⩽ δn.

Suppose also that the number of neighbors each vertex u ∈ Ui,α has in Uj is in [2α−1, 2α). Then,

|Ui,α| ⩽ Ok(1) · q(j−i)k(k−(j−i)k) · 2−2α · |Uj|.

We use the bipartite expander mixing lemma to prove the above statement.

Lemma 4.2 (Bipartite Expander-Mixing Lemma). Let G = (L, R, E) be a bipartite graph with left-
degree c and right-degree d. Let A ⊆ L have |A|/|L| = α and B ⊆ R have |B|/|R| = β. Let λ denote the
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magnitude of the largest nontrivial (not ±
√

cd) eigenvalue of G’s adjacency matrix. Then∣∣∣∣ |E(A, B)|
|E(L, R)| − αβ

∣∣∣∣ ⩽ λ√
cd

√
α(1 − α)β(1 − β) ⩽

λ√
cd

√
αβ . (2)

Proof of Lemma 4.1. Consider the bipartite graph (Vi, Vj) induced by the 1-skeleton of X. Notice that

both the left and right degrees are dij =
[

k
(j−i)k

]
q
. By Lemma 3.5, the second eigenvalue λ2(Vi, Vj)

of this graph is bounded above by Ok(1) ·
√

q(j−i)k(k−(j−i)k).
We know that e(Ui,α, Uj) ⩾ 2α−1 · |Ui,α|. By the bipartite expander mixing lemma (Lemma 4.2),

we have that

e(Ui,α, Uj) ⩽
|Ui,α||Uj|dij

n
+ λ2(Vi, Vj) ·

√
|Ui,α||Uj|

⩽
(
δdij + λ2(Vi, Vj)

)
·
√
|Ui,α||Uj|

= Ok(1) ·
√

q(j−i)k(k−(j−i)k) ·
√
|Ui,α||Uj|.

Combining inequalities, this tells us that

2α−1 · |Ui,α| ⩽ e(Ui,α, Uj) ⩽ Ok(1) ·
√

q(j−i)k(k−(j−i)k) ·
√
|Ui,α||Uj|,

which implies that
|Ui,α| ⩽ Ok(1) · q(j−i)k(k−(j−i)k) · 2−2α · |Uj| .

The next lemma gives a bound on edge density between parts within the link of a vertex. For
u ∈ X(0), let Vj(u) denote all the vertices in Vj that share an edge with u.

Lemma 4.3. For 0 < i < j ∈ [k], and for u ∈ V0, Ui(u) ⊆ Vi(u), and Uj(u) ⊆ Vj(u), it holds that

e(Ui(u), Uj(u)) ⩽ Ok(1) ·
( |Ui(u)||Uj(u)|

qi(k−j)
+
√

q(j−i)(k−(j−i)−1) ·
√
|Ui(u)||Uj(u)|

)
.

Proof. Let L be the bipartite graph in the link on (Vi(u), Vj(u)). The left side has d0i =
[

k
i

]
q ≈ qi(k−i)

vertices, and the right side has d0j =
[

k
j

]
q
≈ qj(k−i) vertices. The left degree is

[
k−i
k−j

]
q
≈ q(j−i)(k−j)

and the right degree is
[

j
i

]
q
≈ qi(j−i).

By Lemma 3.8, the second eigenvalue of this graph is at most
√

q(j−i)(k−(j−i)−1). Thus, by the
bipartite expander mixing lemma (Lemma 4.2), we have:

e(Ui(u), Uj(u)) ⩽
|Ui(u)||Uj(u)|

√[
k−i
k−j

]
q

[
j
i

]
q√[

k
i

]
q

[
k
j

]
q

+ λ2(Vi(u), Vj(u)) ·
√
|Ui(u)||Uj(u)|

= Ok(1) ·
( |Ui(u)||Uj(u)|

qi(k−j)
+
√

q(j−i)(k−(j−i)−1) ·
√
|Ui(u)||Uj(u)|

)
.
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4.2 Warm up: bounding triangles in small sets in the 3-partite Ramanujan complex

Recall that our main goal of this section is to bound the number of triangles contained within small
sets of vertices in the k-partite Ramanujan complex. As a warm-up, here we will calculate this
quantity for the case of k = 3. The same ideas will generalize to the general case in Section 4.3, but
we find it more transparent to first demonstrate this easier calculation.

In the case of k = 3, the vertices of the Ramanujan complex is of the form X(0) = (V0, V1, V2).
Let U = U0 ∪ U1 ∪ U2 ⊆ X(0), where Ui ⊆ Vi for i ∈ [3], be a small set of vertices of X, satisfying
that |U| ⩽ δ · n = δ

3 · |X(0)| where δ = 1
q9/4 as to satisfy the conditions of Lemma 4.1.

The Ramanujan complex is a partite complex, with edges only between different parts, and
hence any triangle contained within U must have exactly one vertex from each of U0, U1, and U2.
In fact, if we fix u ∈ U0 and denote U1(u) := U1 ∩V1(u) and U2(u) := U2 ∩V2(u), then the number
of triangles containing u is precisely the number of edges within the graph (U1(u), U2(u)). This
latter quantity can be bounded by an application of the expander mixing lemma to the link of u
(formally given in Lemma 4.3).

Our strategy for bounding the number of triangles contained within U can be described as
follows:

(1) We will split the vertices in U0 according to the number of neighbors it has within U1 ∪ U2. For
any α > 0, Lemma 4.1 gives us an upper bound on the number of vertices u ∈ U0 that can have
≈ 2α neighbors in U1 ∪ U2.

(2) If a vertex u ∈ U0 has ≈ 2α neighbors in U1 ∪ U2, then the number of triangles containing u is
equal to the number of edges in (U1(u), U2(u)) within the link of u. Lemma 4.3 gives us an
upper bound on this quantity in terms of α.

We now execute this strategy. Let △ denote the number of triangles contained within U.

Lemma 4.4. Let δ < 1
q9/4 . For any U = U0 ∪ U1 ∪ U2 ⊆ X(0) with |U| ⩽ δ|X(0)|, the number of

triangles in X(2) contained in U is at most O(q3/2)|U|.

Proof. First, notice that for any u ∈ U0 the number of neighbors it has within V1 ∪ V2, and hence
the maximal possible number of neighbors it has within U1 ∪ U2, is upper bounded by d01 + d02 =

O(q2). Let B = ⌈log2(d01 + d02)⌉+ 1 = O(log2 q).
We partition U0 into sets U0,∅ ∪ U0,1 ∪ U0,2 ∪ · · · ∪ UU0,B where

U0,α = {u ∈ U0 : |U1(u)|+ |U2(u)| ∈ [2α−1, 2α)}

and U0,∅ denotes all vertices in U0 with no neighbors in U1 ∪ U2. The vertices in U0,∅ contribute
no triangles to our count, so we may ignore them. For any α ∈ [1, B], combining with the trivial
observation that |U0,α| ⩽ |U|, Lemma 4.1 gives us an upper bound on the size of U0,α:

|U0,α| ⩽ min
{

1, O(q22−2α)
}
· |U| . (3)

The number of triangles contained in U is equal to △ = ∑u∈U0
e(U1(u), U2(u)). By Lemma 4.3,

for any α and u ∈ U0,α, we have

e(U1(u), U2(u)) ⩽ O(1) ·
(

q−122α +
√

q · 2α
)

.
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Thus, we may upper bound the number of triangles in U by

△ ⩽ O(1) ·
B

∑
α=1

|U0,α| ·
(

q−122α +
√

q · 2α
)

.

For 2α ⩽ q, we have that |U0,α| ⩽ |U|. For 2α > q, Equation (3) tells us that |U0,α| ⩽ O(q22−2α)|U|,
in which case the summand |U0,α| ·

(
q−122α +

√
q · 2α

)
⩽ q + q5/22−α. Combining the two, we get

that the number of triangles in U is bounded by:

△ ⩽ ∑
α:2α⩽q

(
q−122α +

√
q · 2α

)
· |U|+ ∑

α:2α>q

(
q + q5/22−α

)
= O(1) · |U| ·

(
q−1 · q2 +

√
q · q + q log q + q5/2 · q−1

)
⩽ O(q3/2)|U|,

completing the proof.

4.3 Bounding triangles in small sets: general case

We now bound the number of triangles within small sets of the k-partite Ramanujan complex. Our
strategy is similar to the k = 3 case considered in the previous section but is more notationally
complex.

Let U = U0 ∪ U1 ∪ · · · ∪ Uk−1 ⊆ X(0) be a small set of size ⩽ δn = δ
k · |X(0)|. Our goal is to

bound the number of triangles contained within U.
Fix three parts i0 < i1 < i2 ∈ [k]. Our goal is to bound the number of triangles contained within

Ui0 ∪ Ui1 ∪ Ui2 in terms of |U|, which we will denote by △i0,i1,i2 . In fact, by rotational symmetry of
the Ramanujan complex, we may assume that i0 = 0 (by replacing i1 with i1 − i0 and i2 with i2 − i0).
So, let us relabel and consider the case of triangles within U0 ∪ Ui ∪ Uj, where 0 < i < j < k.

Lemma 4.5. Let δ < 1
qk2/4

. Let U = U0 ∪ U1 ∪ · · · ∪ Uk−1 ⊆ X(0) such that |U| ⩽ δn. For any

0 < i < j < k, it holds that

△0,i,j ⩽ Ok(1) ·
√

q(j−i)(k−(j−i)−1) · qi(k−i)/4 · qj(k−j)/4 · |U| .

Proof. For any u ∈ U0, note that |Vi(u)| ⩽ d0i < qk2/4 and |Vj(u)| ⩽ d0j < qk2/4. Let B =

⌈log2 qk2/4⌉ = Ok(1) · log2 q.
Define Ui(u) := Ui ∩ Vi(u). We will partition U0 into sets U0,∅ ∪ (

⋃
0<α,β⩽B U0,α,β), where

U0,α,β ⊆ U0 denotes the set of vertices u ∈ U0 with |Ui(u)| ∈ [2α−1, 2α) and |Uj(u)| ∈ [2β−1, 2β),
and U0,∅ ⊆ U0 denotes the set of vertices u ∈ U0 with either Ui(u) = ∅ or Uj(u) = ∅. Notice that
none of the u ∈ U0,∅ contribute any triangles.

By Lemma 4.1 and also observing that |U0,α,β| ⩽ |U0| ⩽ |U|, we have that

|U0,α,β| ⩽ Ok(1) · min
{

1, qi(k−i) · 2−2α, qj(k−j) · 2−2β
}
· |U|.

For any u ∈ U0,α,β, we know that |Ui(u)| ∈ [2α−1, 2α) and |Uj(u)| ∈ [2β−1, 2β). Thus, by Lemma 4.3
we have:

e(Ui(u), Uj(u)) ⩽ Ok(1) ·
(

2α+β

qi(k−j)
+
√

q(j−i)(k−(j−i)−1) · 2(α+β)/2
)

.
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Altogether, this gives us that

△0,i,j = ∑
u∈U0

e(Ui(u), Uj(u))

⩽ ∑
0<α,β⩽B

|U0,α,β| · Ok(1) ·
(

2α+β

qi(k−j)
+
√

q(j−i)(k−(j−i)−1) · 2(α+β)/2
)

⩽ Ok(|U|) · ∑
0<α,β⩽B

min{1, qi(k−i) · 2−2α, qj(k−j) · 2−2β} ·
(

2α+β

qi(k−j)
+
√

q(j−i)(k−(j−i)−1) · 2(α+β)/2
)

= Ok(|U|) · (term1+ term2+ term3) ,

where

term1 = ∑
0<α⩽ i(k−i)

2 log2 q

0<β⩽ j(k−j)
2 log2 q

(
2α+β

qi(k−j)
+
√

q(j−i)(k−(j−i)−1) · 2(α+β)/2
)

term2 = ∑
i(k−i)

2 log2 q<α⩽B

0<β⩽α+ j(k−j)−i(k−i)
2 log2 q

qi(k−i) · 2−2α ·
(

2α+β

qi(k−j)
+
√

q(j−i)(k−(j−i)−1) · 2(α+β)/2
)

term3 = ∑
j(k−j)

2 log2 q<β⩽B

0<α⩽β+ i(k−i)−j(k−j)
2 log2 q

qj(k−j) · 2−2β ·
(

2α+β

qi(k−j)
+
√

q(j−i)(k−(j−i)−1) · 2(α+β)/2
)

.

We bound each term separately. For term1, by separately evaluating the sum over β, then α, we
have that

term1 = ∑
0<α⩽ i(k−i)

2 log2 q

0<β⩽ j(k−j)
2 log2 q

(
2α+β

qi(k−j)
+
√

q(j−i)(k−(j−i)−1) · 2(α+β)/2
)

= ∑
0<α⩽ i(k−i)

2 log2 q

O(1) ·
(

2α · qj(k−j)/2

qi(k−j)
+
√

q(j−i)(k−(j−i)−1) · 2α/2 · 2j(k−j)/4

)

= O(1) ·
(

qi(k−i)/2 · qj(k−j)/2

qi(k−j)
+
√

q(j−i)(k−(j−i)−1) · qi(k−i)/4 · qj(k−j)/4

)

= O(1) ·
(

q(j−i)(k−(j−i))/2 +
√

q(j−i)(k−(j−i)−1) · qi(k−i)/4 · qj(k−j)/4
)

.

Next, for term2, we first sum over β, then over α, getting

term2 = ∑
i(k−i)

2 log2 q<α⩽B

0<β⩽α+ j(k−j)−i(k−i)
2 log2 q

qi(k−i) · 2−2α ·
(

2α+β

qi(k−j)
+
√

q(j−i)(k−(j−i)−1) · 2(α+β)/2
)

= O(1) · ∑
i(k−i)

2 log2 q<α<B

qi(k−i) · 2−2α ·
(

22α · q(j(k−j)−i(k−i))/2

qi(k−j)
+
√

q(j−i)(k−(j−i)−1) · 2α · q(j(k−j)−i(k−i))/4

)
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= O(1) · ∑
i(k−i)

2 log2 q<α<B

(
q(j−i)(k−(j−i))/2 +

√
q(j−i)(k−(j−i)−1) · 2−α · q(j(k−j)+3i(k−i))/4

)

= Ok(1) ·
(

q(j−i)(k−(j−i))/2 · log2 q +
√

q(j−i)(k−(j−i)−1) · qi(k−i))/4 · q(j(k−j)/4
)

.

Similarly, for term3, we first sum over α then β, and get

term3 ⩽ Ok(1) ·
(

q(j−i)(k−(j−i))/2 · log2 q +
√

q(j−i)(k−(j−i)−1) · qi(k−i)/4 · qj(k−j)/4
)

.

Now, notice that all three terms are of the form

Ok(1) ·
(

q(j−i)(k−(j−i))/2 · log2 q +
√

q(j−i)(k−(j−i)−1) · qi(k−i)/4 · qj(k−j)/4
)

.

In fact, it always holds that

q(j−i)(k−(j−i))/2 · log2 q = o
(√

q(j−i)(k−(j−i)−1) · qi(k−i)/4 · qj(k−j)/4
)

, (4)

so all three terms are
Ok(1) ·

√
q(j−i)(k−(j−i)−1) · qi(k−i)/4 · qj(k−j)/4 ,

so
△0,i,j ⩽ Ok(1) ·

√
q(j−i)(k−(j−i)−1) · qi(k−i)/4 · qj(k−j)/4 · |U| .

Finally, to see (4), we divide both sides by q(j−i)(k−(j−i))/2, which gives

log2 q ⩽ o(1) · q−(j−i)/2 · qi(k−i)/4 · qj(k−j)/4 = o(1) · q(i(k−i+2)+j(k−j−2))/4 .

Since 1 ⩽ i < j ⩽ k − 1, it follows that i(k − i + 2) is minimized at i = 1, and j(k − j − 2) < 0 only
if j = k − 1.

1
4
(i(k − i + 2) + j(k − j − 2)) ⩾

1
4
((k + 1)− (k − 1)) =

1
2

.

This implies that

(j − i)(k − (j − i))
2

+
1
2
⩽

(j − i)(k − (j − i)− 1)
2

+
i(k − i)

4
+

j(k − j)
4

,

thus establishing (4).

It follows by the rotational symmetry of the Ramanujan complex that a similar bound holds for
any choice of three parts.

Corollary 4.6. Let δ < 1
qk2/4

. Let U = U0 ∪ U1 ∪ · · · ∪ Uk−1 ⊆ X(0) such that |U| ⩽ δn. For any

i0 < i1 < i2 ∈ [k], it holds that

△i0,i1,i2 ⩽ Ok(1) · min

(i,j)∈

 (i1−i0,i2−i0),
(i2−i1,k+i0−i1),

(k+i0−i2,k+i1−i2)



[√
q(j−i)(k−(j−i)−1) · qi(k−i)/4 · qj(k−j)/4 · |U|

]
.
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4.4 Bounding faces with triangles in small sets

In this subsection, we bound the number of (k − 1)-faces of X that contain a triangle within a small
vertex set U. We let this set of (k − 1)-faces be denoted by Fk,3(U). Formally, we define:

Fk,3(U) = { f ∈ X(k − 1) : | f ∩ U| ⩾ 3} .

To bound |Fk,3(U)|, we will bound for each i0 ̸= i1 ̸= i2 ∈ [k] the number ∆i0,i1,i2 of triangles
contained within Ui0 ∪ Ui1 ∪ Ui2 , then multiply by the number of ways to extend each triangle to a
(k − 1)-face. We’ve already given an upper bound on ∆i0,i1,i2 in Corollary 4.6. The second quantity
is given in the following claim.

Claim 4.7. For 0 ⩽ i0 < i1 < i2 < k, and for vi0 ∈ Vi0 , vi1 ∈ Vi1 , and vi2 ∈ Vi2 such that {vi0 , vi1 , vi2} ∈
X(2), there are Ok(1) · q(

i1−i0
2 )+(i2−i1

2 )+(k+i0−i2
2 ) (k − 1)-faces containing {vi0 , vi1 , vi2}.

Proof. Let us set i′1 = i1 − i0 and i′2 = i2 − i0, and look within the link of vi0 . The vertices vi1 and vi2

correspond to a i′1-plane ρi′1
and i′2-plane ρi′2

within P
(

Fk
q

)
. The quantity we are interested in is the

number of ways to choose a sequence of planes ρ1 ⊆ ρ2 ⊆ · · · ⊆ ρk−1 with ρi′1
and ρi′2

fixed, which
is equal to[ i′1

1

]
q
·

[
i′1
2

]
q[

2
1

]
q
· · · · ·

[
i′1

i′1−1

]
q[

i′1−1
i′1−2

]
q

 ·


[

i′2
i′1+1

]
q[

i′1+1
i′1

]
q

· · · · ·

[
i′2

i′2−1

]
q[

i′2−1
i′2−2

]
q

 ·


[

k
i′2+1

]
q[

i′2+1
i′2

]
q

· · · · ·

[ k
k−1

]
q[

k−1
k−2

]
q

 ,

which is Ok(1) · q(
i′1
2 )+(

i′2−i′1
2 )+(

k−i′2
2 ) = Ok(1) · q(

i1−i0
2 )+(i2−i1

2 )+(k+i0−i2
2 ).

Combining Corollary 4.6 and Claim 4.7, we obtain the following bound on Fk,3(U).

Lemma 4.8. Let δ < 1
qk2/4

. Let U = U0 ∪ U1 ∪ · · · ∪ Uk−1 ⊆ X(0) such that |U| ⩽ δn. Then,

|Fk,3(U)| ⩽ Ok(1) · q(
k
2)−

k2
8 − 1

2 · max
0⩽i0<i1<i2<k

min

(i,j)∈

 (i1−i0,i2−i0),
(i2−i1,k+i0−i1),

(k+i0−i2,k+i1−i2)


q

1
8 ((i−j+2)2+(k−i−j)2) · |U| .

Proof. Combining Corollary 4.6 and Claim 4.7, we get an upper bound of

Ok(1) ·
√

q(j−i)(k−(j−i)−1) · qi(k−i)/4 · qj(k−j)/4 · q(
i
2)+(j−i

2 )+(k−j
2 ) · |U| ,

where i < j are the indices obtained from taking the maximum over i0 < i1 < i2 < k in Claim 4.7
and the minimum as in Corollary 4.6. It is a straightforward calculation that this simplifies to the
expression in the lemma statement.

4.5 The case of k = 5

Finally, we apply our bounds from this section to the specific case of k = 5, which we will use in
our construction of two-sided unique neighbor expanders.
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Corollary 4.9. Let k = 5, and let δ < q−25/4. Let U = U0 ∪ U1 ∪ U2 ∪ U3 ∪ U4 ⊆ X(0) such that
|U| ⩽ δn. Then,

|F5,3(U)| ⩽ O(q13/2 · |U|) .

Proof. By Lemma 4.8, we would like to evaluate the maximum over all tuples 0 ⩽ i0 < i1 < i2 < 5
of

min

(i,j)∈

 (i1−i0,i2−i0),
(i2−i1,k+i0−i1),

(k+i0−i2,k+i1−i2)


Ok(1) · q(

k
2)−

k2
8 − 1

2 · q
1
8 ((i−j+2)2+(k−i−j)2) · |U| . (5)

Let us perform casework on the value of (i0, i1, i2). Because the Ramanujan complex is rotationally
symmetric, there are essentially two cases to consider: the case where i0, i1, i2 are consecutive
indices, or the case where they are not all consecutive. The first case is equivalent to the case of
0, 1, 4, and the second case is equivalent to the case of 0, 2, 3.

In the first case, where i0 = 0, i1 = 1, and i2 = 4, we have that Equation (5) is at most

O(1) · q3/2 · q4/4 · q4/4 · q3 · |U| = O(1) · q13/2 · |U| .

In the second case, where i0 = 0, i1 = 2, and i2 = 3, we have that Equation (5) is at most

O(1) · q3/2 · q3/2 · q3/2 · q2 · |U| = O(1) · q13/2 · |U| .

5 Random gadget analysis

In this section, we prove Lemma 2.10 which states that there exist bipartite graphs H such that H
and H⊤ both satisfy the properties in Definition 2.8.

Definition (Restatement of Definition 2.8). Let H be a (dL, dR)-biregular bipartite graph on vertex
set ([DL], [DR]). For each a, b ∈ [k], let (Ai ⊆ [DR])i∈[s] be the special sets from Definition 2.3 where
s = sR(a, b). Define D := DL + DR. We say H is a pseudorandom gadget if for every a, b ∈ [k], we
have the following properties:

1. For every S ⊆ [DL] such that |S| ⩽ DR/dL and for every W ⊆ [s] with |W| ⩾ s log D
dL

,

∑
i∈W

|N(S) ∩ Ai| ⩽ 32|W| · max
{

1
r
· dL|S|, log D

}
.

2. For any S ⊆ [DL] with |S| = oD(1) · DR/dL, we have |N(S)| ⩾ (1 − oD(1))dL|S|.

In fact, we will prove that a random one satisfies the properties with high probability. The
desired statement then follows since H and H⊤ have the same distribution. Throughout this section,
we will write random variables in boldface.

Lemma 5.1 (Consequence of Lemma B.1, B.2 of [HMMP24]). Let H be a random (d1, d2)-biregular
graph on vertex sets A ∪ B, and let n1 = |A|, n2 = |B|, n = n1 + n2, and p = d2/n1 (observe that
d2/n1 = d1/n2). Suppose p ⩽ on(1) and d1, d2 ⩾ log2 n. Then with probability 1 − on(1), H satisfies the
following properties:
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• For every non-empty S ⊆ A, |UNH (S)|
|S| ⩾ d1(1 − p)|S|−1 −

√
4p(1 − p)|S|−1n1 log n1 − on(d1).

• For every non-empty S ⊆ B, |UNH (S)|
|S| ⩾ d2(1 − p)|S|−1 −

√
4p(1 − p)|S|−1n2 log n2 − on(d2).

Note that Lemma 5.1 implies that a random biregular graph satisfies property (2) in Defini-
tion 2.8. We now proceed to prove property (1).

We first state the following standard concentration bound, which was also used in [HMMP24].

Lemma 5.2 (Concentration for sampling without replacement). Fix 1 ⩽ ℓ ⩽ n. Let S ⊆ [n], let T be a
random sample of ℓ elements from [n] without replacement, and let µ = ℓ

n |S|. Then, for all δ > 0,

Pr[|S ∩ T | ⩾ (1 + δ)µ] ⩽ exp
(
− δ2µ

2 + δ

)
.

We now prove that a random biregular graph satisfies property (1) of Definition 2.8.

Lemma 5.3. Let H be a random (d1, d2)-biregular graph on vertex sets A ∪ B, and let n1 = |A|, n2 = |B|
and n = n1 + n2. Let B = B1 ∪ · · · ∪ Br be a fixed partition of B such that n2

2r ⩽ |Bi| ⩽ 2n2
r for each i ∈ [r].

Then, with probability 1 − O(1/n), we have that for all S ⊆ A with |S| ⩽ n2/d1 and all W ⊆ [r] with
|W| ⩾ r log n

d1
,

∑
i∈W

|N(S) ∩ Bi| ⩽ 32|W| · max
{

d1

r
|S|, log n

}
.

Proof. Consider a fixed S ⊆ A of size s ⩽ n2/d1 and W ⊆ [r] of size w ⩾ r log n
d1

. Let ℓ := ∑i∈W |Bi|.
By symmetry, the distribution of H is the same if we permute the vertices in B. Thus, the random
variable ∑i∈W |NH(S) ∩ Bi| has the same distribution as |NH(S) ∩ T | where T ⊆ B is a uniformly
random subset of size ℓ, independent of H.

Since NH(S) ⩽ d1s for any H (with probability 1), we can instead analyze the tail probabilities
of |U ∩ T | for any fixed U ⊆ B of size d1s. We have that Pr[|NH(S) ∩ T | ⩾ λ] ⩽ Pr[|U ∩ T | ⩾ λ].

The random set T can be viewed as ℓ samples from B without replacement. By Lemma 5.2,
we get the same concentration bounds as if it is a sum of ℓ samples with replacement: letting
µ := E[|U ∩ T |] = d1sℓ/n2, for any δ > 0,

Pr[|U ∩ T | ⩾ (1 + δ)µ] ⩽ exp
(
− δ2µ

2 + δ

)
.

By assumption we have w · n2
2r ⩽ ℓ ⩽ w · 2n2

r . Thus, it follows that d1s w
2r ⩽ µ ⩽ d1s 2w

r . We now split
into two cases depending on the size of s. Let the threshold be τ := r log n

d1
, which corresponds to

µ ≈ w log n. Let C = 8.
For s ⩾ τ, we set δ = 2C − 1, and we have that Pr[|U ∩ T | ⩾ 2Cµ] ⩽ exp(−Cµ) ⩽

exp(−Cd1s w
2r ). In this case, 2Cµ ⩽ 4Cd1s w

r .
For s ⩽ τ, we set δ such that (1 + δ)µ = 2Cw log n. In this case, we have 2Cw log n

µ ⩾ Cr log n
d1s ⩾

C ⩾ 5, which means that δ ⩾ 4 and hence δ2

2+δ ⩾ 1
2 (1 + δ). Thus, Pr[|U ∩ T | ⩾ 2Cw log n] ⩽

exp(−Cw log n).
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We next union bound over all S ⊆ A of size s.

τ−1

∑
s=1

(
n1

s

)
· e−Cw log n +

n2/d1

∑
s=τ

(
n1

s

)
e−Cd1s w

2r ⩽ eτ log n1−Cw log n +
n2/d1

∑
s=τ

es(log n1−
Cd1w

2r ) .

Since we assume w ⩾ r log n
d1

= τ, for C ⩾ 8 we have Cd1w
2r ⩾ C

2 log n ⩾ 4 log n1. Thus, we can bound

the above by e−7w log n + e−τ· 3d1w
r ⩽ e−2w log n.

Then, we union bound over W ⊆ [r], which has at most rw ⩽ ew log n choices. Thus, with
probability 1 − O(1/n), we have

∑
i∈W

|NH(S) ∩ Bi| ⩽ max
{

4Cd1s
w
r

, 2Cw log n
}
⩽ 32w · max

{
d1s
r

, log n
}

.
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